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Abstract
Brain diffusion templates contain rich information about the microstructure of the brain, and are
used as references in spatial normalization or in the development of brain atlases. The accuracy of
diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions
with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI)
overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity.
However, when HARDI is combined with multiple-shot sequences to minimize image artifacts,
the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free
HARDI template of the human brain was developed from low angular resolution multiple-shot
diffusion data. The resulting HARDI template was produced in ICBM-152 space based on
Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions
with intravoxel heterogeneity, and contained fiber orientation information consistent with known
human brain anatomy.
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Introduction
Diffusion MRI allows investigation of the brain’s microstructure by examining the 3D
displacement profile of water molecules in tissue (LeBihan and Breton, 1985; Merboldt et
al., 1985). Diffusion templates representative of the microstructure of the average human
brain can be constructed by combining diffusion information from multiple human subjects,
and are used as reference for comparisons of the micro-architecture of the brain across
populations, as well as to generate digital brain atlases. Conventional diffusion tensor
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imaging (DTI) data (Basser et al., 1994; Basser and Pierpaoli, 1996) have been used for the
development of several brain templates and atlases (Mori et al., 2008; Van Hecke et al.,
2008; Peng et al., 2009; Zhang et al., 2011). However, DTI assumes Gaussian diffusion, and
therefore a single fiber orientation, in each voxel (Basser et al., 1994), which is an
inappropriate assumption for more than 90% of human brain white matter (Jeurissen et al.,
2012). This oversimplification of the DT model limits the accuracy of DTI-based brain
templates. High angular resolution diffusion imaging (HARDI) (Alexander et al., 2002;
Tuch et al., 2002) collects diffusion-weighted (DW) signals along a higher number of
directions than the minimum required in DTI, and has the potential to describe non-Gaussian
diffusion and resolve multiple fiber orientations within a voxel. Moreover, scalar quantities
that describe diffusion anisotropy in voxels with multiple fiber orientations more accurately
than the tensor-derived fractional anisotropy (FA), have been introduced for use with
HARDI (Tuch, 2004). Therefore, a HARDI template and atlas may represent the average
human brain micro-architecture more accurately than those based on DTI.

One of the key factors contributing to the accuracy of a brain template is the image quality
of the data used for its development (Zhang et al., 2011). High quality data with minimal
artifacts are necessary in order to produce a high quality HARDI template. For DTI, it has
been shown that, multiple-shot pulse sequences minimize image artifacts in regions with
magnetic field inhomogeneities at the cost of long scan times (Gui et al., 2008). However,
HARDI is characterized by lower scanning efficiency than DTI. When combining HARDI
with multiple-shot sequences, the scan time becomes inappropriate for human imaging.

The present work addressed the aforementioned limitations by constructing a HARDI
template of the human brain from multiple-shot low angular resolution diffusion data from
multiple subjects. This was accomplished by extending the work by Caan et al., 2009,
according to which, spatially co-registered low angular resolution DTI datasets from
multiple subjects can be treated as a single diffusion dataset of higher angular resolution
than that of its individual parts. More specifically, differences in brain shape and head
positioning across human subjects lead to different local rotations during spatial
normalization, which means that the combined dataset contains diffusion-weighted (DW)
signals corresponding to a large number of unique diffusion directions (equal to the product
of the number of diffusion directions per subject and the number of subjects). This approach
is in essence an application of the well-established super-resolution concept in angular
sampling (Borman and Stevenson, 1998; Elad and Feuer, 1997; Park et al., 2003). Caan et
al., 2009, demonstrated this approach by fitting dual tensors in each voxel of a composite
dataset constructed from conventional single-shot echo-planar DTI data from 11 subjects
(contaminated by echo-planar image artifacts). In the present work, low angular resolution
Turboprop-DTI datasets from 72 subjects, relatively free of distortions and other artifacts
(Arfanakis et al., 2005; Pipe and Zwart, 2006; Gui et al., 2008), were combined into a single
high angular resolution diffusion dataset, and constrained spherical deconvolution (CSD)
(Tournier et al., 2007) with up to sixth order spherical harmonics was employed to construct
a human brain HARDI template in ICBM-152 space (Mazziotta et al., 1995). The resulting
HARDI template was shown to resolve complex neuronal micro-architecture in regions with
intravoxel inhomogeneity and contained fiber orientation information consistent with known
human brain anatomy.

