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Abstract
A wealth of methods has been developed to identify natural divisions of brain networks into
groups or modules, with one of the most prominent being modularity. Compared with the
popularity of methods to detect community structure, only a few methods exist to statistically
control for spurious modules, relying almost exclusively on resampling techniques. It is well
known that even random networks can exhibit high modularity because of incidental concentration
of edges, even though they have no underlying organizational structure. Consequently,
interpretation of community structure is confounded by the lack of principled and computationally
tractable approaches to statistically control for spurious modules. In this paper we show that the
modularity of random networks follows a transformed version of the Tracy-Widom distribution,
providing for the first time a link between module detection and random matrix theory. We
compute parametric formulas for the distribution of modularity for random networks as a function
of network size and edge variance, and show that we can efficiently control for false positives in
brain and other real-world networks.
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1. Introduction
The complexity in the macroscopic behavior of brain networks has been highlighted and
quantified in a number of neuroscience studies in recent years (Bullmore and Sporns (2009);
Rubinov and Sporns (2010)). A multitude of topological features has been reported in the
literature, including modular structures (Bullmore and Bassett (2011); Chang et al. (2012)),
hierarchical patterns (Salvador et al. (2005); Meunier et al. (2009)), distribution of hubs
(Sporns et al. (2007); Tomasi and Volkow (2011); Dimitriadis et al. (2010)), and core
extraction (Hagmann et al. (2008a)). It has also been shown that brain networks follow a
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small-world property both from a functional (Bassett and Bullmore (2006); Van den Heuvel
et al. (2008)) and a structural perspective (Vaessen et al. (2010); Wang et al. (2012)). Recent
findings have revealed alterations of brain network topology with aging (Chen et al. (2011)),
brain development (Fan et al. (2011)), and pathologies of schizophrenia, autism, and
epilepsy (Alexander-Bloch et al. (2010); Rudie et al. (2013); Chavez et al. (2010)),
underscoring the importance of networks as biomarkers of the normal and diseased brain.

Fundamental to identification of the architecture and organization of brain networks is the
detection of modules, also called communities or clusters. In the context of graph theory,
modules are groups of interconnected nodes, typically regions of parcelated cerebral cortex,
that share common properties or have similar function within the network. Identification of
modules can facilitate the prediction and discovery of previously unknown connections and
components, and show how the network constitutes a collective and integrative system.
Individual nodes can be classified according to their structural position in the modules;
nodes with central position are essential for the stability and robustness of their
corresponding modules, and nodes lying at the boundaries contribute to interactions across
communities. Studies of network topology can reveal important properties of brain
organization, for exampling revealing potential vulnerabilities, or in the case of hierarchical
networks, possibly encoding clues to the evolution of the brain (Meunier et al. (2010)).

Underscoring the central role of module detection, numerous methods have been proposed
to identify community structure in brain networks. Perhaps the most popular is modularity
(Newman (2006)), which compares the network against a null model and favors within-
module connections when edges are stronger than their expected values. Divisions that
increase modularity are preferred because they lead to modules with high community
structure. We recently proposed a new method to compute network null models based on
conditional expected probabilities and provided exact analytical solutions for specific
parametric distributions (Chang et al. (2012)). Our models enhance module detection,
provide a principled approach to deal with networks with negative connections, and
accurately represent the topology of networks without necessitating self-loops.

Despite the popularity of modularity methods, the identification of stopping criteria for
graph division and the evaluation of the statistical significance of modules remain largely
unaddressed. Given that random networks can demonstrate spurious modules due to
incidental concentration of edges, even though they have no underlying organizational
structure, controlling for false positives in community detection is of paramount importance.
This is even more evident in large networks where the number of possible divisions
increases rapidly with the network size (Guimerá et al. (2004); Karrer et al. (2008)).
Therefore, confirming the statistical significance of any identified modules is essential
before discussing other findings related to those structures.

Existing methods that control for spurious modular structures fall into three categories. The
first category relies on creating comparable random networks in order to compute an
empirical null distribution of modularity and establish a threshold that controls error rate at a
nominal level, typically 5%. For example, Alexander-Bloch et al. (2010) estimated the
distribution of modularity using two types of random networks, the Erdös-Rényi random
graphs (Erdős and Rényi (1960)) or randomly rewired networks (Maslov and Sneppen
(2002)). Meunier et al. (2009) created random networks by randomizing either the elements
of the adjacency matrix, or the time points of the time series whose pairwise correlation
defined the edges of a graph. He et al. (2009) generated a set of node- and degree-matched
random graphs for comparison. Reichardt and Bornholdt (2006) computed the z-values of
modularity after estimating its empirical distribution through multiple random network
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realizations. Mirshahvalad et al. (2013) studied how different resampling schemes influence
significance analysis.

