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Altered Neural Processing of the Need to Stop in Young
Adults at Risk for Stimulant Dependence
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Identification of neurocognitive predictors of substance dependence is an important step in developing approaches to prevent addiction.
Given evidence of inhibitory control deficits in substance abusers (Monterosso et al., 2005; Fu et al., 2008; Lawrence et al., 2009; Tabibnia
et al., 2011), we examined neural processing characteristics in human occasional stimulant users (OSU), a population at risk for depen-
dence. A total of 158 nondependent OSU and 47 stimulant-naive control subjects (CS) were recruited and completed a stop signal task
while undergoing functional magnetic resonance imaging (fMRI). A Bayesian ideal observer model was used to predict probabilistic
expectations of inhibitory demand, P(stop), on a trial-to-trial basis, based on experienced trial history. Compared with CS, OSU showed
attenuated neural activation related to P(stop) magnitude in several areas, including left prefrontal cortex and left caudate. OSU also
showed reduced neural activation in the dorsal anterior cingulate cortex (dACC) and right insula in response to an unsigned Bayesian
prediction error representing the discrepancy between stimulus outcome and the predicted probability of a stop trial. These results
indicate that, despite minimal overt behavioral manifestations, OSU use fewer brain processing resources to predict and update the need for
response inhibition, processes that are critical for adjusting and optimizing behavioral performance, which may provide a biomarker for the
development of substance dependence.
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Introduction
Inhibitory control, the ability to withhold a prepotent action, is
an important cognitive control process and is hypothesized to be
dysfunctional in individuals with substance use problems. How-
ever, it is unclear how dysfunctional cognitive control progresses
with continuing substance use. Here, we combine Bayesian ideal
observer model-based analysis with fast, event-related fMRI data
to investigate subtle behavioral and neural differences between
occasional stimulant users (OSU), a population at risk for devel-
oping dependence (Tapert et al., 2002; Elkashef and Vocci, 2003),
and healthy control subjects (CS).

Prior investigations have shown inhibitory control deficits in
stimulant-dependent individuals, with moderate correlations
with drug use indices (Simon et al., 2002; Fillmore and Rush,
2002; Salo et al., 2002; Monterosso et al., 2005; Hester et al., 2007;
Tabibnia et al., 2011). Stimulant dependence has been linked to
reduced functioning of dopamine transporters and hypometab-
olism in various regions critical to inhibitory control, including
basal ganglia, anterior cingulate cortex (ACC), and other pre-

frontal areas (Volkow et al., 1999; Bolla et al., 2004; London et al.,
2004; Kim et al., 2009). During inhibitory control tasks, primarily
go/no-go and Stroop paradigms, cocaine abusers also show hy-
poactivity in the ACC, pre-SMA, superior frontal gyrus, and in-
sula (Kaufman et al., 2003; Hester and Garavan, 2004; Li et al.,
2008). In contrast to dependent users, there are relatively few
studies on occasional users, although some behavioral studies
suggest subtle impairments in inhibitory response and error
monitoring (Colzato et al., 2007; Reske et al., 2011).

Previously, we showed that healthy volunteers continuously
alter their response strategy in a stop-signal task, a classical inhib-
itory control paradigm, such that dynamic fluctuations in their
reaction time and error rate are consistent (Ide et al., 2013) with
a particular Bayesian sequential adjustment algorithm (Yu and
Cohen, 2009) and decision strategy (Shenoy and Yu, 2011; for
analogous results in primates, see Emeric et al., 2007; Scangos and
Stuphorn, 2010; Stuphorn et al., 2010). A Bayesian approach (Yu
and Cohen, 2009; Ide et al., 2013) is used here to identify any
difference between OSU and healthy CS in their neural represen-
tation of probabilistic expectations and the incorporation of
prediction errors needed for updating those expectations. Specif-
ically, we test the hypothesis that inhibitory dysfunction in OSU
is characterized by a decreased ability to represent or respond to
the likelihood of encountering an inhibitory stimulus. Therefore,
we expect them to have both an altered representation of the
expectation of an inhibitory signal and an altered prediction error
signal; that is, the discrepancy between prediction and outcome,
which is critical for adjusting expectations. Given recent work
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implicating the dorsal ACC in coding prediction error associated
with stimulus and action outcome (Ide et al., 2013), we hypoth-
esize OSU to have specific impairments in this region when track-
ing prediction errors.

Materials and Methods
Participants
The study protocol was approved by the University of California–San
Diego Human Subjects Review Board and all subjects gave written in-
formed consent. A total of 158 (62 female) nondependent OSU and 47
(26 female) stimulant naive CS were recruited over a period of 5 years via
flyers mailed to �7000 students at local universities, internet ads (e.g.,
Craigslist), and local university newspapers. OSU were defined as having
the following characteristics: (1) at least 2 off-prescription uses of cocaine
or prescription stimulants (amphetamines and/or methylphenidate)
over the past 6 months, (2) no evidence for lifetime stimulant depen-
dence, (3) no lifetime use of stimulants for medical reasons, and (4)
absence of treatment of substance- or alcohol-related problems. The
following exclusion criteria were applied for all subjects: (1) current (and
past 6 months) of the following Axis I diagnoses: panic disorder, social
phobia, posttraumatic stress disorder, major depressive disorder; (2) lifetime
bipolar disorder, schizophrenia, or obsessive compulsive disorder; (3) anti-
social personality disorder (ASPD) or conduct disorder; (4) attention deficit
hyperactivity disorder (ADHD); (5) current positive urine toxicology test
(exception due to long detectability in urine: marijuana); (6) lifetime use of
ecstasy �25; and (7) head injuries or loss of consciousness for �5 min.
Additional inclusion criteria for CS were no lifetime use of stimulants and no
lifetime history of substance- or alcohol-related dependence.

Lifetime DSM-IV Axis I diagnoses (including ADHD and substance
abuse and dependence according to the American Psychological Associ-
ation, 1994) and Axis II ASPD diagnoses were assessed by the Semi-
structured Assessment for the Genetics of Alcoholism (Bucholz et al.,
1994). Diagnoses were based on consensus meetings with a clinician
specialized in substance use disorders (M.P.P). During the interview
session, subjects also performed the Wechsler Test of Adult Reading
(Wechsler, 2001), a measure of verbal IQ. In addition, information on
current alcohol and nicotine use patterns was collected. Several person-
ality measures were also collected, including the Sensation Seeking Scale
(SSS; Zuckerman and Link, 1968), the Barratt Impulsiveness Scale (BIS;
Barratt, 1959), and the Temperament and Character Inventory (TCI; Clon-
inger et al., 1994). The Reward Dependence Scale of the TCI, which was
included in our analyses, is a self-report inventory measuring responsiveness
to signals of reward and social approval, ranging from low motivation/high
social detachment to high motivation to pursue reward/high sensitivity to
social cues. Higher scores on this scale are associated with persistent reward-
seeking behaviors that are susceptible to emotional influences and have been
associated with prefrontal hypoactivations (Sugiura et al., 2000) and lower
basal noradrenergic activity (Cloninger, 1986).