Material and Methods
MRI Data

Turboprop-DTI data from 72 healthy human subjects (forty-two female: 26.6±4.8 years of
age, 20–39 years age range; thirty male: 31.9±4.9 years of age, 22–40 years age range),
originally acquired for the development of the previously published IIT and IIT2 DTI
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templates (Peng et al., 2009; Zhang et al., 2011), were used in this study. The diffusion
properties are shown to be relatively similar across subjects in this age group (Sullivan and
Pfefferbaum, 2006; Hasan et al., 2008). Written informed consent was provided by all
participants according to procedures approved by the institutional committee for the
protection of human subjects. All datasets were collected on a 3 Tesla General Electric MRI
scanner (GE, Waukesha, WI) with the following parameters: TR=5800 ms, TE=94 ms, 8
spin-echoes per TR, 5 k-space lines per spin-echo, 128 samples per line, 16 blades per
image, field of view 24 cm × 24 cm, 45 contiguous oblique axial slices, 3 mm slice
thickness, 256×256 final image matrix, b=900 s/mm2 for 12 diffusion directions uniformly
distributed in 3D space (minimum energy scheme) (Hasan et al., 2001), and two b=0 s/mm2

images for each slice. The scan time for this sequence was 21 min and 57 s.

High-resolution T1-weighted data were also obtained for each subject, using the 3D
magnetization-prepared rapid acquisition gradient echo (MP-RAGE) sequence with the
following parameters: TE=3.2 ms, TR=8 ms, preparation time=725 ms, flip angle 6º, field of
view 24 cm × 24 cm, 124 slices, 1.5 mm slice thickness, 192×256 k-space matrix
reconstructed to 256×256. The scan time for this sequence was 9 min and 58 s.

Generation of a High Angular Resolution Diffusion Dataset from Low Angular Resolution
Data

Brain extraction, motion correction, b-matrix reorientation and diffusion tensor estimation
were performed for each subject, using TORTOISE (http://www.tortoisedti.org) (Pierpaoli
et al., 2010). Turboprop-DTI is relatively immune to eddy-currents and magnetic field non-
uniformities, and therefore corresponding corrections were not conducted (Gui et al., 2008).
The mean b=0 s/mm2 image volume was obtained for each subject. The mean b=0 s/mm2

and DW data (after preprocessing) were then transformed to ICBM-152 space, as follows.
All 72 DTI datasets were registered to the IIT2 DTI template (Zhang et al., 2011) using
deformable registration of diffusion tensors with explicit orientation optimization (DTITK)
(Zhang et al., 2006), and averaged to construct a temporary DTI template. The 72 original
DTI datasets were then registered to the temporary template, and the results were averaged
to obtain an updated template. This process was repeated 6 times, eventually transforming
all datasets to population space. The resulting transformations were applied to the mean b=0
s/mm2 image volumes of all datasets. The mean b=0 s/mm2 image volumes in population-
space were then non-linearly registered to the ICBM-152 T2-weighted template using the
Automatic Registration Toolbox (ART) (Ardekani et al., 2005). The resulting ART
transformations were averaged across subjects. Finally, for each subject, the transformation
from subject space to population space was combined with the average ART transformation
from population space to ICBM-152 space, and then applied to the original mean b=0 s/mm2

and DW image volumes (after preprocessing). The voxel size used in ICBM-152 space was
1 mm × 1 mm × 1 mm.

