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ABSTRACT

In the past, relations of diffusive resistance to stomatal
geometry have concerned circular pores or pores that are
replaced by equivalent circles of the same area. We calcu-
lated the resistance for general shapes that include the
realistic slit. The resistance comprises two terms. The
first is an outer resistance that depends only on ventilation
and leaf geometry and is independent of stomata. The
second is an inner resistance and is a function of stomatal
interference and of stomatal geometry only. If inter-
stomatal spacing is at least three times stomatal length,
interstomatal interference is negligible. The inner re-
sistance can then be calculated by adding the resistance of
the two ends and the throat of each stoma. In the case of
an elongated stoma, the part of the diffusive resistance
per square centimeter determined by stomatal geometry is

d
+ In (4aWb) (Dn)

7rab 7ra

where a, b, d, and n are the semilength, semiwidth, depth,
and density of the stomata, and D is the diffusivity. This is
the familiar Brown and Escombe result applied to slits.

The evaporation from a stand of well watered vegetation is
nearly as great as from open water (12). Evaporation is evidently
affected by the stomata because a chemical that shrinks the aper-
ture of stomata (20) can significantly decrease evaporation from a
field (18) or forest (17). In the present article, therefore, the rela-
tion between stomata and the resistance to the evaporation of
water is examined.
At the turn of the century, Brown and Escombe (2) calculated

the resistance to diffusion through stomata as 1 /n of the resistance
to diffusion through a single stoma. The resistance through a
single stoma was the sum of resistance to diffusion through a tube
plus twice the resistance to diffusion away from a disk of the
same area as the cross section of the tube. Later authors argued
that interference between nearby stomata would increase the re-
sistance. Recently Cooke (4) has pointed out that the addition of
the resistance of tube and disks is illogical because it introduces a
discontinuity at the juncture of the three parts. Another difficulty,
but one usually overlooked, is replacing the actual stomatal shape
by a simpler shape, such as a circle. Kelrnan (8) has shown exactly
for a circular, isolated stoma, that the Brown-Escombe formula
predicts the stomatal resistance with a 7% precision or better (as
the stomatal depth gets larger). The interstomatal interference of
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circular stomata has been studied in some detail by Keller and
Stein (7) and more recently by Cooke (5). In the present paper,
we extend the work of Kelman (8) and Cooke (5) for realistic
stomatal shapes.

THE DIFFUSION RESISTANCE

The mass flux of water, 4, through a stoma is proportional to
C0 , the difference between the water concentrations at the bottom
of the substomatal cavity and in the air far from the leaf. This
result is an immediate consequence of the linearity of the equa-
tions governing diffusion. Hence it is always possible to define a
"resistance" to diffusion, R, which is independent of CO, by

4 = Co/R (I)

The study of diffusion consists of two parts, the determination of
CO and R. Usually it is accepted that the vapor in contact with
the cells of the substomatal cavity is saturated with water. Hence
CO is easily computed from the temperature of the leaf and the
humidity outside the leaf. Only under extreme water stress, i.e.,
when incipient drying is about to kill the leaf, is this assumption
invalid (14). Consequently this study is primarily concerned with
the determination of R.

Since the total path of diffusion includes air at a considerable
distance from the leaf, the resistance will be influenced by ventila-
tion as well as stomatal geometry (16). When convection occurs
outside the leaf, the diffusion equation must include convective
terms. In the case of forced convection, the average boundary
layer thickness for normal size leaves and usual wind velocities is
of order 10-' cm or less for small leaves or strong winds. Such a
thickness is always much larger than the length of a stoma and is
often much larger than the interstomatal distance as well. Con-
sequently convective effects can usually be neglected up to
distances from the leaf of the order of the interstomatal spacing.
Close enough to the leaf then, convective terms are negligible
(this is true a fortiori for natural convection and for diffusion in
quiescent air). Consequently, two basic regions can be distin-
guished outside the leaf:
Region 1. Region 1 extends from the leaf to a plane parallel to

it. The parallelism occurs at a distance comparable to the inter-
stomatal spacing, where, owing to stomatal interaction the equi-
concentration surfaces are roughly parallel to the leaf (see Fig. 1).
Convective terms are negligible in this region.
Region 2. In region 2 equiconcentration lines are parallel to the

leaf at first. Then convective effects or, in quiescent air, the three-
dimensionality of the leaf affects the concentration field. In this
region interaction effects with other leaves may have to be taken
into account.