The second category of methods also relies on resampled networks. Here the aim is to
measure the robustness of modular structures on network perturbations. For instance, Karrer
et al. (2008) proposed a method to perturb network connections and measure the resulting
change in community structure using mutual information. Hu et al. (2010) offered a
generalization to this approach by incorporating together the number of clusters, content of
the clusters, and random perturbation parameters. Mirshahvalad et al. (2012) studied the
robustness of large sparse networks by randomly adding extra links based on local
information. Lancichinetti et al. (2010) evaluated the importance of single communities
using combinatorics and a modified null model. Seifi et al. (2012) measured the significance
of modules based on the stability of structures from either randomly perturbed networks or
different initialization of non-deterministic community detection techniques.

Since all the above methods depend on edge rewiring and random network realizations, they
are network-specific and do not generalize. The computational cost of generating multiple
realizations of random networks can be significant, and even prohibitive for very large
networks in the order of thousands of nodes. The third category of methods offers analytical
closed-form solutions for the distribution of modularity in random networks. To the best of
our knowledge, due to the complex form of the modularity function, there exists only one
closed form solution for a specific case. Reichardt and Bornholdt (2007) used the Potts spin-
glass model to get a theoretical prediction for modularity value in binary random graphs,
either Erdös-Rényi type or scale-free random networks. However, their formula is restricted
to binary sparse networks, which prevents its use with most real-world networks.

Given the lack of a principled analytical approach or computationally efficient algorithms to
control for false positives in network module detection, much of the literature overlooks
statistical inference in networks. To address this problem we provide a new analytical
approach for statistical inference in module detection. Modularity belongs to the wide class
of spectral clustering algorithms (Von Luxburg (2007)), which use the extreme eigenvalues
and corresponding eigenvectors of a spectral decomposition to partition data into groups
with similar properties. To evaluate the statistical significance of spectral clustering results,
we need to compare the spectral decomposition of a given network against those from
random networks. Since networks are represented by their adjacency matrix, a connection
between random networks and random matrix theory is natural. The eigenvalue distribution
of a specific type of matrices, Gaussian random ensembles, has been thoroughly studied in
random matrix theory (Tracy and Widom (2000); Tao (2012)). In this paper, we provide for
the first time a link between module detection and random matrix theory by showing that the
Tracy-Widom mapping of the largest eigenvalue of Gaussian random ensembles can be
modified to predict the distribution of the largest eigenvalue of matrices used for
modularity-based spectral clustering. Using this finding, we derive an accurate parametric
form of the distribution of modularity in random networks and compute formulas that
control the type I error rate at a 5% level on modularity-based partitions of weighted graphs.
Our modeling is valid for a wide range of network sizes and the utility of the method is all
the more important for larger networks, given that resampling methods can be
computationally infeasible in such networks. We demonstrate our method in brain and other
real-world networks.

2. Methods
In this section, we first describe the modularity partitioning problem and its solution using
spectral decomposition. We then motivate the use of the maximum eigenvalue of a

Chang et al. Page 3

Neuroimage. Author manuscript; available in PMC 2015 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



difference matrix (adjacency matrix minus the null model) as a surrogate of modularity.
Using a transformed Tracy-Widom distribution, we derive empirical parametric formulas
that accurately predict the distribution of the maximum eigenvalue. We estimate our model
parameters through Monte Carlo simulations of weighted Gaussian random networks.

2.1. Overview to Modularity
Large-scale brain networks are typically constructed by assigning nodes to represent regions
of parcelated cerebral cortex and edges to represent the pair-wise interactions or connection
across these regions. These connections could be based on structural data, for example white
matter fiber-tracts derived from diffusion data, or functional coupling measured between
time series of brain activation. Assume a brain network of N nodes with weighted undirected
connections and an underlying modular structure, as exemplified in Figure 1. The network is
represented with an adjacency matrix A with elements Aij indicating the connection strength

across nodes i and j. The degree vector k has elements , equal to the sum of all
edge strengths associated with node i. The total sum of edge weights of the network is

denoted as .

Modularity was originally introduced as a measure of the quality of a particular division of a
network (Newman and Girvan (2004)), but later became a key graph clustering algorithm,
after recognizing its direct maximization using spectral graph partitioning (Newman (2006)).
According to modularity, the community structure of the network is compared against a null
network, i.e. a randomized network with the same number of nodes and node degrees but
otherwise no underlying structure. If a natural division of a network exists, we should expect
within-module connections Aij to be stronger than their expected values Eij, and the opposite
should hold true for between-module connections (Figure 1). Modularity forms a cost
function by summing all the within-module connections minus their expected values and
divisions that increase modularity are preferred because they lead to modules with high
community structure.

