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Abstract
Stress is among the strongest signals promoting neuroplasticity: Stress signals, indicating real or
perceived danger, lead to alterations of neuronal function and often structure, designed to adapt to
the changed conditions and promote survival. Corticotropin releasing factor (CRF) is expressed
and released in several types of neuronal populations that are involved in cognition, emotion and
the regulation of autonomic and endocrine function. CRF expressing neurons undergo functional
and structural plasticity during stress and, in addition, the peptide acts via specific receptors to
promote plasticity of target neurons.
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1. Introduction and scope
Stress is among the strongest signals promoting brain plasticity. A vast body of work has
demonstrated that stress signals, indicating real or perceived danger, lead to alterations of
neuronal function, and often structure, designed to adapt to the changed conditions and
promote survival (Christoffel et al., 2011; McEwen, 2012; Wosiski-Kuhn and Stranahan,
2012). These crucial changes take place at time scales ranging from seconds to months, and
are mediated by a complex set of both central and peripheral mediators that together
constitute the stress response. Stress-activated mediators have traditionally included
neurotransmitters (norepinephrine, serotonin and others), and steroid hormones (cortisol in
humans, corticosterone in rodents). The discovery and isolation of corticotropin releasing
factor (CRF) by Wylie Vale and his team uncovered the nature of the enigmatic
hypothalamic factor that stimulated ACTH release (Vale et al., 1981). In addition, Wylie and
his group demonstrated the presence of the peptide in a number of brain regions outside of
the hypothalamus and its neurotransmission functions, adding an important element of
complexity to the intricate array of stress mediators (Vale et al., 1983). CRF is a
neuropeptide, a class of molecules that often demonstrates distinct temporal and spatial
action domains (Swanson et al., 1983; Landgraf and Neumann, 2004; Joëls and Baram,
2009; Maras and Baram, 2012), bridging the typical range of temporal actions of
neurotransmitters and the genomic actions of steroid hormones. Whereas much overlap
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exists, the majority of neurotransmitters act via ionotropic or G-protein coupled receptors to
evoke effects within millisecond to seconds. Neuropeptides overlap with this range in their
synaptic effects (e.g.,Gallagher et al., 2008), but can also act more slowly, likely via
polysynaptic (Hollrigel et al., 1998) or non-synaptic pathways (Landgraf and Neumann,
2004; Valentino and Van Bockstaele, 2008, Refojo 2011). The slower time-scale might
result from the more long-distance travel of the peptide via volume transmission
(Bittencourt and Sawchenko, 2000; Agnati et al., 2010). The time-scale of the action of
peptides, including CRF, also differs from the time-scale of steroid hormones. Whereas
rapid nongenomic actions of corticosteroid hormones have been well-described (Roozendaal
et al, 2010; Groeneweg et al., 2011), the fundamental actions of corticosteroids involve GR
and MR mediated genomic effects that require hours. Peptides also occupy a distinct
(though overlapping) spatial niche: Because they are often dispersed via volume
transmission, neuropeptides such as CRF can affect simultaneously numerous neurons in a
brain region (Roozendaal et al., 2002; Agnati et al., 2010) rather than act at single or a few
synapses, yet they do not permeate the whole brain, as do steroid hormones.

Wylie Vale isolated CRF from the hypothalamus and initially focused on the role of this
peptide in promoting synthesis and release of ACTH from the pituitary gland (Brown et al.,
1982; Gibbs and Vale, 1982; Rivier et al., 1982), In addition to the hypothalamus, well
discussed in other manuscripts within this collection, Wylie’s group (Swanson et al., 1983)
as well as others, found that CRF is expressed or acts in the amygdala (Roozendaal et al.,
2002; Gallagher et al., 2008; Regev et al., 2012), hippocampus (Lee et al., 1993; Chen et al.,
2001a; Refojo et al, 2011; Chen et al., 2013), cortex (De Souza et al., 1986; Behan et al.,
1995a; Gallopin et al., 2006), , inferior olive (Chang et al., 1996), locus coeruleus (Valentino
and Van Bockstaele, 2008) bed nucleus of the stria terminalis (Dabrowska et al., 2011), and
other areas affected by, or involved in, stress. Importantly, CRF receptors type-1 (CRFR1)
and type-2 (CRFR2) are found on target neurons (Van Pett et al., 2000; Reul and Holsboer,
2002), and within specific subcellular compartments (Reyes et al, 2008; Chen et al, 2012),
enabling complex and fine-tuned effects of CRF on target neurons throughout the brain.