Since the final transformation applied to the preprocessed mean b=0 s/mm2 and DW image
volumes of each subject included rotations that varied throughout the brain, diffusion
gradient directions that corresponded to the transformed DW volumes were estimated for
each voxel separately from the local applied rotation. That local rotation matrix, R, was
computed from the local Jacobian matrix of the final transformation using singular value
decomposition:

[1]

[2]
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where J is the local Jacobian matrix, W is a diagonal matrix with singular values in the
diagonal elements, and U and V contain the left- and right-singular vectors, respectively.
Due to differences in brain shape and head positioning across subjects, the applied rotations
in each brain location were different for each subject (Fig. 1). Consequently, each voxel of
the combined dataset in ICBM-152 space contained a total of 864 DW signals (72 subjects ×
12 diffusion directions), corresponding to 864 unique diffusion directions (i.e. 864 unique
samples on a hemisphere of 3D space). To assess the angular sampling resolution in the
combined dataset, gaps in angular sampling were estimated in each white matter voxel, and
for each (θ,φ), by calculating the maximum opening angle a cone can have if it: i) originates
from the center of the unit sphere, ii) is centered at (θ,φ) and iii) does not include any of the
samples in the combined dataset (Fig.2A). In the following, this cone is referred to as the
local sampling gap cone. For each (θ, φ) of a voxel of the combined dataset, the opening
angle of the local sampling gap cone was translated into the number of diffusion directions
of a uniform sampling scheme with a largest sampling gap cone of the same size as the local
sampling gap cone of that voxel (Fig.2B). Furthermore, the minimum angular sampling
resolution in a voxel of the combined dataset was evaluated by means of the opening angle
of the largest sampling gap cone in that voxel, which was again translated into the number of
diffusion directions of a uniform sampling scheme with a largest sampling gap cone of the
same size.

To address differences in acquisition gain factors across subjects, the DW signals from each
subject were divided by the corresponding mean b=0 s/mm2 signal. In the following, we will

use the notation  for the normalized DW signals of the combined dataset, where i indicates
the subject (from 1 to 72) and j indicates the diffusion direction (from 1 to 12).

Corrections in the High Angular Resolution Diffusion Dataset
Despite normalization of the DW signals with the corresponding mean b=0 s/mm2 signal,
the mean per subject normalized DW signal:

[3]

was expected to vary across subjects in each voxel of the combined dataset (seen as “steps”
in Fig. 3A) due to the following reasons. First, different positioning of homologous fibers
relative to the diffusion gradients, leads to different DW signals across subjects for the same

set of diffusion directions, and inevitably to a small variation in  across subjects.
Second, for each subject, all DW signals in a voxel are divided by the same b=0 s/mm2

signal, and therefore, noise in b=0 s/mm2 introduces a variation of  across

subjects. Third, residual spatial mismatch leads to substantial variation in the 
across subjects. For example, assigning cerebrospinal fluid signals from one subject and
white matter signals from another to the same voxel leads to substantially lower normalized

DW signals for the former subject compared to the latter. Variation of the  across
subjects due to the second and third reasons mentioned above is an artifact of the process
used to construct the combined dataset, and may introduce errors in HARDI reconstruction.

A simulation was used to assess the importance of the above sources of error in the

combined dataset. The highest true variation in  across subjects (due to the first
reason described above) occurs in the case of single fiber orientation. Therefore, a dataset
containing a single fiber diffusion profile was simulated in the same space as the combined
dataset, using in each voxel the tensor model with eigenvalues λ1=1.8×10−3, λ2=
λ3=0.15×10−3 mm2/s (Papadakis et al., 2000), and the actual diffusion gradient vectors of
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the combined dataset. The coefficient of variation of  was calculated in each voxel
of the combined and simulated datasets, separately, as follows:

[4]

where  and  are the mean and standard deviation of the

 over all subjects. The ratio of CVDW values for the combined over the simulated
dataset was calculated in each voxel (Fig.3B). It was demonstrated that the CVDW values in
the combined dataset were substantially higher than those in the simulated dataset. This

finding suggested that the second and third sources of variation in  across subjects
had substantial effect on the combined dataset, and therefore, a correction was necessary to
reduce errors in HARDI reconstruction. The approach that was selected for that purpose was

to divide the normalized DW signals from each subject by the subject’s :

[5]

Consequently, any difference in  across subjects was eliminated (Fig.3C). It

should be noted that this process also eliminated the small but true variation in 
across subjects (caused by different positioning of homologous fibers relative to the
diffusion gradients). However, this was considered acceptable since the true variation in

 was very small (CVDW of the simulated dataset was 3.23×10−4 ± 1.16×10−4 on
average over all white matter), and the variation that was an artifact of the process used to
construct the combined dataset was much more substantial than the true variation, as shown
in Fig.3B. Therefore, the process described above was used to generate the final signals of

the combined dataset, .

Construction of a HARDI Template

Signals  of the combined dataset were used to estimate fiber orientation distribution
(FOD) functions by performing constrained spherical deconvolution (CSD) (Tournier et al.,
2007) with up to lmax=6 order modified real spherical harmonics (SH) basis. The same
process was repeated for all voxels of the combined dataset. All the information generated
above constituted the final HARDI template. A conventional DTI coloring scheme was used
when mapping fiber orientation information, with red color corresponding to fibers oriented
left-right, green for anterior-posterior, and blue for superior-inferior.

Evaluation of the Information Captured in the HARDI Template
FODs of the template were compared to those of previously published studies, in brain
regions known to consist of fibers with relatively similar orientation, as well as in regions
containing multiple fiber orientations. The ability to resolve crossing fibers in the HARDI
template was evaluated by tracing pathways through known regions of fiber intersection. For
this purpose, each fiber bundle involved in a crossing was mapped using the MRtrix toolbox
(Tournier et al., 2012) with tracking step size = 0.2 mm, radius of curvature = 1 mm,
minimum tract length = 10 mm, and two ROIs positioned on opposite sides of the crossing.

To evaluate the consistency of FOD reconstruction in neighboring voxels, for each voxel of
the combined dataset, the correlation between the FOD in that voxel and the FOD in each of
its 6 nearest neighbors was calculated (Anderson, 2005):
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[6]

where i, j, k are the coordinates of the voxel of interest, i′, j′, k′ are the coordinates of a

neighboring voxel,  is the correlation between the FOD at i, j, k and the FOD at i′, j′, k
′, ulm is the spherical harmonic coefficient representation of a FOD, and then averaged over
all 6 neighbors:

[7]

where A(i, j,k) is the average correlation of neighboring FODs at voxel i, j, k. Maps of the
average correlation of neighboring FODs were generated for the resulting HARDI template.

The effect that angular sampling resolution varying in spherical coordinates may have on
FOD reconstruction was also evaluated. In each white matter voxel of the combined dataset,
the opening angle of the local sampling gap cone centered at the direction corresponding to
the maximum of the FOD was estimated. The consistency of FOD reconstruction was then
compared in neighboring voxels with different opening angle of the local sampling gap cone
centered at the main fiber orientation.

Finally, the resulting HARDI template was compared to NTU-90 (Yeh and Tseng, 2011),
which, to our knowledge, is the only other HARDI template that is publicly available. Only
qualitative comparisons of sharpness and level of artifacts were conducted, since a detailed
quantitative comparison of FODs and derived quantities is complicated by differences in
FOD reconstruction, voxel dimensions, demographic characteristics of the subjects, and
publicly available output.