Fundamental to the definition of modularity is the computation of a proper null network.
The conventional definition of modularity uses the null model proposed in (Newman
(2006)):

(1)

However, in (Chang et al. (2012)) we recently proposed an alternative expected null model
conditioned on the degree vector k:

(2)

Simulation results demonstrate that using our null model enhances module detection by
properly dividing networks in a range of cases when the conventional approach fails to
detect any modules. In part, this is because the conventional null model implicitly assumes
self-loops (connections from nodes to themselves, Eij ≠ 0) which are often topologically
invalid and meaningless for real-life networks, such as social, protein networks and the
majority of brain networks. Furthermore, our null models provide a principled approach to
deal with networks with negative connections across nodes. Before introducing our model,
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we were aware of only heuristic solutions that overcame the problem of negative edges by
requiring a selection of weighted coefficients that subjectively influence clustering results
(Gómez et al. (2009)).

Define B as the difference matrix between the original and the null network, with elements
Bij = Aij − Eij. Modularity Q is defined as:

(3)

where Ci indicates the module membership of node i, and δ(Ci, Cj) = 1 only when nodes i
and j are clustered withing the same module.

Modularity Q is maximized when the partitions align exactly with the underlying network
structure. In the case of sequential partitioning, each bi-partition of the graph can be
described by an indicator vector s having values 1 and −1 for the two subnetworks
respectively, and computed as:

(4)

Spectral graph theory solves for ŝ in the continuous domain and achieves maximization by
selecting the eigenvector corresponding to the largest eigenvalue λ1 of B. The elements of s
are then discretized to −1, 1 by setting a zero threshold. Because of this discretization,
further fine tuning is necessary to locally maximize Q, which can be done using, for
example, the Kernighan-Lin algorithm. Given that the final maximum value of modularity Q
is close to λ1, we can use the latter as a surrogate for modularity.

2.2. Distribution of modularity and error rate
Random networks can exhibit high modularity because of chance coincidence of edge
positions rather than a true organizational structure. In fact, we can show that modularity
algorithms are certain to produce spurious clusters in random graphs with Gaussian
distribution of edges having zero mean and unit variance (Also see Section3). Therefore,
using maximization of modularity as a sole criterion is bound to lead to false community
detection. As discussed earlier, perhaps the most popular methods to control for false
positives consider a graph partition as statistically significant if modularity Q is substantially
higher than the one achieved by partitioning random graphs. They therefore compute an
empirical null distribution of modularity and establish a threshold that controls error rate at a
nominal level, typically 5%.

We follow a similar approach in this paper, namely we test whether the maximum
eigenvalue of matrix B of the original network is appreciably higher (say 5% significance
level) than the distribution of eigenvalues of matrices BRandom of random graphs. Unlike
other approaches, though, we assume a specific parametric (Gaussian) distribution of the
network edges, which allows us to derive formulas for the null distribution of modularity.
The distribution we seek to model is shown in Figure 2 for random networks with Gaussian
distribution of edges, as a function of edge mean μ, variance σ2, and networks size N. The
maximum eigenvalue of matrix B is used as a surrogate of modularity. We observe that,
unlike the conventional model (equation (1)), our null model (equation (2)) produces a
distribution of modularity that is independent of μ. We limited simulations for the
conventional model to high values of μ because equation (1) cannot accept negative edges.
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2.3. Modeling using the Tracy-Widom Distribution
Random networks can be represented by their adjacency matrices and therefore be modeled
as random matrices. In random matrix theory, the distribution of the largest eigenvalue of a
wide class of random matrices, Gaussian random ensembles, has been related through a
linear transform to the Tracy-Widom distribution (Tracy and Widom (2000); Johansson
(2000); Johnstone (2001); Edelman and Rao (2005); Tao (2012)). Appendix Appendix A
provides a brief introduction to this theory, and particularly the Gaussian orthogonal
ensembles, which are real symmetric matrices with elements following an independent
identical Gaussian distribution.

There are a couple of issues that prevent us from directly applying this theory to modularity-
based spectral partitioning. First, even though Gaussian random networks can be represented
as Gaussian orthogonal ensembles, modularity-based partitioning performs spectral
decomposition on matrix B, the difference between the original and the null network. This
introduces dependencies across the elements of the matrix B, thus violating the
independence assumption in the Tracy-Widom mapping. Second, the Tracy-Widom
distribution is an asymptotic property of the matrix size (or equivalently the network size)
becoming more accurate as the number of nodes tend to infinity (Tracy and Widom (2000)).
Brain networks have finite numbers of nodes, mostly ranging from tens to thousands of
nodes, therefore we need parametric formulas that are reasonably accurate even for small
networks.