Stop signal task
At the onset of each trial, either an “X” or an “O” appeared on a black
background back projected to the MRI room. Participants were in-
structed to press, as quickly as possible, the left button when an “X”
appeared, and the right button when an “O” appeared. They were also
instructed not to press either mouse button whenever they heard a tone
during a trial (Stop trials). Each trial lasted 1300 ms and each trial was
separated by 200 ms interstimulus intervals (blank screen; see Matthews
et al., 2005). Individual response latency was used to denote the period of
inhibitory processing and provided a subject-dependent jittered reference
function. Participants performed six blocks of the task, each containing a
total of 48 trials (12 stop and 36 nonstop trials in each block). Trial order was
pseudorandomized throughout the task and counterbalanced. Before scan-
ning, participants performed the stop task in a behavioral testing session to
determine their mean reaction time (RT) from “X” and “O” stimuli onset.
Such individual measures were used to determine the stop signal delay (SSD)
for the six different stop trial types. Specifically, stop signals were delivered at
0 (RT-0), 100 (RT-100), 200 (RT-200), 300 (RT-300), 400 (RT-400), or 500
(RT-500) ms less than the mean RT after the beginning of the trial, thus
providing a range of difficulty level.

Stop signal reaction times computation
To estimate subject-specific time course of response inhibition, we com-
puted the stop signal reaction times (SSRTs) for each participant, a mea-
sure that can be conceptualized as the average latency of inhibition
(Logan and Cowan, 1984). SSRT can be computed by subtracting the
SSD at which participants correctly inhibited button press 50% of the
time from their mean RT on Go trials (mean go RT � SSD50%; Aron et
al., 2003; Chambers et al., 2006; Li et al., 2006). To obtain this measure,
we first fitted individual 2-parameter logistic equations to binary error
data (0,1) as a function of SSD (Hanes and Schall, 1995; Verbruggen and
Logan, 2009) based on the following equation:

P(error) � 1/(1 � e�(a�bX))

We then calculated SSD50% by solving the equation for x with P(e) � 0.5,
which is equivalent to the median of the inhibitory function and repre-
sents the time delay between go and stop signals that a subject would need
to succeed in 50% of the Stop trials. Individual SSRTs were computed by
subtracting SSD50% from mean go RT.

Bayesian model of probabilistic prediction
We previously proposed a Bayes-optimal model for stopping behavior
(Shenoy and Yu, 2011) that decides whether and when to generate a
response in the stop signal task via an evolving, moment-by-moment
decision process influenced by the accumulation of noisy sensory evi-
dence, as well as by costs associated with various actions and outcomes.
In particular, the mean stop error rate and the go RT trade off against
each other such that a more conservative (more hesitant) policy for re-
sponding would result in both longer RT on Go trials and lower error rate
on Stop trials and vice versa for a less conservative (less hesitant) policy
for responding (Shenoy and Yu, 2011). This tradeoff is influenced by
factors such as the prior probability of a stop signal (Shenoy and Yu,
2011). The within-trial model predicts a linear increase in RT associated
with a linear increase in the probability of a stop trial (Ide et al., 2013). In
previous work (Shenoy and Yu, 2011; Shenoy et al., 2011; Ide et al., 2013),
we showed that trial-by-trial adjustments of behavior in the task are well
captured by a Bayesian inference and decision-making model, which
assumes that the subject continually updates the prior probability of
encountering Stop trials, P(stop), on a trial-by-trial basis, based on trial
history (Yu and Cohen, 2009) and that the subject adjusts his/her deci-
sion policy as a function of P(stop), with systematic consequences for go
RT and stop accuracy in the upcoming trial. In particular, a higher pred-
icated P(stop) leads to both a slower go RT and a higher likelihood of
correctly stopping on a stop trial (Ide et al., 2013).

Briefly, to model the trial-by-trial adjustment of prior expectations, we
adapted the Dynamic Belief Model (Yu and Cohen, 2009; Ide et al., 2013)
as follows: the stop signal frequency rk on trial k has probability � of being
the same as rk � 1 and probability 1 � � of being resampled from a prior
� distribution p0(r). The probability of trial k being a stop trial,
Pk(stop) � P(sk�1 � Sk�1), where Sk� (s1, . . . , sk) is 1 on Stop trials and
0 on Go trials, can be computed as follows:

P�sk � 1�Sk�1 � �� P�sk � 1�rk�p�rk�Sk�1�drk ��rkp�rk�Sk�1�drk

� �rk�Sk�1	.

The predictive probability of seeing a stop trial, Pk(stop), is the mean
of the predictive distribution p(rk�Sk�1), which is a mixture of the previ-
ous posterior distribution and a fixed prior distribution, with � and 1 �
� acting as the mixing coefficients, respectively:

p�rk�Sk�1� � �p�rk�1�Sk�1� � �1 � ��p0�rk�

with the posterior distribution being updated according to Bayes’ rule:

p�rk�Sk� 
 P�Sk�rk�p�rk�Sk�1�

In the present study, parameters for the � distribution p0(r) and � were
kept constant across all subjects and set based on previous optimal sim-
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ulations representative of subjects’ expectations in the task [i.e.,
�(2.5,7.5; mean � 0.25] and � � 0.8 (Shenoy and Yu, 2011; Ide et al.,
2013). Based on these parameters and given the sequence of observed
Stop/Go trials (pseudorandomized, thus here constant across subjects),
we computed the corresponding sequence of subjective P(stop) proba-
bilities for the trial sequence participants experienced. In subsequent
fMRI analyses, the trial-by-trial estimation of P(stop) � �rk� (i.e., repre-
senting the most up-to-date estimated likelihood of encountering a stop
signal based on all previous trials) was used as a parametric regressor in
subsequent fMRI analyses.

We note that we first investigated whether the model predictions
would be sensitive to parameters � and the prior distribution over r at the
individual level. Specifically, we tested the following parameter ranges:
� � [0.7, 0.95] and, for the � distribution, m � [0.1, 0.35], and s � [5, 15]
for the mean and scale parameters, respectively, where m � a/(a � b) and
s � (a � b) and a and b are the reported shape parameters. Based on this
wide range of parameters, we found that the produced P(stop) values
were highly correlated across parameter settings and relative to those
calculated with the shared group settings for (r � 0.9; R 2 � 0.8). For
this reason, and due to the paucity of data for accurate parameter
estimation, we chose a fixed setting following the experiment design
and selected a single parameter setting for the Bayesian model based
on our previous work studying the stop signal task in healthy controls
(Ide et al., 2013). Subsequent analyses revealed that CS and OSU did
not differ in the positive linear relationship between RT and P(stop),
as well as for sequential effects (i.e., post-stop slowing; see Results);
we therefore used the same parameter setting for both users and
controls.

fMRI image acquisition and analysis
Using a fast event-related fMRI design, each scanning session was con-
ducted on a 3T General Electric scanner (T2*-weighted EPI, TR � 2000
ms, TE � 40 ms, 64 � 64 matrix, 30 4 mm axial slices, FOV � 220 � 220
mm, in-plane voxel size � 3.437, flip angle � 90°). Each run was acquired
in sessions of 256 repetitions and lasted 8 min and 32 s. Functional MRI
volume acquisitions were time locked to task onset. During the same
experimental session, a T1-weighted image (MPRAGE, TR � 11.4 ms,
TE � 4.4 ms, flip angle � 10 degree, FOV � 256 � 256, 1 mm 3 voxels)
was obtained for anatomical reference.

Preprocessing. All structural and functional image processing and anal-
ysis was performed with the Analysis of Functional Neuroimages (AFNI)
software package (Cox, 1996). MRI x-y slices were reconstructed into
AFNI BRIK format. To minimize motion artifact, the central point of the
temporal region with the largest span of fewest voxelwise outliers was
used as the base for registration, adjusting all other time points in dx, dy,
dz, as well as roll, pitch, and yaw directions to align remaining images to
the base image. Automated coregistration of the functional echoplanar
image to the anatomical image was performed and a new outlier file was
generated to determine whether additional time points should be cen-
sored based on whether a given time point greatly exceeded the mean
number of voxel outliers for the time series.