Thus, CRF is an important component of the complex set of stress-mediators, allowing the
brain to mount the entire spectrum of the stress response, ranging from immediate attention
and strategic decisions, which are important for survival in the short-term, to storage of
information about a stressful situation, which is advantageous in the long-term.

This manuscript focuses on CRF and neuroplasticity. Neuroplasticity may be defined as a
long-lasting change in neuronal structure and/or function in response to a trigger. It is
commonly believed that both structural and functional plasticity involves altered expression,
transport and function of numerous genes in concert. Long-lasting neuroplasticity often
derives from epigenetic mechanisms: enduring changes in chromatin structure that influence
the presence and degree of transcription of genes and gene families. Here we discuss the
CRF neuron in both hypothalamus and hippocampus. We describe how CRF neurons
undergo functional and structural plasticity and, in addition, how the peptide acts via
specific receptors to promote plasticity of target neurons.

2. Plasticity of the hypothalamic CRF neuron
Hypothalamic CRF coordinates neuroendocrine, autonomic and behavioral responses to
stress (Brunson et al., 2001; Coste et al., 2001; Bale and Vale, 2004; de Kloet et al., 2005;
Joëls and Baram, 2009; Lightman, 2008; Valentino and Van Bockstaele, 2008; Zoumakis
and Chrousos, 2010; Aguilera, 2011; Bonfiglio et al., 2011), and dysregulation of CRF
neurons within the paraventricular nucleus of the hypothalamus (PVN) is found in several
stress-related affective disorders (de Kloet et al., 2005; Lloyd and Nemeroff, 2011;
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Flandreau et al., 2012). CRF expression in the PVN is regulated by a variety of factors
including stress (Swanson and Simmons, 1989; Watts, 2005; Lightman, 2008). It is
generally found that stress activates both CRF release as well as a rapid increase in
transcription of the gene (Yi and Baram, 1994; Rivest et. al., 1995; Ma et. al., 1997;
Tanimura and Watts, 1998; Dent et al., 2000; Ginsberg et al., 2003; Watts, 2005; Pace et. al.,
2009; Osterlund and Spencer, 2011; Liu et al, 2012). Appropriate initiation and termination
of CRF secretion and synthesis are crucial for physiological homeostasis (Coste et al., 2001;
Bale et al., 2002; Liu and Aguilera, 2009; Aguilera and Liu, 2012). Therefore, the manner
by which stress signals reach and activate CRF cells in PVN, and the nature of the regulation
of CRF expression levels and release have been subjects of intensive investigation.

Here we focus on certain aspects of stress-related neuroplasticity of the hypothalamic CRF
neuron: We describe how synaptic connectivity, which influences neuronal function, is
altered by early-life experiences. This unique structural and functional synaptic plasticity
initiates intracellular events within CRF neurons that constitute an additional, enduring
functional and molecular neuroplasticity.