Results
The angular sampling resolution varied over (θ,φ) in voxels of the combined dataset (Fig.
2A). Different voxels of the combined dataset exhibited different opening angles of the
largest sampling gap cone. Figure 4 shows a histogram of the relative number of white
matter voxels that have an opening angle of the largest sampling gap cone equal to that of a
uniform sampling scheme with the number of directions shown on the horizontal axis. The
peak of the histogram is at 67 gradients. It should be stressed that the histogram refers to the
opening angle of the largest sampling gap cone in voxels of the combined dataset. The
angular sampling resolution is higher in other parts of 3D space for the same voxels.

In voxels known to contain white matter fibers with relatively similar orientation, such as
those in portions of the corpus callosum and the corticospinal tracts, FODs of the HARDI
template suggested the presence of a well-defined fiber orientation (Fig.5). In contrast, in
frontal lobe regions known to have complex fiber organization, FODs suggested fiber
crossing or fanning (Fig.6), in agreement with findings of HARDI studies on single subjects
(Descoteaux et al., 2011; Tuch, 2004). Multimodal FOD profiles implying fiber crossings
were also observed at the intersections between fibers of the corpus callosum, corticospinal
tract, and superior longitudinal fasciculus (Figs.7,8), similar to what was previously
demonstrated in single subjects (Descoteaux et al., 2011; Hess et al., 2006; Patel et al.,
2010b; Tournier et al., 2007). Tractography targeting only two tracts in these regions
resolved two-way crossings (Fig.7B) (Jeurissen et al., 2011; Kaden et al., 2007), while
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targeting three tracts resolved three-way crossings between commissural projections of the
corpus callosum, the corticospinal tract, and superior longitudinal fasciculus (Fig.9)
(Wedeen et al., 2008), in agreement with studies on HARDI datasets from individual
subjects. In addition, cross-shaped FODs were detected in other brain regions known to be
characterized by fiber orientation inhomogeneity: at the decussation of the superior
cerebellar peduncle (Fig.10) (Tuch, 2004); at the regions where fibers of the ventral
tegmental areas and substantia nigra meet the oculomotor nerves (Fig.10) (Gray, 1918); at
the intersection of optic radiations with fibers of the tapetum (Fig.11) (Tuch, 2004).

Maps of the mean correlation of neighboring FODs in the generated HARDI template
demonstrated higher correlation in white matter compared to gray matter and cerebrospinal
fluid (Fig.12). Also, FODs were shown to be independent of the opening angle of the local
sampling gap cone centered at the main fiber orientation (Fig.13). Finally, the HARDI
template generated here was characterized by higher image sharpness, provided the ability to
distinguish smaller white matter fiber bundles such as the anterior commissure and
transverse pontine fibers, and contained fewer image artifacts than NTU-90 (Fig.14).

Discussion
A HARDI template of the human brain may be more representative of the average brain
micro-architecture than available DTI templates. Therefore, development of a high-quality
HARDI template of the human brain is particularly important to the neuroimaging
community. The high image quality achieved with multiple-shot diffusion imaging
techniques is well-documented (Gui et al., 2008; Peng et al., 2009). However, the scan time
of multiple-shot HARDI acquisitions is inappropriate for human brain imaging. The purpose
of this work was to develop a high-quality HARDI template of the human brain from low
angular resolution multiple-shot diffusion data. This was accomplished by extending the
work by Caan et al., 2009, and exploiting the fundamental assumption of template
development, namely that the information combined into a template originated from the
same distribution. The resulting HARDI template was produced in ICBM-152 space based
on Turboprop diffusion data from 72 human subjects, was shown to resolve complex
neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber
orientation information consistent with known human brain anatomy.

The FOD information contained in the generated HARDI template was in agreement with
published HARDI results from individual subjects in voxels known to contain white matter
fibers with similar orientation, as well as in voxels with documented fiber fanning or
crossing (Figs.5–8,10,11). The latter was true despite the fact that fiber fanning or crossing
was not detectable in the original 12 diffusion-direction DTI datasets from individual
subjects. The ability to resolve complex neuronal micro-architecture in the generated
HARDI template allowed mapping of fibers in brain regions with known fiber crossings
(Figs.7B, 9) (Varentsova et al., 2013).