First-level analyses. Three types of trials were distinguished (Go, Stop
Success/SS, and Stop Error/SE) and entered in a general linear model
(GLM), which were convolved with a canonical hemodynamic response
function. Each of these predictors was entered both as linear regressors
[multiplied by the mean of the computed P(stop) probabilities across all
trials] and parametrically modulated (Büchel et al., 1998) by trial-level
P(stop) estimates. Therefore, after deconvolution, the first-level model
included six task regressors [three categorical: Go, SS, SE; three paramet-
ric: Go � Pk(stop), SS � Pk(stop), SE � Pk(stop)], baseline and linear
drift regressors, and three motion regressors (pitch, yaw, roll; Matthews
et al., 2005). Finally, to control for activation-related attention and
arousal processes, we included go RTs (for Go trials) and SSD (for Stop
trials) as additional parametric regressors of no interest. The baseline
regressor consisted of intertrial intervals and instruction phases. Images
were spatially filtered using a Gaussian spatial filter (full width at half
maximum 4 mm) to account for individual anatomical differences. An-
atomical images were manually Talairached and echoplanar images were
transformed into Talairach space.

Second-level analyses. P(stop) modulated activation from the first-level
GLM was subjected to a voxelwise linear mixed effects (LME) analysis
(Pinheiro et al., 2011), with Group (OSU, CS) and trial type [Go �
Pk(stop), SS � Pk(stop), SE � Pk(stop)] as fixed effects and subjects
treated as random effect. For the main analyses, we isolated P(stop)
modulated activations for Go vs Stop trials (SS and SE were averaged).
Statistical maps were obtained for the group main effect and the group �
trial type interaction. We conducted an additional LME contrast on Stop
trials only, comparing P(stop) modulated activation for SS versus SE
trials, and obtained statistical maps for the group � trial type interaction.
Finally, the same contrast analyses were conducted for categorical regres-
sors (Go vs Stop and SS vs SE). To correct for multiple comparisons, we
used a cluster threshold adjustment based on Monte Carlo simulations
(generated with AFNI’s AlphaSim program), based on whole-brain voxel
size and 4 mm smoothness. A minimum cluster volume of 384 �l with a
cluster significance of p � 0.01 corrected for multiple comparisons (vox-
elwise probability: p � 0.005).

We first report the group main effect, reflecting areas tracking prior
P(stop) value (regardless of trial outcome) that are differentially acti-
vated between group. The next section addresses brain areas surviving
whole brain analysis for a significant interaction between clinical group
(OSU vs CS) and P(stop) modulated stimulus outcome (Stop vs Go),
thus identifying areas exhibiting differential P(stop) activation for Go
versus Stop trials (i.e., an average Bayesian prediction error representing
the magnitude of the discrepancy between predicted probability of stop
trial occurrence and actual trial type; Ide et al., 2013). Average activation
signal was then extracted from these areas and plotted for each type of
parametrically modulated trial regressor [Go � P(stop) and Stop �
P(stop)] and each group (OSU vs CS; OSU being further distinguished by
drug preference, i.e., cocaine, prescription, or no preference). In this
analysis, we distinguished signed and unsigned prediction errors because
they may provide different types of information to adjust behavior. For
example, unsigned prediction errors can be conceptualized as the overall
degree of discrepancy between one’s internal model prediction and ac-
tual outcome and should be thus informative about the goodness of fit of
one’s internal predictive model (in this case, P(stop) estimation). In
contrast, signed prediction errors provide additional information on the
direction of these prediction/outcome discrepancies, which may be more
relevant to orienting or motivating the individual toward specific actions
(e.g., go vs stop). To more specifically disambiguate the type of predic-
tion error (e.g., signed vs unsigned) associated with areas encoding a
significant group by P(stop) modulated trial type, we first examined the
sign of these activations in CS using the following rationale. A positive or
negative average percent signal change associated with P(stop) indicate,
respectively, a positive or negative correlation between activation in this
area and P(stop) for a given condition (stop vs go). In contrast, percent
signal change not significantly different from zero (based on one sample
t test) was interpreted as an absence of correlation between P(stop) and
neural activation. Therefore, we identified areas with nonzero activations
of the same sign on Go and Stop trials (i.e., both negatively or positively
correlated to P(stop) on both types of trial) as reflecting a signed Bayesian
prediction error. This is because, for a signed prediction error (SPE)
defined as outcome � P(stop), the SPE � 0 � P(stop) � � P(stop) on
Go trials (because the probability of a trial being a Stop trial is zero on Go
trials), whereas the SPE � 1 � P(stop) on Stop trials (because the prob-
ability of a trial being a Stop trial is 1 on Stop trials). Therefore, activation
correlated with SPE should be negatively correlated with P(stop) on both
types of trials. Similarly, a pattern of activation showing positive corre-
lations with P(stop) on both Go and Stop trials would indicate areas
encoding �(outcome � P(stop)); that is, showing neural activations
proportional to P(stop) � outcome, or deactivations proportional to
outcome � P(stop). This is because �(outcome � P(stop)) � P(stop) �
outcome � P(stop) � 0 � P(stop) on Go trials and � P(stop) � 1 on
Stop trials, thus positively correlated with P(stop) for both types of trials.

In contrast, areas showing activation positively correlated to P(stop)
on Go trials and negatively correlated to P(stop) on Stop trials were
identified as areas encoding an unsigned prediction error (UPE). This is
because an UPE defined as �outcome � P(stop)� is equal to �0 � P(stop)� �
P(stop) on Go trials and is equal to �1 � P(stop)� � 1 � P(stop) on Stop
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trials (because P(stop) values are �0 and �1 and thus 1 � P(stop) is
always � 0) . Therefore, activation correlating with an UPE should be
positively correlated with P(stop) on Go trials but negatively correlated
with P(stop) on Stop trials. In addition, we note that areas showing the
opposite pattern (negative correlation to P(stop) on Go trials and posi-
tive correlation on Stop trials) are consistent with regions showing neural
activations proportional to a negative UPE (i.e., ��outcome � P(stop)�)
or deactivations proportional to UPE.

Supplemental prediction error analyses. To more accurately compare
group differences in brain activations modulated by a signed or unsigned
Bayesian prediction error, we conducted two additional analyses. First,
we conducted a nonparametric analysis by creating a second GLM in
which Go and Stop trials were grouped into low and high P(stop) values
[median split of estimated P(stop) over all trials]. Therefore, in this
model, we had four event-related regressors [Go/Low P(stop), Go/High
P(stop), Stop/Low P(stop), and Stop/High P(stop)], in addition to base-
line, linear drift, motion regressors parameters, and RTs as covariates of
no interest. The second GLM was used to extract and plot signal change
associated with these different events from the interaction clusters iden-
tified in the LME analyses (see Second-level analyses, above).

In addition, we created a third GLM with trialwise Bayesian SPE (out-
come � P(stop)) and UPE �outcome � P(stop)� included as parametric
regressors of interest. In this model, we also included a regressor model-
ing trial error (0 � correct or 1 � error) to control for performance error
related activity, as well as baseline, linear drift, motion, and RT as regres-
sors of no interest. For second-level analysis, we subjected SPE- and
UPE-modulated activation each to a voxelwise LME with Group (includ-
ing user preference) modeled as fixed effect and Subject as a random
effect. We restricted these analyses to the interaction clusters previously
identified in the main analyses. These analyses allowed us to confirm the
regions identified as showing group differences in SPE and UPE and to
plot the magnitude of such modulation for each group.