2.1. Structural neuroplasticity of the hypothalamic CRF neuron
It has been well established that early-life experience induces persistent neuroplasticity of
the neuroendocrine stress system, characterized by reduced stress responses (Levine, 1967;
Plotsky and Meaney, 1993; Avishai-Eliner et al., 2001a), increased resilience to depressive-
like behavior (Meaney et al., 1991) and improved learning and memory (Liu et al, 2000;
Fenoglio et al., 2005). This neuroplasticity can be induced by a brief daily separation of rat
pups from the dam (handling) during the first weeks of life, a manipulation resulting in
augmented maternal-derived sensory input upon the reunification of dam and pups (Liu et
al., 1997; Fenoglio et al., 2006a; Korosi et al., 2010). At the level of the hypothalamic CRF
neuron, reduced expression of the gene is found in adult rats experiencing handling-related
augmented maternal sensory input (Plotsky and Meaney, 1993; Liu et al., 1997; Fenoglio et
al., 2005). Experience-induced reduction of CRF expression is observed rapidly, already by
postnatal day 9 (P9), preceding the lowered hormonal stress responses and the
epigenetically-induced augmentation of hippocampal GR expression (Avishai-Eliner et al.,
2001a; Weaver et. al., 2005). These observations suggest that plasticity of the hypothalamic
CRF neuron, resulting in repressed gene expression, is an early and important component of
the effects of enhanced maternal sensory input on the stress response.

Therefore, experiments were conducted to uncover the nature of the signals, derived from
maternal activities, that reach CRF neurons. Experiments also explored the resulting changes
(plasticity) of the hypothalamic CRF neuron. Because the CRF neuron is a component of a
neuronal network activated by maternal care (Fenoglio et al., 2006a), we examined if its
neuroplasticity consisted of altered excitatory and / or inhibitory synaptic input. These
changes, in turn, may provoke repression of the crf gene.

Innervation of CRF neurons includes GABAergic and glutamatergic synapses (Boudaba et
al., 1997; Miklos and Kovacs, 2002; Ziegler et al., 2005; Karsten and Baram, 2013), that
signal via GABAA (Cullinan, 2000) and glutamate receptors (Aubry et al., 1996; Kiss et al.,
1996; Di et al., 2003). In addition, functional synaptic plasticity of the CRF neurons in PVN
has been extensively studied in the context of stress (e.g., Kuzmiski et al., 2010; see Levy
and Tasker, 2012 for review). Using quantitative confocal and electron microscopy coupled
with electrophysiology, we examined the effects of early-life experience on excitatory and
inhibitory synapses innervating CRF neurons. We found no significant changes in
GABAergic synapse number or function. In contrast, there was a significant reduction in
both the number and function of excitatory, glutamatergic synapses on the CRF neuron. The
majority of the neurochemical, structural and electrophysiological data suggested a
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presynaptic reduction in release sites (Korosi et al., 2010). Hence, early-life experience
promotes structural neuroplasticity of the CRF neuron, consisting of reduced excitatory
drive onto this neuron because of reduced glutamatergic synaptic innervation. The
hypothalamic CRF neuron is part of the stress network (Hatalski et al., 1998; Chen et al.,
2001a; Jankord and Herman, 2008; Dedovic et al., 2009; Bonfiglio et al., 2011); therefore,
this neuroplasticity should reduce CRF release and expression in response to stress.

2.2. Functional / molecular neuroplasticity of the hypothalamic CRF neuron following
early-life experience, and the potential role of epigenetic mechanisms

Molecular plasticity of the CRF neuron, and specifically alteration of CRF expression, has
been described in numerous contexts. Acutely, stress augments transcription of the crf gene
(Tanimura and Watts, 1998; Baram and Hatalski, 1998; Dent et al, 2000; Chen et al., 2001b;
Ritter et. al., 2003; Fenoglio et al., 2006b; Liu et al., 2012; Cope et al., 2013). However, at
longer time frames, stress can either increase (Sterrenburg et al., 2011) or decrease (Pinnock
and Herbert, 2001; Ivy et al., 2008; Rice, et al., 2008) CRF levels.

CRF levels are persistently reduced in rodents experiencing augmented early life maternal
care (Plotsky and Meaney, 1993; Brunson, et al., 2001; Avishai-Eliner, et al., 2001a). Levels
of CRF expression in parvocellular hypothalamic neurons contribute to the fine-tuning of
the neuroendocrine response to stress because there is a relationship between the levels of
CRF expression and peptide release in response to stressful signals. Therefore, we sought to
elucidate how the persistent, life-long reduction in CRF expression, induced by augmented
maternal care early in life, is initiated and maintained.