In the case of Gaussian orthogonal ensembles, the scaling formula that predicts the
distribution of the maximum eigenvalue is (see Appendix Appendix A for details):

(5)

where T is a random variable equal to the largest eigenvalue of Gaussian orthogonal
ensembles, and S follows the Tracy-Widom distribution. Motivated by the above mapping,
we seek a similar expression for the modularity case. If T is a random variable equal to the
maximum eigenvalue of B (the difference between random Gaussian networks and their null
models) we aim to find a mapping:

(6)

where w1(N, σ) and w2(N, σ) are power functions of the form:

(7)

(8)

Given the complex form of matrix B, analytical derivation of α1,2, β1,2, and γ1,2 parameters
is a daunting task. Therefore, in the following section we resort to Monte Carlo simulations
to estimate these parameters.

Compared to the Gaussian orthogonal ensembles mapping, we introduce the additional
constants γ1,2 to achieve a better numerical fit. Also, in the following we pursue this
mapping only for the modularity definition using our null model in equation (2); the
conventional null model in equation (1) produces eigenvalue distributions that depend on the
mean value μ of edge weights (Figure 2) thus requiring a more complex mapping that is not
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within the scope of this paper. However, as argued in the Discussion Section, such mapping
is possible for the conventional definition of modularity.

2.4. Estimation of modeling parameters
We estimate the parameters α1,2, β1,2, and γ1,2 with Monte Carlo simulations and numerical
procedures as follows. Consider the mapping in equation (6) where S follows the Tracy-
Widom distribution in equation (A.6), i.e. fS(s) = f1(s) = dF1(s)/ds. Using a Monte Carlo
approach, we simulate multiple realizations of Gaussian random graphs ARandom for a given
value of N and σ. For each graph, we compute BRandom using our null model in equation (2)
and then estimate the empirical distribution of the largest eigenvalue, termed fT(t). The

functional transformation in equation (6) indicates that  ; we dropped
the dependency on N and σ to ease notation. We use the total Kullback-Leibler divergence to
measure the distance between the two distributions:

(9)

which we then minimize over w1 and w2:

(10)

Every minimization of the above equation produces a value for w1(N, σ) and w2(N, σ) for a
specific pair (N, σ). By repeating the above procedure multiple times, we sample the two
functions across the (N, σ) plane.

Direct minimization of equation (10) using gradient decent often leads to local minima
rather that the global minimum. To overcome this problem, we used an informed
initialization of the of the gradient decent algorithm, by taking advantage of the direct
mapping between the cumulative density functions F1(s) and FT(t). For a number of values
xi ∈ [0, 1] we derived the corresponding si and ti such that {si|F1(si) = xi} and {ti|FT(ti) =

xi}. We then estimated the initialization values  with a least-squares
minimization:

(11)

The values  were then used to initialize the gradient decent algorithm in
equation (10).

Minimization of equation (10) produces extremely low KL divergence values, and therefore
the fT(t) distribution can be approximated very accurately by the mapping in equation (6).
Figure 3 shows that the KL divergence becomes smaller as N increases, which agrees with
the asymptotic behavior of the Tracy-Widom distribution in random matrix theory.

After sufficiently sampling the w1(N, σ) and w2(N, σ) functions in the (N, σ) plane, we
performed a least square fitting of these samples to the power functions in equations (7) and
(8) in order to estimate the model parameters. Since the Tracy-Widom distribution
converges asymptotically, we performed two separate fits for small and large values of N to
improve model accuracy. The first fit used 106 realizations of random networks for each of
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N values from 25 to 600 with step 25; the second fit used 4000 realizations of random
networks for each of N values from 100 to 6000 with step 25. Table 1 shows the parameters
estimates and their 95% confidence interval. Figure 4 illustrates that the power functions
achieve a very accurate fit. For small networks, we explicitly set γ1 to zero because it does
not improve the fitting accuracy.

2.5. Significance Test
For every bi-partition of a graph, we can determine the significance of the cut by comparing
the largest eigenvalue of B against the distribution of eigenvalues of BRandom. Therefore,
rather than accepting a partition if it increases modularity Q, as is done by conventional
modularity algorithms (Chang et al. (2012)), we test whether the increase is statistically
significant above a 5% threshold. The procedure is given in the following steps:

1. For a network A, estimate edge variance σ2.

2. Apply spectral graph bi-partitioning and compute the largest eigenvalue λ1 of
matrix B. (Chang et al. (2012)).

3. Estimate the value of functions w1(N, σ) and w2(N, σ) using the appropriate
coefficients from Table 1, depending on network size N.