Resistances R, and R2 can be associated with regions 1 and 2,
respectively. The outer one, R2, depends on the atmospheric
conditions, the shape of the leaf, and the presence of other leaves,
but obviously not on stomatal shape and distribution on the leaf.
On the other hand, R2 does depend upon the size of the array of
stomata-i.e., the leaf-and is a result of the multiplicity of
stomata. Region 2 was called by Bange (1) the adhering air layer
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FIG. 1. Equiconcentration surfaces above the stomatal apertures
and the location of region 2 and subregions la and lb.

in his Figure 5. In general the air in region 2 is not still, and
natural or forced convection takes place. Usually R2 must be
estimated by considering forced convection in a turbulent wind
(11). In this paper we are interested in the influence of stomata on
diffusion from the leaf. Hence we restrict ourselves to a study of
region 1. Nevertheless, in an actual case the resistance R1 com-
puted here is only part of the total resistance, and an appropriate
R2 must be added to R1 .

First we shall obtain the resistance of a single elliptical stoma
by adding three resistances as Brown and Escombe did. Then, we
shall try to justify replacing an ideal cross section for a real one.
The last step in analyzing a single stoma will be comparing the
Brown-Escombe result for an elliptic slit with an exact result, as
done by Kelman (8) for a circular opening. In the final section of
the paper we shall evaluate all R1, which includes interstomatal
interference and compare its value with the resistance, R,, of a
single slit, as Cooke (5) did for circular stomata.

BROWN-ESCOMBE FORMULATION FOR A
SINGLE STOMA

If water is diffusing from a single stoma, region 1 extends to
infinity; and R1 is R8, stomatal resistance. Call C the water con-
centration at a given point minus the concentration in the air
far from the leaf. Figure 2 shows a sketch of a stoma.
C = C0 on the wetted cells of the substomatal cavity (dotted

line on Fig. 2), and C = 0 far from the leaf since by definition
C is the excess concentration over its value far from the leaf.
The normal derivative of C is zero on the rest of the leaf (solid
line on Fig. 2) as long as evaporation through the cuticle is
negligible. Finally in the region of space occupied by humid air,

I

/
/

FIG. 2. Schematic stoma of width 2b and depth d. The dotted line
represents the limit of the substomatal cavity.

almost always slitlike. It is assumed that the exact shape of the
openings is not crucial to the mass flux through them. This
assumption makes it possible to replace the actual shapes by
similar shapes that are geometrically simpler. For instance, it is
plausible that a thin irregular slit can be replaced by an "ideal"
slit having the same length and the same area, with minimal
effect on the mass flux. The ideal slit could be, for instance,
rectangular or elliptic in shape (both choices will be made later).
To calculate explicit values for Ro and Rd, we take elliptic

openings (with semiaxes aO, bo and ad, bd). We assume further
that the distance from the stoma to the wetted cells (z0 on Fig. 2)
is much larger than a characteristic dimension of the stoma.
Then (4)

R. = K(e.)/27ra.D (IV)
with an equivalent expression for Rd. K is the usual elliptic
integral (6) and

(o2 = (a.2- b02) a02 (V)
Collecting Ro , Rod , and Rd together according to the Brown-
Escombe approach, we obtain

DR8 = 1 dz/O(z) + K(e0)/22ra. + K(Ed)/2lrad
V2C = 0 (II)

According to Brown and Escombe (2), C is a function of z alone
in the duct joining the substomatal cavity to the outside (0 <
z < d). In that case R8 can be decomposed into three parts.
One is the resistance, Ro , from the wetted cells to the bottom
of the duct (z = 0), another is the resistance, Rod , of the duct
(O < z < d) and the third, Rd, is from the top of the duct
(z = d) to the outside. Obviously

Rd
Rodl = D-1 dzIO(z) (III)

(VI)