In terms of the initiation of repression of the crf gene, ongoing studies are focusing on the
potential causal relationship of reduced excitatory synaptic input to CRF neurons and the
reduction of CRF expression. The maintenance of the long-lasting repression of this gene
likely involves epigenetic mechanisms, i.e., changes to the conformation of the chromatin
around the crf gene (review by Szyf, 2013; Lucassen et al., 2013). Changes in DNA
methylation at the promoter region of the CRF gene have been reported in view of the
contribution of DNA methylation to transcriptional repression (McGill et al., 2006), an
inverse relationship of promoter methylation and crf expression has been sought, and indeed
found (Mueller and Bale, 2008; Elliott et al, 2010, Chen et al., 2012a). Surprisingly, in our
hands, the study of crf promoter and intron methylation after early-life augmented maternal
care failed to find increased methylation as a mechanism for the enduring repression of the
crf gene (McClelland, 2011), and these findings are consistent with the emerging complexity
of various types of DNA methylation and the relationship of these modifications to gene
expression (Lister, et al., 2013). Considering alternative mechanisms to DNA methylation,
and focused on the potential role of the transcriptional repressor neuron-restrictive silencing
factor (NRSF; Mori et al., 1992; Palm et al., 1998), because of the presence of a functional
binding site for this repressor within the crf gene (Seth and Majzoub, 2001). Augmented
maternal care was found to increase NRSF levels in the hypothalamus (but not in thalamus,
Korosi et al., 2010), and the NRSF bound the NRSE site on the crf gene intron. Thus, NRSF
is an attractive molecule to mediate the epigenetic changes underlying the persistent
molecular neuroplasticity of the crf gene- and likely of numerous additional stress-related
genes.

Whereas there is a general agreement about the molecular neuroplasticity of the CRF neuron
following optimal or augmented maternal care early in life (Plotsky and Meaney, 1993; Liu
et al., 1997; Korosi and Baram, 2009), this is not the case for the consequences of adverse
early-life experience on the CRF neurons and specifically on CRF gene expression.
Maternal deprivation has led to an enhanced CRF expression in the PVN (Aisa et al., 2007;
Chen et al., 2012a). In contrast, others have found a depletion of steady-state CRF

Regev and Baram Page 4

Front Neuroendocrinol. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



messenger RNA in P9 rat or mouse pups after a week-long chronic stress provoked by
limited nesting and bedding material in the cage (Avishai-Eliner et al., 2001b; Rice et al.,
2008). These diverse findings suggest that early-life adversity can influence the stress-
sensitive CRF neurons in multiple ways, and the distinct parameters involved (e.g.,
intermittent vs. continuous stress, patterns of maternal behavior [Baram et al., 2012]) as well
as the cellular and molecular mechanisms, deserve further study.

3. CRF contributes to stress-induced neuroplasticity of learning and
memory
3.1. Role for CRF in stress-induced memory problems

Stress is prevalent and unavoidable. It is biologically important because it enables both rapid
and delayed adaptive processes to a changing environment. The adaptive importance of
remembering threatening or dangerous events allows learning from them, which promotes
survival. Because the hippocampus is a key brain region for learning and memory, many of
the effects of stress on these cognitive functions take place within the hippocampus.

The effects of stress on hippocampal structure and function are bi-directional. Acute or short
stress, lasting seconds to minutes, enhances hippocampal function by augmenting synaptic
plasticity through a variety of mediators and mechanisms (Blank et al., 2002; Joëls and
Baram 2009; McEwen and Gianaros, 2011). However, these same mechanisms, when
activated intensely or for a prolonged period, may render the hippocampus vulnerable to the
detrimental effects of chronic or severe stress (Joëls and Baram, 2009; Ulrich-Lai and
Herman, 2009). Thus, the effects of stress on hippocampal functions are complex,
depending on whether the stressful stimulus is mild or severe, acute or chronic, and on its
perception as controllable and predictable vs. unpredictable and uncontrollable.