4. Compute w1(N, σ) λ1 + w2(N, σ) (i.e. linearly transform λ1 according to equation
(6)), and compare this value against the Tracy-Widom distribution from equation
(A.6). Accept the partition if the above value lies above the 5% threshold in the
right tail of the distribution.

5. Repeat steps 2–5 until no subsequent bi-partitions are significant.

The above procedure constitutes a hierarchical order of statistical tests, each exploring the
significance of a bi-partition only if the higher level bi-partition is deemed significant. The
procedure controls family-wise error rate (FWER) at exactly α = 5% level, since the first bi-
partition is tested at this level. However, this achieves only weak control of FWER, unless
subsequent bi-partitions are controlled for multiple comparisons. For example, the threshold
level can be adjusted with a Bonferroni approach (Hochberg and Tamhane (1987); Nichols
and Hayasaka (2003)) depending on the number of bi-partitions tested simultaneously. A
different approach is to use a hierarchical control of false discovery rate (Yekutieli et al.
(2006); Singh and Phillips (2010)).

Open source code implementing the modularity-based partitions and statistical testing is
available by contacting the first author, or visiting the address: http://mcgovern.mit.edu/
technology/meg-lab/software.

3. Results
3.1. False Positives in Random Graphs

Maximization of modularity was originally proposed as a formal stopping criterion for graph
division. Since the number of communities is typically unknown in advance, one could
perform sequential bi-partitions that increase modularity until the entire network has been
decomposed into indivisible subgraphs (Newman (2006)). In terms of spectral graph theory,
a subgraph becomes indivisible if its corresponding difference matrix B has maximum
eigenvalue equal to 0, in which case modularity no longer increases because there is no
positive eigenvalue. Note that since B * 1 = 0 always holds (Chang et al. (2012)), 0 is
always an eigenvalue of B with the unit vector 1 indicating a trivial partition where all nodes
are grouped into one cluster leaving the other cluster empty.
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However, random networks often produce partitions that increase modularity. For example,
in Figure 2 we illustrate that Gaussian random networks have difference matrix BRandom

with almost always positive eigenvalues. Therefore, if we use maximization of modularity
as a sole criterion for graph division, a single bi-partition leading to at least 2 clusters is
practically guaranteed. Subsequent bi-partitions can further maximize modularity, leading to
more spurious clusters. Figure 5 shows the number of spurious clusters obtained by bi-
partitioning Gaussian random networks with edges having mean μ = 4 and unit variance.
This highlights the need for statistical control of false positives.

3.2. Specificity of the Significance Tests
To test our parametric formulas for specificity, we generated networks with a range of sizes
N and edge standard deviations σ, as indicated in Figure 6. We applied the 5% threshold
procedure as summarized in section 2.5 and computed the observed null hypothesis rejection
rate for this data set. Overall, our Tracy-Widom significance test achieves a rejection rate
close to the nominal 5%. The test is based on two sets of formulas that apply either for large
(N ≥ 600) or small (N < 600) networks. The performance of each formula deviates rapidly
for values outside the allowed range, indicating the need for two rather than one set of
parameters in Table 1. Also, the test becomes liberal for networks with N > 6000. We
believe a more refined estimation of the parameters in Table 1 can extend the utility of our
parametric formulas to considerably larger networks (see Discussion section for more
details).

In part, our method is somewhat inaccurate for small N because it relies on the Tracy-
Widom distribution (Equation (A.6)), which is an asymptotic description of the distribution
of maximum eigenvalues of Gaussian orthogonal ensembles. To evaluate this asymptotic
behavior, we performed a Monte Carlo simulation of Gaussian orthogonal ensembles and
compared the nominal with the numerical estimates of their 5% right tail. Figure 7 shows
that the Tracy-Widom distribution reasonably approximates the Gaussian orthogonal
ensembles maximum eigenvalue distribution for N > 500. For smaller networks, the fit
degrades, which explains our statistical test becoming conservative (true rejection rate less
than the nominal 5%).

3.3. Sensitivity of the Tests
To evaluate the sensitivity of our test (probability of detecting a true modular structure), we
gradually introduced a 2-cluster structure to a Gaussian random network by combining two
adjacency matrices with a scaling constant: A = G + ρS, where G is the adjacency matrix of
a Gaussian random network with edges following a standard normal distribution, S is the
adjacency matrix of a graph with two equal-size completed subgraphs (block diagonal
matrix with weights 1 in the main diagonal blocks), and ρ ∈ [0, 1].