Anatomical regions of interest analyses. Finally, given prior evidence
suggesting that the right inferior frontal gyrus (IFG) and subthalamic
nucleus (STN) play a key role in the implementation of response inhibi-
tion in the Stop Signal task (Aron et al., 2004), and because such areas
were not found to be differentially activated between groups in response
to P(stop) and prediction error magnitude, we conducted a priori region
of interest (ROI) analyses in these two regions to assess their role in
Bayesian Stop signal prediction error computations and to identify any
group differences in recruiting these regions. We used anatomical masks
to extract activation from these ROIs, namely the right IFG (whole ana-
tomical region from Talairach atlas) and right STN (spherical ROI of 4vx
radius, center TC: �13,�10, 0; based on Aron et al., 2004). For signifi-
cant clusters, average percent signal change from baseline was extracted
for each condition of interest.

Relationship with clinical data. To examine the potential relationship
between the obtained group-dependent BOLD activations and clinical
indices, we conducted voxelwise Huber regression analyses, a form of
robust regression providing a more reliable estimate of correlational as-
sociations. This method is less sensitive to the effect of outliers than
traditional least-square estimates and is generally more robust to the
violation of traditional linear regression assumptions (e.g., multicol-
linearity, non-normally distributed data). Importantly, this regression
strategy allowed us to assess the independent effect of each potential
predictor of interest on the brain activation patterns observed within
OSU (including both stimulus independent activation to P(stop) and
stimulus outcome-dependent activation, i.e., prediction error signal).
For example, given the high usage of marijuana in OSU, we wanted to
ensure that any relationship between brain activation and stimulant use
measures could not be explained by marijuana use. Therefore, four re-
gression models were tested in whole brain analyses and submitted to the
same cluster-based thresholding method used for LME analyses to cor-
rect for multiple comparisons (minimum cluster volume of 384 �l with
a cluster significance of p � 0.01). The first two were concerned with the
group main effect and predicted P(stop) BOLD contrast averaged across
Go and Stop trials. One model included three personality questionnaire
measures as predictors (i.e., BIS, SSS, and TCI Reward Dependence
scale), whereas the second model included three drug use measures (i.e.,

lifetime cocaine, prescription stimulant, and marijuana use times, each
log transformed given positively skewed distributions). The other two
models were concerned with the interaction of group and Bayesian pre-
diction error and thus predicted the Stop � P(stop) � Go � P(stop)
contrast, with the same sets of predictors used for the main effect regres-
sion models. Finally, for each set of models (main effect and interaction),
we used the obtained robust Huber regression statistical maps to deter-
mine any clusters overlapping with regions identified in LME analyses.

Results
Subject characteristics
OSU did not differ from CS in ethnicity (� 2(4) � 8.2, p � 0.08),
age, education, or verbal IQ, but had more males (61%) than CS
(43%, � 2 (1) � 4.2, p � 0.04). In addition, OSU endorsed greater
cocaine, prescription stimulant, and marijuana intake and used
alcohol and nicotine more frequently and in larger quantities
than CS. Within the OSU group, 47 reported predominantly us-
ing cocaine (cocaine comprised at least 80% of their lifetime
stimulant use), 57 reported a preferred use of prescription stim-
ulants (�80% of their lifetime stimulant use), and the remaining
OSU (n � 54) reported similar use of both cocaine and prescrip-
tion stimulants. A total of 41 OSU met criteria for marijuana
dependence (thereof 18 for current dependence), whereas 46
OSU and three CS met criteria for lifetime marijuana abuse (with
110 OSU but no CS reporting using marijuana within the week of
the fMRI session). In addition, 69 OSU and three CS reported
regular use of nicotine at inclusion into the study (see Table 1 for
detailed sample and drug use characteristics). Given these results,
we examined the potential effect of sex, marijuana use (low, i.e.,
�50 lifetime uses, vs high, i.e., �500 lifetime uses), and stimulant
preference (cocaine, i.e., cocaine comprising 80% lifetime stim-
ulant use; prescription, i.e., prescription stimulants comprising
80% lifetime stimulant use; and no preference, i.e., remaining
subgroup of OSU using both cocaine and prescription stimu-
lants, �30% and �70% lifetime use) on both behavioral and
neural group effects reported. Any significant effects of these
variables are reported in the Results section.

Behavioral performance
Reaction times and behavioral adjustment
CS and OSU did not differ in average go RTs (mean CS � 659 ms;
mean OSU � 639 ms, p � 0.49) or SSRT (mean CS � 187 ms;
mean OSU � 187 ms, p � 0.95).

As expected (Shenoy and Yu, 2011; Shenoy et al., 2011; Ide et
al., 2013), we found a significant positive correlation between go
RT and model-based P(stop) value individually (p � 0.05) in all

Table 1. Subject characteristics as a function of group status (n � 205)

OSU (n � 158) CS (n � 47)

t testMean SD Mean SD

Demographics
Age 20.8 1.5 21.0 2.2 p � 0.46
Education 14.6 1.3 14.6 1.5 p � 0.94
Verbal IQ (WTAR) 108.9 7.3 110.0 7.1 p � 0.37
Alcohol (typical drinks/week) 20.9 15.2 4.8 3.5 p � 0.001
Alcohol (typical days/week) 3.2 1.6 1.5 0.7 p � 0.001
Nicotine (typical cigarettes/d) 2.6 4.2 0.9 4.1 p � 0.001
Nicotine (typical days/week) 2.6 3.2 0.4 1.5 p � 0.05

Lifetime drug use
Cocaine 22.8 37.5 0.0 0.0 N/A
Prescription stimulant 28.2 70.4 0.0 0.0 N/A
Marijuana 906.4 1372.0 23.2 89.7 p � 0.001a

WTAR, Wechsler Test of Adult Reading; N/A, not applicable.
a t test computed using natural log-transformed �0.5 values (due to non-normal distributions) replicated results
for raw data.
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subjects (both OSU and CS), with a mean correlation coefficient
of r � 0.15. To assess for any group difference in the linear rela-
tionship between RT and P(stop), we applied a generalized linear
mixed model (with random intercept and slope) to trial-level RT
data with trialwise P(stop) and group modeled as fixed effects and
subject modeled as random effect. A strong positive linear rela-
tionship between RT and P(stop) was observed (B � 253 ms, t �
6.9,p � 0.001, model omnibus test: � 2 � 899, p � 2.2e-16).
Importantly, neither the group main effect (� 2 � 0.37, p � 0.54)
nor the group � P(stop) interaction (� 2 � 0.15, p � 0.69) were
significant. Within each group, a strong positive linear relation-
ship was observed (CS: B � 219, p � 0.001; OSU: B � 253, p �
0.001). Figure 1A shows data collapsed across all subjects for OSU
and CS separately, where Go trials were binned by P(stop) and

average RT was calculated for each bin separately. The figure
shows a strong linear relationship between go RT and P(stop).

To investigate poststop slowing and any related group differ-
ence, we classified Go trials into two categories based on the
preceding type of trial (i.e., go vs stop: successful or failed). As
expected, a generalized linear model revealed a strong effect of
trial type, reaction times being slower following a stop relative to
go trial (p � 0.001). However, CS and OSU also did not differ in
this behavioral adjustment (p � 0.68; Fig. 1B).