Recent studies have uncovered an important role for CRF in the effects of stress on learning
and memory, and specifically the effects of stress on hippocampus- dependent learning. For
example, blocking the ability of CRF to interact with its receptor attenuated the adverse
effects of hours-long stress on memory (Chen et al., 2010), and mice lacking the CRFR1
were resistant to the pervasive effects of chronic early-life stress (Wang et al., 2011a) and
chronic social stress (Wang et al., 2011b) on memory.

3.2. Hippocampal CRF: origins and targets
The studies cited above indicate that there is a role for CRF, acting on CRFR1, in the effects
of stress on hippocampal function. However, the source of the peptide is not completely
resolved. CRF is expressed in both developing and adult rodent hippocampus (Sakanaka et
al., 1987; Chen et al., 2001a). The peptide is secreted from the interneuronal axon terminals
into the local synaptic space during stress (Chen et al., 2012b). CRF is also expressed and
secreted during stress in the amygdala (Roozendaal et al., 2002), locus coeruleus (Valentino
and Wehby, 1988; Snyder et al., 2012) and other brain regions. CRF was shown to reach
many brain regions when injected into the cerebral ventricles (Bittencourt and Sawchenko,
2000), and to travel from the central amygdala nucleus to the adjacent basolateral nucleus
(Roozendaal et al., 2002). The precise mechanism for this transport, and a potential role of
the CRF binding protein, remain unclear (Behan et al., 1995b; Seasholtz et al, 2001; Chen et
al., 2004). Whereas it conceivable that the source of CRF that influences hippocampal
neurons during stress might be from other brain areas, two lines of evidence suggest that the
origin of CRF that acts on CRF receptor within hippocampus is local. First, in organotypic
cultures of the hippocampus (where other brain regions are not included), the presence of
selective blockers of CRFR1 (the receptor most highly expressed in the hippocampal
formation) provokes abnormal dendritic growth, suggesting a role for endogenous
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hippocampal CRF in shaping hippocampal dendritic structure (Chen et al., 2004). Second,
electron microscopy studies demonstrate that CRF is stored within releasable vesicle pools
at axon terminals of CRF-expressing interneurons (although there are no CRF-containing
vesicles in dendrites), consistent with the presence of canonical release machinery for CRF
at axon terminals. These data suggest local release of endogenous hippocampal CRF from
interneuronal axon terminals (Yan et al., 1998; Chen et al., 2012b). In sum, available
evidence supports the notion that CRF is produced in populations of interneurons in the
pyramidal cell layers of areas CA1 and CA3 (Sakanaka et al., 1987; Yan et al., 1998; Chen
et al., 2001a; Ivy et al., 2010). All of the CRF-expressing cells observed in adult
hippocampus seem to express GAD, the GABA synthetic enzyme. Many co-express the
calcium binding protein, parvalbumin, typical of hippocampal basket cells within the
pyramidal cell layer, but none co-express cholecystokinin, which defines a separate set of
interneurons (Chen et al., 2012b). It is still not fully resolved how stress promotes secretion
of CRF from axonal terminals of these interneurons, and how the peptide reaches its
receptors.

3.3. Stress-induced, CRF-mediated neuroplasticity of hippocampal cells
The evidence above suggests that during stress, hippocampal neurons are impacted by
several stress-mediators: glucocorticoids reach the hippocampus from the adrenal, and act
via both glucocorticoid and mineralocorticoid receptors (McEwen, 1999; Kim and Diamond,
2002; Roozendal et al., 2003; Joëls and Baram, 2009). During stress, hippocampal synapses
are impacted by neurotransmitters such as serotonin and norepinephrine, and, as shown
above, by hippocampal CRF. Hence, it is likely that hippocampal CRF contributes to an
orchestrated set of cellular and molecular events initiated by stress within hippocampal
neurons, which promote plasticity.