FOD maps were characterized by relatively high consistency of FOD shapes in white matter
(Figs.5–8,10–12). Neighboring FODs were highly consistent even in regions with large
variations in the opening angle of the local sampling gap cone centered at the main fiber
orientation (Fig.13). This was probably due to the fact that the minimum angular sampling
resolution was sufficiently high throughout white matter (Fig.4).

Other HARDI templates of the human brain have recently been developed (Bouix S, 2010;
Patel et al., 2010a; Raffelt et al., 2011; Yeh and Tseng, 2011). The main differences in
methodology used for their construction compared to the present work are discussed here.
First, all previous studies performed HARDI reconstruction for each subject prior to
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averaging across subjects (Bouix S, 2010; Patel et al., 2010a; Raffelt et al., 2011; Yeh and
Tseng, 2011), in contrast to HARDI reconstruction on a combined DW dataset. The two
approaches are expected to be equivalent for the same product of the number of subjects and
number of diffusion directions per subject, however, a detailed comparison using the same
raw data for both approaches is needed. Both approaches are vulnerable to misregistration.
In this work, all datasets were spatially normalized using deformable registration of
diffusion tensors with explicit orientation optimization, accomplished with one of the
leading techniques for DTI registration (Wang et al., 2011; Zhang et al., 2006). Although,
registration was not based on FODs since such information was not available for individual
datasets, the diffusion tensors contain sufficiently rich information to achieve relatively high
spatial normalization accuracy for the development of a HARDI template. Previous studies
used image registration algorithms based on a single scalar quantity (Bouix S, 2010; Patel et
al., 2010a; Raffelt et al., 2011; Yeh and Tseng, 2011) and/or affine transformations (Bouix
S, 2010; Patel et al., 2010a), which are expected to result in lower registration accuracy than
that achieved here. Furthermore, all previous studies used conventional echo-planar
imaging, thereby limiting the quality of the information captured in the template, primarily
in the frontal and temporal lobes (Patel et al., 2010a; Yeh and Tseng, 2011). Examples of the
above limitations of previously published templates were demonstrated in a qualitative
comparison of the HARDI template generated here and NTU-90 (Yeh and Tseng, 2011)
(Fig.14). The HARDI template generated here was characterized by higher image sharpness,
provided the ability to distinguish smaller white matter fiber bundles, and contained fewer
image artifacts than NTU-90 (Fig.14). More comprehensive quantitative comparisons across
HARDI templates are currently problematic, due to one or more of the following reasons:
differences in a) FOD reconstruction methods, b) reference space, c) demographic
characteristics of the subjects, d) voxel-size, as well as e) the fact that most previously
published HARDI templates or important information about these templates is not publicly
available. Advances in hardware and image processing methodology have recently allowed
collection of high quality HARDI data in reasonable scan times (Setsompop et al., 2013;
Sotiropoulos et al., 2013). Further improvements in HARDI templates may be achieved
through these efforts in the future.

The generated HARDI template may have the following potential applications. First, it may
be used as a reference for spatial normalization of HARDI datasets from different subjects
for the purpose of comparisons of the microstructural integrity of white matter across
populations. Spatial normalization could be achieved using newly developed FOD-based
registration techniques (Raffelt et al., 2011; Yap et al., 2011), or tensor-based methods such
as DTI-TK, which has been successfully applied to both DTI (Adluru et al., 2012; Wang et
al., 2011; Zhang et al., 2009) and HARDI studies (Duclap et al., 2013; Schmitt et al., 2013).
Second, the presented HARDI template may be combined with probabilistic fiber-tracking
to develop a probabilistic atlas of human brain white matter (Varentsova et al., 2013). Third,
the generated template may be used as a digital phantom in the evaluation of tractography
algorithms. Finally, the approach used in the present work for the development of a HARDI
template may potentially be used to repurpose numerous DTI datasets collected by clinical
studies on groups of patients and healthy controls for the purpose of performing inter-group
comparisons. In most such studies, HARDI reconstruction is not ideal due to the relatively
low number of diffusion directions used. However, a HARDI dataset can be constructed per
group and comparison of HARDI characteristics, or HARDI-based tractography results,
across groups may be informative. Certainly, extensive research on the statistical methods
and biomedical applications of the above potential directions is required.