Performance accuracy
CS and OSU did not differ in average stop error rates (mean CS �
0.37; mean OSU � 0.42, p � 0.14). To examine the relationship
between group and SSD on error probability, we fitted a general-

Figure 1. Bayesian model prediction and behavioral performance. A, Bayesian model prediction and behavioral data presented for each group: red/square for OSU, black/circles for CS. As
predicted by Bayes-optimal decision making in the stop signal task, participants’ go RTs were positively correlated with P(stop) model estimates on each trial. Black (CS) and red (OSU) model lines
represent best linear regression fit to mean go RT. Error bars indicate SEM (CS: n � 47; OSU: n � 158); B, Go mean RTs on trials after Go or Stop trials. OSU and CS demonstrate similar slowing after
a Stop relative to Go trial. C, Error rates by SSD category for each group. Error bars indicate SEM. D, Fitted logistic inhibitory functions by group (controls: n � 47; OSU/Cocaine: n � 47;
OSU/Prescription: n � 57; OSU/No Preference: n � 54).
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ized mixed linear model with a logistic link function to binary
error data, with SSD and group modeled as fixed effects, and
subject modeled as random effect. A significant SSD by Group
interaction was revealed (p � 0.02), with OSU having a higher
likelihood of error for longer SSDs, as shown in the group average
error rates (Fig. 1C). A more specific analysis with drug prefer-
ence showed this effect was more apparent among OSU in the
“no preference” group (p � 0.002) and less so in the “prescrip-
tion” (p � 0.07) and “cocaine” (p � 0.10) groups (see fitted
logistic functions by drug preference, Fig. 1D).

To assess the relationship between P(stop) and error likeli-
hood, we fitted a generalized mixed linear model with a logistic
link function to binary error data with trialwise P(stop) and
group modeled as fixed effects and subject modeled as random
effect. As expected (Shenoy and Yu, 2011; Shenoy et al., 2011; Ide
et al., 2013), we found a negative relationship between error like-
lihood and P(stop), with higher P(stop) prompting a smaller
likelihood of error (odds ratio � 0.31, Wald z � �3.14, p �
0.0016; omnibus test: � 2 � 9.78, p � 0.005). The main effect of
group (� 2 � 2.6, p � 0.11) and group � P(stop) interaction
(� 2 � 0.48, p � 0.49) did not reach statistical significance, again
suggesting that CS and OSU may similarly rely on an estimate of
trial-trial fluctuations in P(stop) to prevent commission errors.

Overall, these results are consistent with our earlier findings (Ide
et al., 2013) and suggest that both CS and OSU individuals maintain
and use an internal estimate of stop trial probability to make antici-
patory adjustments for inhibitory control based on trial history, with

systematic consequences in go RT and stop error rate. Broadly speak-
ing,byslowingdownastheexpectationofstoptrial increases,thesubject
can minimize the risk of a stop error (Shenoy and Yu, 2011).

fMRI analyses
Based on the above findings, in the GLM, we separately modeled
go, stop success, and stop error trials using P(stop) as a paramet-
ric modulator (orthogonalized with respect to categorical Go and
Stop regressors).

Bayesian prediction of inhibitory response (group comparison)
The first comparison of interest involved assessing for any group
differences in recruiting brain areas encoding prior P(stop) after
regressing out any variance correlated with actual stimulus out-
come (stop vs go). Significantly stronger activations (whole brain
analysis, corrected for clusterwise significance: p � 0.01) in CS
relative to OSU were revealed in several areas, including the bi-
lateral medial prefrontal cortex (Brodmann area [BA] 9/10; peak
voxel at Talairach coordinate [TC]: 0, 56, 16), left medial pre-
frontal cortex (BA 8; TC: �4, 50, 39; Fig. 2), left caudate (TC:
�22, 5, 11), right insula (TC: 25, 2, 5) left parahippocampal gyrus
(BA 36, TC: �25, �41, �9), left posterior insula (BA 13, TC:
�38, �32, 18), and the left inferior frontal gyrus (BA 9, TC: �50,
20, 21; Fig. 3A).

To quantify the relationship between occasional stimulant use
and activity in these brain areas, we used Huber regressions to iden-
tify any subregions in which P(stop) activation may be predicted by

Figure 2. Model-based fMRI data analysis: coding of P(stop) magnitude in the left medial PFC. A, Group main effect for BOLD signal associated with P(stop) magnitude (red clusters), including
in the left medial PFC (circled). B, Percent signal change on trials with low versus high P(stop) values (based on median split). C, Beta coefficient for linear relationship between percent signal change
and the parametric regressor P(stop), presented by group (CS: n � 47; OSU/Cocaine: n � 47; OSU/Prescription: n � 57; OSU/No Preference: n � 54). Error bars indicate 1 SEM relative to CS. OSU
(as a whole) failed to show significant P(stop)-dependent activation (Cohen d � 0.79). Beta was not statistically different from 0 in any OSU subgroup.

4572 • J. Neurosci., March 26, 2014 • 34(13):4567– 4580 Harlé et al. • Altered Neural Processing of the Need to Stop



clinical measures within OSU. Although none of the reported drug
use measures correlated with average P(stop) activation, activation
from the left IFG was negatively correlated with TCI reward depen-
dence scores (r � �0.28, p � 0.05; area significant in voxelwise
Huber regression, surviving multiple comparison correction for
clusterwise significance: p � 0.05; Cloninger et al., 1994). Therefore,
a stronger responsiveness to signals of reward and social approval
(higher TCI reward dependence scores) was associated with lower
activation in these regions in response to P(stop) (Fig. 3B). This
psychological index, which has been associated with prefrontal hy-
poactivations (Sugiura et al., 2000) and lower basal noradrenergic
activity (Cloninger, 1986), may therefore be useful among OSU to
predict future failure to engage cognitive control.

Modulation of Bayesian prediction error by occasional
stimulant use
Next, we investigated neural correlates of the Bayesian prediction
error associated with stimulus outcome, that is, activations cor-
related with the difference between the actual trial type (i.e., 1 for
Stop trial, 0 for Go trial) and predicted P(stop). We were partic-
ularly interested in how these neural activations might be differ-

ent between OSU and CS. We first identified brain areas
associated with a significant interaction between group (OSU vs
CS) and P(stop) modulated trial type [Stop � P(stop) vs Go �
P(stop)]. Several regions were identified using this group con-
trast, including bilateral left and right ACC (BA 32, TC: �1, 25,
30; BA32, TC: 17, 21, 31), left insula (BA 13, TC: �26, 5, 12), right
insula (BA 13, TC: 28, �3, 14), left superior/medial PFC (BA8,
TC: �6, 46,42), bilateral medial PFC (B10, TC: 0, 57, 18), left
posterior cingulate gyrus (BA23, TC: 0, �55, 20), right midcin-
gulate gyrus (and BA 31, TC: 15, �23, 42), and left middle tem-
poral gyrus (TC: �40, �33, 12).

In some of those regions (i.e., left insula, left and right poste-
rior cingulate, and left temporal gyrus), CS showed a positive
activation associated with P(stop) on Stop trials, but the correla-
tion with P(stop) on Go trials was not significantly different from
0 (p � 0.05). OSU showed no differential activations to go versus
Stop trials in these regions (Fig. 4, left insula).