The duration of stress is especially important in determining its effects on learning and
memory (Zoladz and Diamond, 2008; Joëls and Baram, 2009; Joëls et al., 2011; McEwen
and Gianaros, 2011): Stress (and CRF application) lasting for minutes alters the structural
and functional properties of neurons in a manner that is distinct from observations after
stress lasting for hours, although both of these time-frames often designate “acute” stress.
Chronic stress, lasting days and weeks, exerts still more distinctive changes in hippocampal
function and structure. How does CRF contribute to these distinct, time-dependent effects of
stress on memory?

During minutes-long stress, CRF release potentiates synaptic plasticity (Wang et al., 1998,
2000). It also leads to priming of long-term potentiation (Blank et al, 2002, 2003,). LTP is a
cellular process that is generally considered to represent learning and memory (Larson and
Lynch, 1986; Bliss and Collingridge, 1993). The ‘positive’ effect of CRF on hippocampal
function during stress is supported by the fact that several hippocampus-dependent learning
tasks are improved upon administration of CRF into the brain (Hung et al., 1992; Ma et al,
1999; Radulovic et al, 1999; Blank et al., 2002, 2003; Row and Dohanich, 2008). The
mechanisms by which CRF influences synaptic function and memory at the seconds-to-
minutes time window are not fully known. It is clear that CRFCRFR1 signaling is involved,
because synaptic potentiation is attenuated in hippocampal slices from mice lacking CRFR1
(Schierloh et al, 2007), and, in addition, these mice have memory problems (Contarino et al,
1999). There is evidence for CRF-mediated increase of presynaptic glutamate release
(Hollrigel et al., 1998), as well as enhanced postsynaptic excitability (Aldenhoff et al.,
1983), potentially related to CRF-induced suppression of after-hyperpolarization (Aldenhoff
et al., 1983). In addition, activation of several molecular cascades by crf receptor activation
has been demonstrated, including specific kinases (Refojo et al., 2005; Punn et al., 2006)
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beta-arrestins (Holmes et al., 2006; Oakley et al., 2007) and Rho GTPases (Swinny and
Valentino, 2006; Chen et al., 2013).

A role for CRF in the effects of longer stress on hippocampus is suggested by several lines
of evidence. First, genetic manipulation of CRF levels in hippocampus accelerated cognitive
problems and structural decline in models of Alzheimer disorder (Dong et al., 2012). Indeed,
overexpression of CRF in forebrain led to learning and memory defects (Wang et al.,
2011a). CRF has also been implicated in dendritic and spine changes in hippocampus after a
shorter stress, lasting several hours (Pawlak et al., 2005; Chen et al., 2013), and these effects
involve both inter-cellular molecules such as nectin 3 (Wang et al., 2013) and intracellular
mechanisms for destabilizing dendritic spines (Chen et al., 2013). Finally, exposing
hippocampal explants to CRF chronically promotes loss of dendritic arborization (Chen et
al., 2004). These data, suggest that CRF contributes to the established effects of hours-
lasting and chronic stress on synaptic plasticity that underlies hippocampus-mediated
learning and memory.

4. The hippocampal CRF neuron: target and mediator of cognitive effects of
early life stress

Whereas stress during adult life leads to significant effects on neuronal function and on
learning and memory, this type of neuroplasticity generally does not persist. In contrast,
early-life stress may contribute to severe and enduring cognitive impairments (Nelson et al.,
2007). These problems may emerge during adulthood, and seem to progress with age
(Kaplan et al., 2001; Wilson et al., 2007). Is there a role for CRF in these long-lasting effects
of early-life stress?