Although the generated HARDI template resolved known fiber crossings and contained
orientation information consistent with known human brain anatomy, the present study has
certain limitations. First, typical HARDI acquisition schemes include diffusion gradient
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vectors uniformly distributed in 3D space. In the combined dataset, the distribution of
diffusion gradients was not uniform and therefore the effective number of gradient
directions was lower than 864. Nevertheless, it was demonstrated that the large number of
subjects used and the differences in brain shape and head positioning across subjects
provided sufficiently high angular sampling resolution (Figs.2,4). A more uniform
distribution of the diffusion vectors of the combined dataset may be achieved by
systematically rotating the original set of diffusion directions to be used on individual
subjects. Another possible limitation of the present study is that the b-value was lower than
that of typical HARDI acquisitions. Higher b-values have been shown to introduce more
orientational contrast (Tournier et al., 2007). Lower b-values can also be used for CSD
restoration with some restrictions on the maximum achievable angular resolution of
restoration (lmax) (Tournier et al., 2007). But b-values should not be treated in isolation.
Instead, factors such as signal to noise ratio and numbers of signals in the dataset should also
be considered. Crossing fibers have successfully been resolved in a number of recent
HARDI studies based on data acquired with low b-values (Bouix S, 2010; Patel et al.,
2010b; Tournier et al., 2007).

Conclusion
In this work, an artifact-free HARDI template of the human brain was developed from low
angular resolution multiple-shot diffusion data. The resulting HARDI template was
produced in ICBM-152 space, was shown to resolve complex neuronal micro-architecture in
regions with intravoxel heterogeneity, and contained fiber orientation information consistent
with known human brain anatomy. This template is available for download at www.iit.edu/
~mri.
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Figure 1.
An example of how combining low angular resolution DW data from multiple subjects leads
to a single dataset with a large number of DW signals along unique diffusion directions. The
cylindrical tubes represent the same fiber bundle in four different subjects, the cubes
represent image voxels, and the arrows represent three diffusion gradient vectors. In the first
row, the fiber bundle is at different orientations in the scanner’s reference frame, due to
differences in brain shape and head positioning across subjects. (Note: the differences in
orientation of the fiber bundle due to brain shape and head positioning have been
exaggerated to improve visualization). In contrast, the three diffusion gradient vectors have
the same orientation in the scanner’s frame for all subjects, since all subjects were scanned
using the same scanner, pulse sequence and set of diffusion directions. Spatial
transformation of each subject’s tissue to ICBM-152 space requires a different rotation of
the fiber bundle across subjects. The diffusion gradients that correspond to the DW signals
after transformation to ICBM-152 space are obtained by applying the corresponding
rotations to the original diffusion gradient vectors, and are shown in the second row. In this
example, appropriate combination of three DW signals from four subjects results in a single
dataset containing twelve DW signals along unique diffusion directions.
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Figure 2.
A) An example of a local sampling gap cone. Black dots represent samples in a voxel of the
combined dataset, and red dots represent samples of a uniform sampling scheme with 60
diffusion gradients. B) An example of expressing the opening angle of local sampling gap
cones in terms of the number of gradients of uniform sampling schemes (color scale) with a
largest sampling gap cone of the same size as the local sampling gap cone. For the voxel in
this example, the sparsest angular sampling was equivalent to that of a uniform sampling
scheme with 42 gradients. However, for the same voxel, angular sampling resolution was
substantially higher along other directions in 3D space.
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Figure 3.