Signed Bayesian prediction error. In other regions (i.e., left
superior medial PFC/B9 and bilateral medial PFC/B10; Fig.
5A), CS showed a positive correlation with P(stop) in both Go

Figure 3. Model-based fMRI data analysis: coding of P(stop) magnitude in the left IFG. A, Group main effect for BOLD signal associated with P(stop) magnitude in the left IFG. Bar graph shows
the average percent signal change correlated with P(stop) for each group (error bars indicate 1 SEM). Relative to controls (CS), OSU failed to show significant P(stop)-dependent activation (Cohen
d � 0.72). Beta was not statistically different from 0 in any OSU subgroup. B, P(stop)-modulated activation in this region was negatively correlated (r � �0.28, p � 0.05) with the TCI reward
dependence scale in OSU (scatterplot).

Figure 4. Left, BOLD signal in the left insula and other regions showing a significant interaction of group (CS vs OSU) and trial type (Go vs Stop) on P(stop) modulation. Right, Bar graph represent
average P(stop) modulation of percent signal change by trial type (Go vs Stop) and group [error bars indicate1 SEM; Controls/CS: n�47; OSU/Cocaine: n�47; OSU/Prescription: n�57; OSU/No Preference:
n � 54; relative to CS]. OSU showed smaller or nonsignificant P(stop) modulations on Stop trials (Cohen d � 0.67), whereas neither group showed a significant P(stop) modulation on Go trials.
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and Stop trials, which is consistent with a negative signed pre-
diction error [i.e., �(outcome � P(stop)) � P(stop) � out-
come]. This is because P(stop) � outcome � P(stop) � 0 �
P(stop) on Go trials (since the probability of encountering a Stop
trial on a sure Go trial is 0) and � P(stop) � 1 on Stop trials (since
the probability of encountering a Stop trial on a sure Stop trial is
1). Therefore, the negative SPE is equal to P(stop) or P(stop) � 1
depending on trial type and is therefore positively related to
P(stop) for both Go and Stop trials (see Materials and Methods).
Unlike CS, OSU failed to show P(stop)-modulated activation on
Stop trials. Although they generally showed a positive P(stop)
modulation on Go trials, this effect was weaker (Fig. 5B,C). Re-
sults from our BPE parametric analyses confirmed attenuated

signed prediction error activations, which was most apparent in
the no preference and prescription groups (Fig. 5D).

Unsigned Bayesian prediction error. Finally, in other regions
(i.e., left dACC and right insula; Fig. 6A and Fig. 7A), CS
showed a positive correlation with P(stop) on Stop trials and a neg-
ative correlation with P(stop) on Go trials. This is consistent with
activations associated with a negative unsigned prediction error
(��outcome � P(stop)�). This is because an unsigned prediction
error � �outcome � P(stop)� � �0 � P(stop)� � P(stop) on Go
trials and ��1 � P(stop)� � 1 � P(stop) on Stop trials (because
P(stop) values are �0 and �1 and thus 1 � P(stop) is always �0; see
Materials and Methods). Again, unlike CS, OSU failed to show a
differential activation to Go versus Stop trials in those regions (Figs.

Figure 5. Model-based fMRI data analysis: coding of the Bayesian signed prediction error (SPE) in the medial PFC. A, BOLD signal in the medial PFC (BA 10) showing group difference in percentage
signal change modulation by SPE (red cluster). Yellow areas are regions representing a significant interaction between group and P(stop)-modulated trial type. B. Bar graph displays average P(stop)
modulation of percent signal change by trial type (Go vs Stop) and group (CS: n � 47;OSU/Cocaine: n � 47; OSU/Prescription: n � 57; OSU/No Preference: n � 54; error bars indicate 1 SEM). In
this area, CS demonstrated positive correlations between percentage signal change and P(stop) on both Go and Stop trials, whereas OSU failed to show significant P(stop)-dependent activation (not
statistically different from 0 in any OSU subgroup); C. Percent signal change on trials with low versus high P(stop) values (based on median split); D. Average percent signal change correlation with
a negative SPE for each group (error bars: 1 SEM). Relative to CS, OSU showed weaker SPE-dependent activation (Cohen d � 0.69). Beta was not statistically different from 0 for the No Preference
and Prescription subgroups.
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6B,C, 7B,C). Importantly, based on parametric analyses for UPE,
OSU had significantly attenuated UPE activations, which was not
statistically different from zero for the cocaine and no preference
groups (Figs. 6D, 7D).

No areas revealed any negative activations to P(stop) on both
Go and Stop trials (which would reflect group difference in acti-
vation associated with a signed prediction error). In follow-up
analyses, Huber regressions revealed no correlation between neu-
ral activation in these areas and drug use measures or clinical
self-report measures.

P(stop) modulation of inhibitory success (group difference)
To assess whether stimulant use may further affect the degree to
which performance accuracy further modulates neural activa-
tions correlated with P(stop), we searched for areas associated a

significant interaction between group and P(stop)-modulated
activation for SS versus SE trials. Only one region in the right
parahippocampal gyrus (BA 28, TC: 27, �12, �13) was identified
for this contrast. Specifically, CS had a stronger positive correla-
tion to P(stop) on SE trials relative to SS. In contrast, OSU
showed no differential activation.

Bayesian prediction of inhibitory response (ROIs)
Given prior evidence suggesting that the IFG and STN play a key role
in the implementation of response inhibition in the stop signal task
(Aron et al., 2004), we assessed for trial-type effects in these ROIs. In
the right IFG, we found a significant positive correlation with
P(stop) for Stop trials in both groups, whereas P(stop)-modulated
activation was not significantly different from 0 for Go trials in either
group. However, OSU exhibited significantly weaker activation on

Figure 6. Model-based fMRI data analysis: coding of the Bayesian unsigned prediction error (UPE) in the ACC. A, BOLD signal in the ACC (circled) showing group difference in percentage signal
change modulation by UPE (red clusters). Yellow areas are regions representing a significant interaction between group and P(stop)-modulated trial type. B, Bar graph displays average P(stop)
modulation of percent signal change by trial type (Go vs Stop) and group (CS: n � 47; OSU/Cocaine: n � 47; OSU/Prescription: n � 57; OSU/No Preference: n � 54; error bars indicate 1 SEM).
In this area, CS demonstrated a negative correlation between percentage signal change and P(stop) on Go trials and a positive correlation on Stop trials, whereas OSU failed to show significant
P(stop)-dependent activation (not statistically different from 0 in any OSU subgroup). C, Percent signal change on trials with low versus high P(stop) values (based on median split). D, Average
percent signal change correlation with a negative UPE for each group (error bars: 1 SEM). Relative to controls (CS), OSU showed weaker UPE-dependent activation (Cohen d � 0.57). Beta was not
statistically different from 0 in any OSU subgroup.
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SS trials relative to CS. We further found that this effect was driven by
the “No preference” (p � 0.003) and “Cocaine” (p � 0.04) groups,
but was not apparent in the “Prescription” OSU group (Fig. 8A, IFG
activations). In the right and left STN, both groups showed a stron-
ger correlation to P(stop) on SS trials relative to both Go and SE
trials. No group difference was observed for any trial type (Fig. 8B).
These results are consistent with the notion that IFG and STN re-
gions both play critical roles in the anticipation of stop signals and
the implementation of a stop response with STN activation further
modulated by performance success.

Group comparisons for categorical regressors
We conducted similar LME analyses on the categorical regressors
(Go, SS, SE) to assess any group differences in activation related
to trial type after regressing out any variance correlated with the
P(stop)-modulated regressors. Because the parametric regressors
are orthogonalized to the categorical predictors in our GLM, this

analytical approach thus allowed us to distinguish neural activa-
tions involved in detecting and responding to stop signals and
successful inhibition [above and beyond P(stop)-modulated
activations].