Early-life stress augments the expression levels of hippocampal CRF chronically: We
generated chronic stress during postnatal days P2-P9 employing a naturalistic rodent model
of limited resources by limiting the nesting and bedding material in the cages. This led to
frequent sorties of the dam from the nest area, and to fragmented maternal care, with little
effect on total care. Remarkably, the abnormal patterns and rhythms of maternal care
generated chronic stress in the pups, as evident from adrenal hypertrophy and elevated
plasma corticosterone (Avishai-Eliner et al., 2001b; Brunson et al., 2005). As adults,
graduates of this early-life stress had apparent normal stress-hormone levels, but their
memory was impaired on several tests (Brunson et al., 2005; Ivy et al., 2010).. These
memory defects were associated with major deficits of LTP. The LTP defects were not
global, but centered on the commissural / associational synapses in stratum radiatum of CA1
and CA3 (Brunson et al., 2005). Interestingly, the basis of the LTP problems was, at least in
part, a loss of these synapses: the structure of the corresponding neurons was quite
abnormal, including impoverished dendritic arborization and hence reduced numbers of
dendritic spines and excitatory synapses (Brunson et al, 2005; Ivy et al., 2010; Wang et al.,
2011a).

There is evidence that CRF contributes to the abnormal synaptic plasticity and synaptic loss
generated by early-life stress: As mentioned, expression levels of hippocampal CRF were
chronically augmented in this model (Fenoglio et al., 2006b; Ivy et al., 2010). In addition,
selective blocking of central CRFR1 receptors during the week that followed the early-life
stress period sufficed to abolish deficits in hippocampus-dependent memory, LTP and
dendritic structure in selective regions of hippocampal CA1 (Ivy et al., 2010). These
mechanistic studies support the role of CRF in these effects. Further support for a role of
CRF in the effects of early-life stress on hippocampal structure and function is apparent
from the fact that mice with a conditional forebrain CRFR1 knockout were resistant to the
effects of chronic early-life stress (Wang et al., 2011a). Interestingly, the consequences of
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chronic early-life stress were reproduced by simply over-expressing CRF postnatally in
forebrain neurons (Wang et al., 2011a). Together, these studies demonstrate that functional,
structural and molecular changes evoked by early-life stress are at least partly dependent on
CRF over-activity via forebrain CRFR1 signaling.

It is intriguing to consider potential adaptive aspects of these neuroanatomical and
functional changes. A cumulative stress hypothesis suggests that adults experiencing chronic
early life stress might be more vulnerable to future stress (McEwen 2012; Nederhof and
Schmidt, 2012). In contrast, a match-mismatch theory might suggest that the loss of memory
processing capacity of adults subjected to chronic stress early in life might prepare them to
an adult life fraught with stress. Reduced memory of stressful occurrences could be
protective in this context (Wang et al, 2011a).

An important question with clinical significance involves the time frame of the actions of
early life stress and the increased levels of CRF, and their potential reversibility. Two
alternative scenarios are possible:

1. The “Critical Period’ hypothesis posits that the effects of early-life stress on
hippocampal structure and function require excessive CRF-CRFR1 signaling
during a critical period of brain programming within the first three weeks of life
(Bale et al., 2010). If this hypothesis is true, then the first few postnatal weeks are
the only period when intervention can prevent the detrimental effects of early-stress
on hippocampus; after this time-period, the consequences of early-stress are
programmed for life (Fig1A).

2. “Progressive” Hypothesis: Early-life stress sets in motion progressive molecular
events that result in cognitive defects during adulthood, and perhaps an acceleration
of aging-related cognitive decline (Ivy et al., 2010). In this scenario, blocking CRF
signaling later in life might still prevent the negative outcomes resulting from
early-life stress (Fig1B).

Existing data support both hypotheses: The resistance of mice with a conditional knockout
of the CRFR1 gene to chronic early-life stress supports the progressive hypothesis, because
these receptors, repressed via a CaMKinase II mechanism, are still expressed during the first
10 days of life, the period of chronic stress. In addition, in wild-type mice and rats, the
progressive emergence of cognitive problems and the progression of the hippocampal cell
injury also support the idea that chronic early-life stress induces progressive functional and
structural changes in the hippocampus. This is likely to be at least in part via increased
expression levels of CRF.