The simulated graphs are exemplified in Figure 8 (left), with a 2-cluster structure that is
easier to discern when N is large. The observed rejection rate is plotted in Figure 8 (top
right) as a function of N and ρ. For large N, the observed rejection rate is equal to the
nominal 5% when ρ = 0, and rapidly approaches 1 as ρ increases. For small N (N < 80),
sensitivity drops and the structure is more difficult to detect. To evaluate whether the
rejection of the null hypotheses (and therefore the detection of graph structure) also leads to
accurate partition results, we assess the overall similarity between the resulting and the
correct partitions using normalized mutual information (NMI, Dhillon et al. (2004); Danon
et al. (2005); Chang et al. (2012)). Figure 8 (bottom right) shows the average NMI for the
graphs with detected structure (p ≤ 0.05; solid lines). For the graphs without a detected
structure (p > 0.05; dashed lines), should we have proceeded with a partition, their average
NMI would be considerably lower than the graphs with detected structure.
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3.4. Modular Structure of Brain Connectomes
We applied our significance-based modularity partitioning to the structural brain network
reported in Hagmann et al. (2008b). The network consists of 66 nodes representing
FreeSurfer parcellated cortical regions and edges representing the neuronal fiber densities
between pairs of regions. We reported partition results of this network in (Chang et al.
(2012)), and now using our statistical method we confirm that all bi-partitions leading to 5
clusters are indeed significant with very small p-values (Figure 9). The structural data reveal
subnetworks that largely conform to the classical lobe-based partitioning of the cerebral
cortex.

We also investigated the partitions of a brain network extracted from resting state fMRI data
(Fox et al. (2005)). The data consists of 191 subjects from the Beijing data set of the 1000
Functional Connectomes Project in NITRC (Kelly et al. (2011)). The 96 nodes represent
ROIs defined on the Harvard-Oxford atlas (Frazier et al. (2005); Makris et al. (2006)) and
edges indicate the correlation coefficient between resting fMRI signals for each pair of
ROIs. Correlations were computed after bandpass filtering in the range 0.005–0.1Hz.
Following two sequential bi-partitions, both with p-value p < 7×10−10, we detected 3
clusters: the default mode network (task-negative network), a motor-sensory subnetwork
(task-positive network), and a visual-related subnetwork. The functional subnetworks
involve large scale interactions and follow well known functional sub-divisions (Fox et al.
(2005)).

The above results were also confirmed with a conventional resampling approach. By
generating 105 Gaussian random networks with edges having equal mean and variance as
the original fMRI network, the same bi-partitions were significant with p-value p < 10−5.
However, the resampling approach required a thousand-fold more computational time,
highlighting the effectiveness of our parametric approach.

Finally, we partitioned the widely-studied Karate Club network in Zachary (1977) shown in
Figure 11. Three sequential bi-partitions were obtained by the modularity algorithm: first
separating groups {1, 2} from {3, 4}, and then {1} from {2}, and {3} from {4}. The
corresponding p-values for each bi-partition are also shown in Figure 11. The first bi-
partition is significant and correctly predicts the actual split of the Karate club into two
groups after a fight within its members. The rest of the bi-partitions are not significant.

4. Discussion
Modularity algorithms use the spectral decomposition of matrix B, the difference between
the original and the null network, to partition a graph. Subtracting these two networks
introduces dependencies across the elements of B, preventing the direct application of
Tracy-Widom mapping for the estimation of the distribution of the maximum eigenvalue of
B. However, our choice of power functions (Equations (7) and (8)), inspired by the Tracy-
Widom mapping of the Gaussian orthogonal ensembles (Equation (5)), resulted in a very
precise numerical fit. In fact, the parameter w2 has constants α2 and β2 with values very
close to the original Tracy-Widom mapping (i.e. α2 ≈ −2 and β2 ≈ 2/3). This is not a
coincidence, but rather indicates that the Tracy-Widom mapping may potentially be
extended to matrices with across-element dependencies. In this paper we did not provide a
theoretical derivation for the mappings in Equations (7) and (8). A theoretical derivation is
not easy and beyond the scope of this paper.

To perform clustering, we sequentially bi-partition networks as in (Chang et al. (2012)). An
alternative would be to use multiple eigenvectors to directly identify multiple clusters (Von
Luxburg (2007); Van Mieghem (2011)). Although such method may provide better
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partitions, it requires prior knowledge of the number of clusters and can also not guarantee
to a global optimum of modularity due to the NP-hard clustering problem. In addition, it
demands a more complex model for the joint distribution of multiple eigenvalues to assess
the significance of community structures, and our approach does not readily generalize to
such a partition scheme.