Go versus Stop. For the group overall main effect (Stop � Go),
significantly stronger activations were observed in CS relative to
OSU in the right superior temporal gyrus (BA: 22/TC: 48, �19,
�6), left posterior cingulate gyrus (BA31, TC: �15, �39, 22),
and the right parahippocampal gyrus (BA 27/TC: 22, �30, �6).
In addition, a significant group by trial type interaction was ob-
served in the left superior parietal lobule (BA 7, TC: �33, �51,
51), right midcingulate gyrus (BA 24, TC: 11, �18, 42), and right
postcentral gyrus (BA 3, TC: 30, �23, 45). In all three areas, CS
showed significantly more deactivation to stop relative to Go
trials. In contrast, OSU demonstrated attenuated differential ac-
tivations compared with CS in the cingulate and postcentral

Figure 7. Model-based fMRI data analysis: coding of the Bayesian unsigned prediction error (UPE) in the right insula. A, BOLD signal in the right insula (circled) showing group difference in
percentage signal change modulation by UPE (red clusters). Yellow areas are regions representing a significant interaction between group and P(stop)-modulated trial type. B, Bar graph displaying
average P(stop) modulation of percent signal change by trial type (Go vs Stop) and group (CS: n�47; OSU/Cocaine: n�47; OSU/Prescription: n�57; OSU/No Preference: n�54; error bars indicate
1 SEM). In this area, CS demonstrated a negative correlation between percentage signal change and P(stop) on Go trials and a positive correlation on Stop trials, whereas OSU failed to show
significant P(stop)-dependent activation (not statistically different from 0 in any OSU subgroup). C, Percent signal change on trials with low versus high P(stop) values (based on median split). D,
Average percent signal change correlation with a negative UPE for each group (error bars: 1 SEM). Relative to CS, OSU showed weaker UPE-dependent activation (Cohen d � 0.63). Beta was not
statistically different from 0 in any of the cocaine and no preference subgroups (and marginally significant for the prescription group: p � 0.06).
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gyrus and no differential activation to Stop vs Go trials in the
parietal lobule. Although there is some degree of functional over-
lap (e.g., mid/posterior cingulate) with areas implicated for
P(stop)-modulated activation, these findings could reflect a
weaker recruitment in OSU of a network more specifically in-
volved in the detection and processing of Stop (vs Go) trials above
and beyond group differences in regions participating in the an-
ticipation of a stop signal.

Stop success versus Stop error. When examining differences in
success of inhibition implementation (success vs error), we iden-
tified a significant interaction between group and stop trial type
(SS vs SE) in two brain areas: the right precuneus (BA 7, TC: 17,
�63, 48) and the right IFG (BA 46, TC: 43, 39, 5). In these areas,
CS showed stronger activation on SS relative to SE trials, whereas
OSU showing the opposite pattern (i.e., stronger activation on SE
trials), which is consistent with a deficit among OSU in recruiting
these regions when processing Stop versus Go trials indepen-
dently of stop trial anticipation processes.

ROI analyses. Finally, the ROI analyses in the right IFG
showed that CS demonstrated stronger activations in this area on
SS trials relative to SE trials, whereas this difference was not sig-
nificant in OSU. In the STN, a pattern similar to those associated
with P(stop)-modulated regressors (and no group difference)
was observed. Specifically, both groups showed a stronger activa-
tion to SS trials relative to SE trials. These results again suggest
that both IFG and STN play an important role in detecting and
responding to the stop signal.

Discussion
We applied a Bayesian ideal observer model to investigate differ-
ences in probabilistic expectations of inhibitory response be-
tween OSU and CS. fMRI was used to assess the neural basis of
proactive control in stopping in a stop-signal paradigm. To our
knowledge, this is the first neural investigation using a Bayesian
model of inhibitory function in OSU, a population at higher risk
for developing dependence. OSU showed reduced brain activa-
tions associated with trial-level expectation of inhibitory needs
(i.e., P(stop)) in the medial prefrontal cortex, caudate, and left
IFG. OSU also had weaker Bayesian prediction error signals (rep-
resenting the discrepancy between predicted probability of stop

trial and actual stimulus outcome) in the medial PFC, dACC, and
right insula.

Behavioral performance.
Consistent with the minimal behavioral differences often ob-
served in this population (Colzato et al., 2007; Reske et al., 2011),
OSU demonstrated only subtle alterations in inhibitory perfor-
mance, mostly in the form of greater impulsiveness in trading off
accuracy for speed: OSU showed a trend toward faster go reaction
time and an OSU subgroup (using both prescription stimulants
and cocaine) made more commission errors for longer stop sig-
nal delays. However, group model fits suggest that they did not
significantly differ from CS in adjusting their reaction times with
respect to anticipated P(stop).

Bayesian prediction of inhibitory response in OSU
OSU had attenuated neural activations associated with overall
P(stop) magnitude in several areas, including the left medial PFC,
left caudate, and left IFG. OSU appeared to engage the frontos-
triatal network less when computing dynamic probabilistic state
estimations in inhibitory control. The attenuation of the medial PFC
in OSU is consistent with previous results in methamphetamine-
and cocaine-dependent individuals, who showed weaker medial
prefrontal activations during decision making (Bolla et al., 2003;
Paulus et al., 2003). This is also consistent with previous sugges-
tions that the medial PFC participates in the encoding of dynamic
Bayesian estimates of internal state/position, predicting RT ad-
justment and decision making (Yoshida and Ishii, 2006). In ad-
dition, the dorsal part of the caudate (as found here) has strong
functional connectivity to various prefrontal and parietal areas
(Di Martino et al., 2008) and is implicated generally in cognitive
control and specifically in learning stimulus-action associations
(White, 1997; O’Doherty, 2004).

Modulation of Bayesian prediction error by occasional
stimulant use
OSU demonstrated attenuated Bayesian prediction error (PE) sig-
nals in several areas, including the dACC and insula (for unsigned
PE) and medial PFC (for signed PE), suggesting a weakened repre-

Figure 8. Trial-outcome-dependent P(stop) activation for anatomical ROIs in the IFG (A) and right STN (B). Bar graphs represent average percent signal change for parametric
regressors Go � P(stop), SE � P(stop), and SS � P(stop) in CS (n � 47) and OSU (OSU/Cocaine: n � 47; OSU/Prescription: n � 57; OSU/No Preference: n � 54). Relative to CS, OSU in
the Cocaine and No Preference groups had significantly lower P(stop)-modulated activation on stop success trials; no group difference was observed in the right STN. Error bars indicate
1 SEM.

Harlé et al. • Altered Neural Processing of the Need to Stop J. Neurosci., March 26, 2014 • 34(13):4567– 4580 • 4577



sentation of the unexpectedness of surprising outcomes. Specifically,
OSU showed attenuated dACC responses correlating with a nega-
tive UPE (i.e., ��outcome � P(stop)�), which is consistent with
previous findings in neural recording studies of a negative rela-
tionship between dACC activity and prediction error (Seo and
Lee, 2007; Hayden et al., 2011; Kennerley et al., 2011). The results
here are also broadly consistent with our recent finding that
dACC encodes a Bayesian prediction error related to P(stop) in
the stop-signal task (Ide et al., 2013), as well as earlier work im-
plicating ACC in the encoding of various types of expectancy
violations in animals (Kennerley et al., 2011) and humans
(Somerville et al., 2006; Aarts and Roelofs, 2011), although in
those earlier works any correlation of ACC with UPE was positive
rather than negative. We note that although our previous work
identified a positive correlation between dACC activation and
UPE (Ide et al., 2013), the region identified there was more dorsal
than that identified here.