If the duct is a cylinder, equation VI is simplified and becomes

DRe = d/lrab + K(E)1bra (VII)
where a = ao = ad b = bo Ec = EO = Ed . Equation VI represents
a slight generalization of the classical Brown-Escombe (2, 19)
result, which applies to a circular cylinder (a = b) for which

DR. = DRd = X a (VIII)
and

DR. = dbra2 + 12 a
where D is the diffusion coefficient and O(z) is the area of the
cross-section of the duct (which is a function of z).
R0 and Rd depend on the shape of the duct opening (at z = 0

and d). For instance, when a dicotyledonous stoma is widely
opened, the shape is ellipsoidal. Sometimes, particularly when
the dicotyledonous stoma is partially closed, the shape is more
akin to an irregular slit, and the stomata of monocotyledons are

(IX)
For simplicity, equation VI as well as its simplified versions,
equations VI through IX, will be referred to as the Brown-
Escombe result.
Another simplification is obtained in the case of an elongated

slit when E is close to one, then (6)

K(e) 1_In (4a/b) (X)
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and that

DR. = d/lrab + ln (4a/b)/ira (XI)

REAL AND IlDEAL CROSS SECIIONS

Equation XI can help us to justify the rules for replacing an
actual slit by an equivalent shape. The first term in equation XI
depends on the depth and the area of the stoma (not on the
exact shape). Hence it is clear that an equivalent stoma must
have the same depth and area as the original stoma. The second
term depends linearly on the reciprocal of the length of the stoma
and only logarithmically on the ratio a/b. Hence the length of
the ideal stoma should be that of the actual stoma. In particular,
notice that the replacement, often used (1, 10), of a slit by a
circle having the same area may introduce considerable error in
the second term since Y/VV7ia is then used instead of In (4a/b) /7ra
in equation XI. The error introduced by idealizing the shape of
the stomatal opening can be evaluated. Suppose, for instance,
that a rectangular stoma (length 2a, width 2b) is replaced by an
equivalent elliptic stoma. By the previously defined rules, the
ellipse must have the same length 2a and area; hence it must
have a width 2b = 86/7r. The error involved in using In (4a/b)/7ra
for the resistance R0 and Rd of the rectangular stoma is of the
order In (b/b) - 0.2. The relative error is then, In (b/b)lln
(4a/b), which is less than 10% for the stomata encountered in
nature. This error is always negligible, particularly when com-
pared to the total resistance. It is important to emphasize that
the replacement of an actual stoma by an equivalent shape is
possible because the replacement affects mostly the width. The
resistance in turn is quite insensitive to the value of the width
because it depends on it only logarithmically.

THE EXACT RESISTANCE OF A SINGLE SLIT

The function of this section is establishing a standard so that
the error of treating R0, Rod , and Rd as separate entities can be
calculated for a slit. The duct is taken to be a cylinder, the open-
ings being elongated slits which can be represented either by
ellipses (semiaxes a, b) or by rectangles (length 2a, width 26,
with 46 = 7rb for the slits to have the same area). If an exact
solution of this problem can be found, it will be possible to
compare the result with equation XI and check the numerical
precision of the Brown-Escombe approach over the whole
range of dlb and b/a.
By symmetry the concentration is equal to Co,/2 in the middle

of the duct (BB' on Fig. 3); hence, the problem has to be solved
only in a half-space. Figure 3 shows the cross section of a rec-
tangular slit of width 26. By applying the Schwarz transform

dz/dr = (.2 - 52)1I2/(.2 - ~2)1/2 (XI)

the stoma in the Z-space is transformed in the c-space into
another rectangular slit which has zero thickness and hence is
much simpler to treat (see Fig. 3). Equation XII shows at once

Z spcce C spcce

FIG. 3. Correspondence between the Z-space and the c-space.