The time complexity of our Monte-Carlo simulations reflects the nature of spectral
decomposition of a network and is O(mN3) to perform spectral decomposition of m random
networks of size N (Hu et al. (2010); Von Luxburg (2007)). Practically, our 64-bit 12-
core-2.67GHz-processor with multi-threading machine requires 88 seconds to complete m =
105 simulations for N = 25, 198 seconds for N = 100 and 2534 seconds (≈ 42 minutes) for N
= 500.

Depending on the fine-tuning algorithms following the spectral partitions, conventional
methods, either based on perturbation or randomization, share time complexity no less than
O(mN3), given that testing a single network requires generating m realizations of random
networks. In contrast, the time complexity of evaluating significance of the modular
structures using our method is only O(1) and the computational time is negligible.

Given the precision of the fitting results, we are confident that the form of our mapping is
accurate. However, a better estimation of the parameters listed in Table 1 is certainly
feasible by a) expanding our Monte Carlo simulations, and b) performing alternative
numerical optimization procedures. In particular, computing more network realizations,
especially with higher network sizes, will produce more accurate estimates of functions w1
and w2. Furthermore, our numerical optimization independently fit w1 and w2 functions; a
joint optimization could lead to a more accurate estimation of the parameters in Table 1,
however our implementations were prone to local minima and did not achieve stable results.

Our two stage formulas control error rate reasonably well over network sizes N up to
6000−8000; at N = 8000 the test becomes liberal and achieves approximately 8% rather than
5% Type I error rate. We do not recommend applying the statistical test beyond this range.
However, refining the estimation of parameters in Table 1 should broaden the range where
the test becomes specific (Type I error rate equal to nominal). We conjecture that the form
of the power functions for w1 and w2 will remain unchanged, and only a better estimation of
the parameters in Table 1 is required.

Our empirical formulas are applicable only for modularity partitioning that uses as a null
model the conditional expected network in equation (2) (Chang et al. (2012)). For the case
of the conventional null model in equation (1) proposed by Newman and Girvan (2004), our
simulations (not included in this paper) indicate that the distribution of the maximum
eigenvalue of matrix BRandom can still be described by a linearly transformed Tracy-Widom
distribution. However, this distribution is a function of not only N and σ2, but also the edge
mean μ (Figure 2). Therefore, the power functions in equations (7) and (8) are no longer
suitable and more complex functions are necessary to approximate such a distribution.

Assume a network A with edges following a Gaussian distribution with standard deviation
equal to σ. We can write the eigenvalue decomposition of the difference matrix B with
eigenvalues in the diagonal matrix D and eigenvectors in E:
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Therefore, if network A is normalized to A/σ (thus edges having unit standard deviation),
the difference matrix B is similarly scaled as B/σ. This implies that the scaled network A/σ
has the same partition results (eigenvectors E remain unchanged) but eigenvalues are
weighted by 1/σ, justifying the correction found in equation (7).

An alternative approach to using the Tracy-Widom distribution would be to seek parametric
formulas based on the Gamma distribution. It has been shown that scaled and shifted
Gamma distributions can well approximate the Tracy-Widom distribution, either by directly
minimizing the difference between the two distributions (Vlok and Olivier (2012)), or by
matching their first, second, and third moments (Wei and Tirkkonen (2011); Chiani (2012)).
In (Chang et al. (2013)) we showed that such an approach led to inferior numerical results
than the Tracy-Widom distribution.

5. Conclusions
Motivated by the Tracy-Widom mapping in random matrix theory, we have provided
empirical formulas that parametrically model the null distribution of modularity for any
network of size N and jointly Gaussian distribution of edges with mean mu and standard
deviation sigma. Our approach allows statistical tests for modularity-based network
partitions without the need of computationally expensive resampling procedures of
individual networks. We have shown that type I error rate is controlled efficiently for large
networks up to 8, 000 nodes, and with more extensive and accurate numerical simulations,
we postulate that our formulas can be refined to control error rate to arbitrarily large
networks.
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Appendix A

Introduction to the Tracy-Widom Distribution
Tracy and Widom (Tracy and Widom (2000)) derived analytical solutions for the
distribution of the largest eigenvalue of three types of random matrices Gβ: the Gaussian
Orthogonal Ensembles (real symmetric matrices, GOE, β = 1), the Gaussian Unitary
Ensembles (hermitian matrices, GUE, β = 2), and the Gaussian Symplectic Ensembles (self-
dual matrices, GSE, β = 4):

(A.1)

(A.2)

(A.3)

where A1 is N × N with real elements following an i.i.d. ( 0, 2σ2) normal distribution, A2
is N × N with complex elements whose real and imaginary parts follow an i.i.d. (0, σ2)
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normal distribution, ()D denotes the self transpose of a quaternion matrix, and A4 is 2N × 2N
obtained from:

where X and Y are two independent realizations of A2 of size N × N. The standard deviation
of the off-diagonal elements of all matrices G1, G2 and G4 is σ. Of special interest to
modularity-based partitioning is the GOE case, because undirected networks have real and
symmetric adjacency matrices.