Error prediction/expectancy violation signals have also been
observed in the insula in the context of reinforcement learning
(Murray et al., 2008; Preuschoff et al., 2008; Bossaerts, 2010). The
insula is thought to support the representation of current and
predictive feeling states, allowing for error-based learning in
complex, dynamic environments (Singer et al., 2009). Some
computational investigations have also linked activation of both
the dACC (Behrens et al., 2007; Rushworth and Behrens, 2008)
and the insula (Preuschoff et al., 2008; Singer et al., 2009;
Bossaerts, 2010) to the coding of surprise and uncertainty/risk in
the environment (i.e., volatility). The group differences observed
in these areas could therefore relate to weaker neural responses to
the surprise or uncertainty associated with stimulus outcome.

Reduced ACC recruitment in the present study is consistent
with previous neural investigations showing ACC hypoactiva-
tions in stimulant users in the context of inhibitory control and
decision-making paradigms (Bolla et al., 2004; Hester and Gara-
van, 2004; Goldstein and Volkow, 2011). Similarly, recent studies
have found attenuated insula responses in stimulant users
(Paulus et al., 2005; Clark et al., 2012), including nondependent
individuals (Paulus et al., 2008; Stewart et al., 2013). This research
suggests that stimulant users deploy less neural resources for
trend detection and prediction, which is associated with difficul-
ties adapting to changing task contexts (Verdejo-García et al.,
2005; Aron and Paulus, 2007). Importantly, these neural markers
have been shown to predict relapse (Paulus et al., 2005; Clark et
al., 2012). Therefore, the present findings suggest that, beyond
altered speed/accuracy tradeoff and related impulsivity, OSU
may exhibit behavioral rigidity and reduced ability to adjust their
inhibitory behavior in dynamic environments, which may in turn
contribute to difficulties maintaining abstinence (e.g., failing to
increase internal estimations of the need to say “no” following an
increase in peer pressure).

Interestingly, the ACC and insula have structural (Ridderink-
hof et al., 2004; Cauda et al., 2011) and functional (Margulies et
al., 2007; Zago et al., 2008) reciprocal connections with the me-
dial PFC, IFG, and caudate, which were involved in P(stop) mag-
nitude coding in the present study. This is consistent with a role
of the ACC in tracking the accuracy of the P(stop) belief model
with UPE signals and in mediating the updating of these proba-
bilities (O’Reilly et al., 2013) represented within an executive
frontostriatal network. In contrast, SPE group differences were
observed in the superior medial PFC (BA 9/10), regions adjacent
and functionally connected to the posterior mPFC/BA 8 (Arikuni
et al., 1988) and IFG (Kemmotsu et al., 2005), which showed
activation correlations with P(stop) and premotor areas (Euston

et al., 2012). These superior mPFC regions may thus play a role in
modulating response selection based on directional PEs, a net-
work that appears to be impaired in OSU.

Bayesian prediction and implementation of
inhibitory control
Neural evidence from both primate (Schall et al., 2002; Paré and
Hanes, 2003; Stuphorn and Schall, 2006) and human (Aron et al.,
2003; Aron and Poldrack, 2006) studies have pointed to the right
IFG and STN as important for implementing the stop action that
terminates or cancels the go response in a competitive race model
(Logan and Cowan, 1984). Stronger recruitment of these areas
has been linked to more successful stopping and shorter SSRTs.
Our results suggest that activity in these areas are indeed modu-
lated by P(stop) on all Stop trials in the IFG and successful stops
in the STN. This computational anticipatory process may there-
fore modulate the recruitment of regions involved in implement-
ing the stop process. Although, for the most part, OSU and CS
showed similar patterns of activation in this area, OSU demon-
strated weaker activations of the right IFG on successful Stop
trials, suggesting subtle deficits in updating the probability of a
stop signal to adjust behavior. Interestingly, OSU using both co-
caine and prescription stimulants showed higher error tendency
and weakest P(stop)-modulated activation in the right IFG, sug-
gesting that these individuals may be at higher risk for developing
inhibitory control deficits.

Summary
We have shown here that OSU use less brain-processing re-
sources in the dACC, medial PFC, and insula to predict and up-
date the need for response inhibition, processes that are critical
for adjusting and optimizing behavioral performance. Based on
evidence that OSU and CS had similar Bayesian model accounts
of trial-by-trial variability in go RT and stop error rate, the lower
correlation coefficients in these brain regions among OSU are
unlikely to reflect differential adequacy of model fit. Moreover, as
we argued previously (Yu and Dayan, 2005), the ACC is likely to
cooperate with the noradrenergic system to track unexpected
uncertainty (e.g., large, uncommon changes in environmental
contingencies) beyond expected, task-related uncertainty (e.g.,
trial-to-trial fluctuations of predictive relationships). Therefore,
we suggest that the weaker P(stop) prediction error signals in
OSU may reflect group differences in tracking unexpected, large
changes (e.g., drastic changes in stop signal frequency or tempo-
ral onset distribution) in the task, rather than in fine-tuning
P(stop) estimation on a trialwise basis. Such neural alterations
could lead to behavioral deficits in more complex and uncertain
environments. Because the current task did not incorporate an
element of unexpected uncertainty, it is perhaps unsurprising
that behavioral tracking of P(stop) did not appear to be impaired
in OSU despite an attenuated dACC UPE signal. Given the rela-
tively recent onset and low level of stimulant use in this popula-
tion, future research involving more complex tasks is needed to
determine the precise function of the dACC UPE signal and re-
lated behavioral impairments in simulant-dependent individuals
and any predictive relationship to relapse.
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http://dx.doi.org/10.1162/jocn.2010.21435
http://www.ncbi.nlm.nih.gov/pubmed/20146601
http://dx.doi.org/10.1002/cne.902770103
http://www.ncbi.nlm.nih.gov/pubmed/2461971


Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to
stop signal response inhibition: role of the subthalamic nucleus. J Neuro-
sci 26:2424 –2433. CrossRef Medline

Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-
signal inhibition disrupted by damage to right inferior frontal gyrus in
humans. Nat Neurosci 6:115–116. CrossRef Medline

Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right infe-
rior frontal cortex. Trends Cogn Sci 8:170 –177. CrossRef Medline

Aron JL, Paulus MP (2007) Location, location: using functional magnetic
resonance imaging to pinpoint brain differences relevant to stimulant use.
Addiction 102:33– 43. CrossRef Medline

Barratt ES (1959) Anxiety and impulsiveness related to psychomotor effi-
ciency. Perceptual and Motor Skills 9:191–198. CrossRef

Behrens TE, Woolrich MW, Walton ME, Rushworth MF (2007) Learning
the value of information in an uncertain world. Nat Neurosci 10:1214 –
1221. CrossRef Medline

Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C,
Matochik JA, Kurian V, Cadet JL, Kimes AS, Funderburk FR, Ernst M
(2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers
performing a decision-making task. Neuroimage 19:1085–1094. CrossRef
Medline

Bolla K, Ernst M, Kiehl K, Mouratidis M, Eldreth D, Contoreggi C, Matochik
J, Kurian V, Cadet J, Kimes A, Funderburk F, London E (2004) Prefron-
tal cortical dysfunction in abstinent cocaine abusers. J Neuropsychiatry
Clin Neurosci 16:456 – 464. CrossRef Medline

Bossaerts P (2010) Risk and risk prediction error signals in anterior insula.
Brain Struct Funct 214:645– 653. CrossRef Medline
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