(XIII)b = f (62 _ r2)1I2/(52 - 2)1/2 dr

d/2 = f (52 - r2)1/2/(r2 - 2)1/2 dr (XIV)

which gives 0 and a in terms of 6 and d. Or with standard nota-
tions (6) for the complete elliptic integrals E and D

b= E(0/6)
5d/2 =(2 _- 2)D[(1 - ~2/62)1/2]

(XV)

(XVI)
Once the solution in the transformed ¢-space is known (for the
transformed slit) the application of equation XII leads back to
the solution in the Z-space. The Schwarz transform is applicable
to two-dimensional problems. Since a >> b, this is true near the
stoma (except for end effects, which are negligible). Far from
the stoma the transform degenerates to Z _= and does not
affect the solution. Notice also that boundary conditions in the
Z-space are automatically satisfied since they are satisfied by the
solution in the ¢-space.
The mass flux through the slit can be obtained and because at

large distances from the slit dZl/d = 1, the flux is the same in
both spaces. To compute the mass flux in the D-space easily, the
rectangular slit of width 2~is replaced by the equivalent elliptic
slit of width 2/3 (the two slits having the same length 2a and the
same area, then .7r/ = 4R). The mass flux through the trans-
formed and the original slit is (apply equation XI in the case of
zero thickness, when that equation is exact)

q = DC.7ra/in (4a/,8) (XVII)

where /3 is known in terms of 6 (or b) from equations XV and
XVI. By analogy with equation XI, we can rewrite equation
XVII as,

DR. = [ln b//5]/7ra + [In 4a/,a]/7ra. (XVIII)

The d/b term in the Brown-Escombe result of equation XI is
replaced by In b/,B in equation XVIII. When d/b is of order
2.5 and larger (this will often be the case in practice), well known
expansions of elliptic functions (6) can be applied to equations
XV and XVI, leading to

d / 8b)
b ier ,B

(XIX)

and since In 8/e-r -0.07, the Brown-Escombe result is basic-
ally correct if d/b > 2.5. For any d/b, equations XV and XVI
can be solved using numerical tables (6). It is found that the
difference [In (b/l) - d/b] remains smaller than 0.1 for all
values of d/b. This is even less than the earlier estimate of the
error introduced by the replacement of a real stoma by an equiva-
lent shape. In conclusion, the use of the Brown-Escombe formula
is always justified and is relatively more precise for larger d/b,
i.e., for thin and deep slits.

STOMATAL INTERACTION

In the previous section we estimated the resistance to diffusion
ofa single stoma in quiescent air, R. , and showed that the Brown-
Escombe result is usually applicable. In this section we are
going to estimate the resistance of region 1 previously defined
and then compare its value to R,,. Since stomatal interference
does not affect R, and Rod , it is sufficient to compare Rd with
the resistance of the region outside the leaf, which we still call
R1 for simplicity.
We call C the average concentration in the surface of the top
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stomatal aperture, which is assumed to have an elliptic shape.
At the border of regions 1 and 2 the concentration can always
be taken as zero without affecting the value of R1 . Interaction
effects are clearly more important for smaller distances between
the centers of adjacent stomata. Usually the interstomatal
spacing is at least three times larger than the length 2a of a
stoma. For instance, in bean leaves, the 30,000 stomata per cm2
are on the average at a distance of 60 ,u from their neighbors.
Since they are 10 to 15 A long, the interstomatal spacing is four
to six times the stomatal length. For such spacings it is con-
venient to divide region 1 into two subregions la and lb. Sub-
region la is close enough to the stoma so that stomatal inter-
actions do not affect the shape of the equiconcentration surfaces.
On the contrary, in subregion lb distortion due to stomatal
interaction is important. The border between subregions la and
lb is, of course, not exactly defined, but it is at a distance from
the center of each stoma roughly half the interstomatal spacing
(see Fig. 1). Two resistances Rla and Rib are associated with the
two subregions, and

Ri = RiG + Rib (XX)

In Bange's (1) words region la is the "micro vapour cups over
the individual pores," where "diffusion lines radiate out from
the pores." Then in a transition region (our region lb) the
"mutual interference of pores" distorts the diffusion lines until
they finally become "perpendicular to the surface" of the leaf
when they reach the "adhering air layer (our region 2). Bange
did not analyze region lb because the "conception of interfer-
ence hardly lends itself to quantitative considerations," and
Lee and Gates (10) agreed. In the following paragraphs we try
to make this quantitative analysis for elongated stomata with
the aid of Cooke's (5) numerical analysis for circular pores. The
flux, 4, through each stoma satisfies

4 = (C - CI)/RI. = Cl/Rib = C/Ri (XXI)