Let T = λ1(Gβ) be a random variable equal to the largest eigenvalue λ1 of any of the above
random ensembles. Tracy and Widom (Tracy and Widom (2000)) derived an important
scaling formula that predicts the distribution of T :

(A.4)

where

(A.5)

and S follows the Tracy-Widom distributions below. Note, that β = 2 is the simplest case and
is used to derive the other cases:

(A.6)

(A.7)

(A.8)

were q is the solution to the Painlevé II equation: q′′ = sq + 2q3, satisfying the condition q(s)
≈ Ai(s) as s → ∞, with Ai the Airy function (Tracy and Widom (2000)).

Using equation (A.4), we can derive the distribution of the largest eigenvalue for any
Gaussian ensemble for different values of N and σ.
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Highlights

• We prove that the distribution of brain modules follows a modified Tracy-
Widom distribution

• We construct parametric formulas that predict the distribution of brain modules

• A Monte-Carlo simulation estimates the model parameters

• Our method provides formal statistical inference in brain networks
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Figure 1.
Brain networks and modularity.
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Figure 2.
Distribution of the largest eigenvalue of BRandom over several network parameters. Left
column: using the conventional definition of modularity, the distribution depends on the
network size and the edge mean and standard deviation; right column: using our null model
for the definition of modularity, the distribution becomes invariant to the edge mean.
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Figure 3.
Left: Kullback-Leibler divergence between f1 and transformed fT distributions for different
values of N. The plot is averaged across a range of edge variance values. Right: Plot of f1
and transformed fT distributions for N = 100, indicating that they are nearly identical.
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Figure 4.
Illustration of fit between the estimated functions ŵ1 and ŵ2 (equation (10); shown as
scatter plot) and the power functions (equations (7) and (8); shown as solid lines).
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Figure 5.
Average number of spuriously detected modules in random networks (false positives).
Modules are identified by sequential bi-partitions of the networks while modularity, defined
with the null model in equation (2), increases (objective function). Even though the
simulated networks are completely random, we are certain to identify two or more modules,
always leading to false detection of structure. Shaded region indicates ± one standard
deviation.
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Figure 6.
Specificity of our statistical significance testing method based on the Tracy-Widom
distribution (equation (6)). Plots show the observed null hypothesis rejection rate, when the
nominal rate is α=5%. Solid lines indicate a polynomial fit across the measured scattered
points. We suggest applying different sets of parameters with the boundary N = 600. Top
panel shows the specificity for small networks and lower panel the specificity for large
networks. Gray background indicates the specificity when our formulas are applied outside
the suggested range. Notice, specificity does not depend on edge standard deviation.
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Figure 7.
Specificity of the Tracy-Widom formula for the case of Gaussian orthogonal ensembles
(equation (5)). Solid line indicates a polynomial fit over the measured scattered points. The
formula has an asymptotic behavior over network size N, and is conservative for small
networks.
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Figure 8.
(Left) Realizations of structured networks of size N = 20 and N = 100, with weights ρ = 0.6
and ρ = 1.(Top right) Rejection rate of the significance test on gradually introduced
structured networks controlled by parameter ρ. (Bottom right) The averaged NMI of each
clustering result against the true structure for p ≤ 0.05 and p > 0.05 for network size N = 40
and N = 200, respectively.
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Figure 9.
Modularity-based partitioning of the structural brain network in Hagmann et al. (2008b).
Each color represents a different subnetwork. All clusters are statistically significant.
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Figure 10.
Partition results of a resting state fMRI network. All 3 clusters, indicated by the color of the
spheres, are significant.
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Figure 11.
Partitions of the Karate Club network Zachary (1977).
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Table 1

Estimated parameters in equations (7) and (8) for small networks (left) and large networks (right). Also shown

Network size N < 600 Network size N ≥ 600

parameter estimated values parameter estimated values

α1 0.5795 ± 0.0153 α1 0.6053 ± 0.0085

β1 0.211 ± 0.0026 β1 0.2019 ± 0.0011

γ1 0.6869 ± 0.0228 γ1 0.7824 ± 0.0161

α2 −2.071 ± 0.001 α2 −1.948 ± 0.199

β2 0.6615 ± 0.0001 β2 0.6695 ± 0.0111

γ2 0 γ2 −4.96 ± 5.3086
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