In support of the critical period scenario, whereas blocking CRFR1 immediately following
the early-stress period (Ivy et al., 2010) reversed the effect of such stress, administration of
CRFR1 blocker several months later had only a partial effect (unpublished observations).
This result is expected if reversal of the consequences of chronic early-life stress was not
possible beyond a ‘critical period’ (Figure 1).

5. Summary
Since the isolation and characterization of CRF by Wylie Vale, numerous studies--by his
group and many others-- have demonstrated the importance of this peptide and its
significance for myriad physiological as well as pathological conditions. Remarkably, the
effects of CRF take place both peripherally, through its neuroendocrine functions, as well as
within specific brain regions, as highlighted here.
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CRF is a pivotal modulator of the stress response, and the effects of the peptide may be
influenced by the amount / levels of peptide released as well as the duration of CRF action.
Indeed, knock-out studies suggest that the two CRF receptors, R1 and R2 might contribute
to the initiation of stress-related actions of the peptide and their termination, respectively
(Bale et al., 2002; Bale and Vale, 2004; Coste et al., 2001). Further complexity derives from
the fact that different targets of CRF seem to have distinct sensitivities to the peptide. Thus,
low level, short CRF exposure promotes synapse function and plasticity, whereas high levels
and long-duration exposure to the peptide results in elimination of synapses, as shown using
live multi-photon imaging (Chen et al., 2013). This complexity endows CRF with both
positive as well as detrimental effects. CRF promotes survival under stressful conditions
(Denver et al., 2013), yet its excess can induce or contribute to a number of maladaptive
consequences. Here we reviewed the role of CRF in neuroplasticity. Neuroplasticity
underlies our ability to learn and to change, and is often helpful in the context of stress.
However, excessive exposure to stress, e.g. chronic stress, severe stress or stress during
critical periods in life can lead to maladaptive plasticity, accompanied by cognitive
impairments. Together with other important components of the stress system (e.g.
glucocorticoids; Timmermans et al., 2013), CRF plays a central role in these neuroplastic
changes.

Whereas the majority of evidence for the role of CRF in neuroplasticity has arisen in rodent
models, these studies carry important implications to human health and disease. CRF is
chemically identical in rat and human, and a large number of human studies support a role
for CRF in stress responses and coping (Bradley et al., 2008). Changes in CRF expression
are found in aging (Behan et al., 1995a), depression (Raadsheer et al., 1995; Arborelius et
al., 1999; Merali et al., 2006) and epilepsy (Wang et al., 2001), supporting a role for the
peptide in neurological disorders. Together with the mechanistic animal studies discussed
here, these findings suggest that a better understanding of the role of CRF in neuroplasticity
should provide new avenues for developing intervention and perhaps prevention of stress-
related cognitive and emotional disorders.
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Highlights

Early-life experience contributes to plasticity of the neuroendocrine stress system.

The CRF neuron in PVN is a key site of such plasticity via altered excitatory synapses.

The hippocampal CRF neuron releases the peptide locally during stress.

CRF contributes to stress-induced structural and functional hippocampal plasticity

Chronic early-life stress persistently increases CRF expression in hippocampus.
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Figure 1. The long-term consequences of early-life stress may result from two alternative
processes
(A) Chronic early-life stress (ES) may exert its long-term effects on hippocampal structure
and function by interfering with hippocampal maturation during a vulnerable / critical
developmental period; this possibility predicts that whereas interventions within the critical
window will be effective (blue box), interventions initiated later in life will be ineffective
(purple box). (B) Alternatively, ES may set in motion molecular cascades that progress over
time to lead to functional / structural deficits apparent during middle age. This possibility
predicts that therapeutic interventions initiated during young adulthood (blue box) will
ameliorate the cognitive deficits.
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