By definition X = 0 in the aperture where C = C, hence

27rDCa = 4)K(e) + A (XXVIII)

where K(E) = F(e, xr/2) was used previously in equation IV.
Subtracting equation XXVI from equation XXVIII and sub-
stituting (C - C1) from equation XXI, we obtain

2irDaRl. = K(e) - F(e, ski) (XXIX)

Equation XXIX can be combined with equation IV to yield

2lrDa[Rd - R1.] = F(e, 4'1) (XXX)

In Figure 1 the surface X1 touches the leaf (i.e., y and z equal
zero) at half the interstomatal spacing, which is at least three
times half the stomatal length, a. Equation XXV indicates for
y and z equal zero, that a2(l + X12) must be at least 9a2 or essen-
tially

X1 > 3 (XXXI)

It is then possible to use an expansion of F(e, Xi) for large Xi
(6), which is valid for all the leaves encountered in nature, or

27rD[Rd - Ri] 1/aX1 (XXXII)

The parameter e which characterizes the shape of the stomata
has disappeared from equation XXXII. The difference (Rd -

Ria) is now a function of (Xia) alone; it is only a function of the
interstomatal spacing. Similarly, when inequality (XXXI)
applies, the surface X = X1 is essentially a sphere, as shown by
equation XXV. Hence it is clear that the surface X = Xi, and
consequently the resistance Rib as well, are functions of the
interstomatal spacing but are independent of the shape of the
stomata. Altogether this shows that (RI - Rd) is also a function
of the interstomatal spacing alone.
Cooke (5) has shown that

We must now evaluate the value of C1, concentration at the
border of the two subregions. The concentration C in subregion
la is given by (9)

2irDCa = OF(e, Ab) + A (XXII)

F is the usual elliptic integral (6) and E is defined by
a2e2 = (a2 - b2) (XXIII)

Furthermore, 4i/s given by
-= cot- X (XXIV)

where X is a characteristic of the elipsoidal surface of equicon-
centration,

X2 ~y2 z2
+ + = 1 (XXV)

a2(l + X2) b2 + a2X2 a2X2

The same solution of equation XXII also applies for an isolated
stoma, except that in such a case the solution is valid in the
whole space instead of being restricted to subregion la. Conse-
quently, for an isolated stoma C = 0 when X -+ oo or ,6= 0.
Since F(E, 0) = 0 (6), equation XXII shows at once that A = 0
for an isolated stoma. In general A is not zero and characterizes
interaction effects but without affecting the shape of the equi-
concentration surfaces in subregion la. If X = X1 defines the
surface separating the two subregions, we must have

27rDCia = OF(E, 41) + A (XXVI)

with

Xi = cot-1 Al, (XXVII)

(R, - Rd) 0 (XXXIII)

for circular stomata and for the interstomatal spacings consid-
ered here. But we just proved that (RI - Rd) was independent
of the shape of the stomata. Consequently, equation XXXII1
applies also for elliptic openings as long as equation XXXI
holds. That is, quantitative analysis shows that resistance R,
for elongated pores is the same as the resistance of an isolated
stoma when the interstomatal distance is at least three times the
longer dimension of a stoma. It is interesting to notice that RIa
is only slightly less than Rd, equation XXXII, since Xi is rela-
tively large, hence Bange (1) made an excellent guess when he
attributed the value Rd to the resistance of the "micro vapour
cups." Equations XXXII and XXXIII show also that 2rDRib -

1/aXi is small and compensates exactly for the difference between
Rd and Ria -

CONCLUSION

The conclusion is now clear. The resistance of a leaf to diffu-
sion is composed of two terms R1 and R2 . The stomata affect
only the value of R1, and interference effects are negligible for
usual interstomatal spacings. Consequently, R1 can be com-
puted by considering each stoma independently. This stomatal
resistance can in turn be evaluated following the Brown-Es-
combe scheme by adding three resistances R0, Rod , Rd . We
have also provided an equation for elongated slits that differs
from the one used for equivalent circles. The resistance thus
obtained agrees remarkably well, first, with the results of a
more accurate mathematical analysis in the preceding pages of
this report and, second, with the observed diffusions of water
through plates with well defined pores (16).
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In the three appendices, the present approach is applied to
analyze some recent studies of stomatal diffusion.