(A) Typical normalized DW signals  in a white matter voxel of the combined dataset,
originating from 15 of the 72 subjects (blue curve; signals are plotted in series, i.e. all
signals from subject 1, followed by all signals from subject 2, etc.), and mean normalized

DW signal  per subject (red curve). (B) Axial map of the ratio of CVDW values
for the combined over the simulated dataset in white matter (logarithmic color scale). (C)

Corrected normalized DW signals  (blue curve) and mean normalized DW signal per
subject after correction (red curve).
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Figure 4.
Histogram of the relative number of white matter voxels that have an opening angle of the
largest sampling gap cone equal to that of a uniform sampling scheme with the number of
directions shown on the horizontal axis. The peak of the histogram is at 67 gradients. This
histogram refers to the opening angle of the largest sampling gap cone (lowest angular
sampling resolution) in voxels of the combined dataset. The same voxels have higher
angular sampling resolution in other parts of 3D space.
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Figure 5.
Highly coherent FODs in voxels of the corpus callosum (A) and corticospinal tract (B) of
the generated HARDI template. The outlines of the magnified regions in (A, B) are overlaid
on the corresponding FA-weighted orientation color maps.
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Figure 6.
(A) Axial map of FODs in right frontal lobe white matter of the HARDI template,
demonstrating fiber crossing and fanning. (B) The outline of the magnified region in (A) is
overlaid on the corresponding FA-weighted orientation color map.
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Figure 7.
(A) Coronal FOD map suggesting fiber crossing at the intersection of the corpus callosum
(red) and corticospinal tract (blue) of the HARDI template (the outline of the magnified
region is overlaid on the corresponding FA-weighted orientation color map). (B) Coronal
view of fibers crossing at the region shown in (A). Each bundle was mapped using the
HARDI template, two spherical ROIs positioned on opposite sides of the fiber crossing, and
the AND logical operator.
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Figure 8.
(A) Axial FOD map through the left centrum semiovale of the HARDI template, where
fibers of the superior longitudinal fasciculus coexist with commissural projections of the
corpus callosum. (B) The outline of the magnified region in (A) is overlaid on the
corresponding FA-weighted orientation color map.
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Figure 9.
Tractography result at the crossing between commissural projections of the corpus callosum
(red), the corticospinal tract (blue), and superior longitudinal fasciculus (green). Each bundle
was mapped using the HARDI template, two spherical ROIs positioned on opposite sides of
the fiber crossing, and the AND logical operator.
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Figure 10.
Axial FOD map through the brainstem of the HARDI template, demonstrating fiber
crossings at the decussation of the superior cerebellar peduncle, and the regions where fibers
of the ventral tegmental areas and substantia nigra meet the oculomotor nerves (the outline
of the magnified region is overlaid on the corresponding FA-weighted orientation color
map).
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Figure 11.
(A) Axial FOD map of the HARDI template showing fiber crossing at the intersection of
optic radiations with fibers of the tapetum. (B) The outline of the magnified region in (A) is
overlaid on the corresponding FA-weighted orientation color map.

Varentsova et al. Page 23

Neuroimage. Author manuscript; available in PMC 2015 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
Maps of the mean correlation of neighboring FODs in the generated HARDI template.
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Figure 13.
FODs in the corpus callosum (in color) overlaid on a grayscale map of the opening angle of
the local sampling gap cone centered at the main fiber orientation. The numbers next to the
grayscale bar correspond to the opening angle of the local sampling gap cone in degrees.
The outline of the magnified region is overlaid on the corresponding FA-weighted
orientation color map.
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Figure 14.
Axial FA map of the (A) HARDI template generated here and (B) NTU-90 (FA of primary
fiber bundle is shown for NTU-90). Axial GFA map through the (C, D) anterior commissure
and (E, F) pons of (C, E) the HARDI template generated here and (D, F) NTU-90.
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