LITERATURE CITED

1. BANGE, G. G. J. 1953. On the quantitative explanation of stomatal transpira-
tion. Acta Bot. Neer. 2: 255-297.

2. BROWN, H. T. AND F. ESCOMBE. 1900. Static diffusion of gases and liquids in
relation to the assimilation of carbon and translocation in plants. Phil. Trans.
Roy. Soc. London Ser. B Biol. Sci. 193: 223-291.

3 COOK, G. D. AND R. VISKANTA. 1968. Mutual diffusional interference between
adjacent stomata of a leaf. Plant Physiol. 43: 1017-1022.

4. COOKE, J. R. 1967. Some theoretical considerations in stomatal diffusion: a
field theory approach. Acta Biotheor. 17: 95-124.

5. COOKE, J. R. 1969. The influence of stomatal spacing upon diffusion rate.
ASAE Annual Meeting, No. 69-525.

6. JAHNKE, E. AND F. EMDE. 1945. Tables of Functions. Dover Publications,
New York.

7. KELLER, K. H. AND T. R. STIN. 1967. A two-dimensional analysis of porous
membrane transport. Math. Biosci. 1: 421-437.

8. KELMAN, R. B. 1963. Axisymmetric potentials in composite geometries: finite
cylinder and half-space. Contrib. Diff. Eqs. 2: 421-440.

9. LAMB, H. 1945. In: Hydrodynamics. Dover Publications, New York. pp. 150-
152.

10. LEE, R. AND D. M. GATES. 1964. Diffusion resistance in leaves as related to
their stomatal anatomy and micro-structure. Amer. J. Bot. 51: 963-975.

11. PARLANGE, J.-Y., P. E. WAGGONER, AND G. H. HEICHEL. 1970. Boundary
layer resistance and temperature distribution on still and flapping leaves. Sub-
mitted for publication.

12. PENMAN, H. L. 1963. Vegetation and Hydrology. Commonw. Bur. Soils Tech.
Commun. 53.

13. RENNER, 0. 1910. Beitrage zur Physik der Transpiration. Flora 100: 451-547.
14. SLATYER, R. 0. 1966. Some physical aspects of internal control of leaf trans-

piration. Agric. Meteorol. 3: 281-292.
15. TING, I. P. AND W. E. LooRns. 1965. Further studies concerning stomatal

diffusion. Plant Physiol. 40: 220-228.
16. TURNER, N. C. AND J.-Y. PARLANGE. 1970. Analysis of operation and cali-

bration of a ventilated diffusion porometer. Plant Physiol. In press.
17. WAGGONER, P. E. AND B. BRAVDO. 1967. Stomata and the hydrologic cycle.

Proc. Nat. Acad. Sci. U.S.A. 57: 1096-1102.
18. WAGGONER, P. E., J. L. MONTnETH, AND G. SzEIcz. 1964. Decreasing trans-

piration of field plants by chemical closure of stomata. Nature 201: 97-98.
19. WAGGONER, P. E. AND I. ZELxrCH. 1965. Transpiration and the stomata of

leaves. Science 150: 1413-1420.
20. ZELITCH, I. AND P. E. WAGGONER. 1962. Effect of chemical control of stomata

on transpiration and photosynthesis. Proc. Nat. Acad. Sci. U.S.A. 48: 1101-
1108 and 1297-1299.

APPENDIX 1

In an experimental simulation of two-dimensional stomata,
Cooke (4) observed strong interaction among them. This appar-
ent contradiction with the results of the last section is due to
basic difficulties associated with two-dimensional stomata as
shown below.
From an elongated stoma the concentration field is indeed

two-dimensional near the stoma. This is most easily seen from
the analysis of the last section. Since the stoma is very long, a2
is much larger than b2. We then consider points close enough to
the stoma so that X2 is much smaller than one. To avoid end
effects, we also assume that x2 is much less than a2. Consequently,
X is independent of x, as shown by equation XXV. Hence, the
concentration C given by equation XXII is also independent of
x; i.e., the field is two-dimensional.

Let us now impose an additional restriction on X, namely
X2 >> b2/a2, (we stil have X2 << 1 and x2 << a2). The equiconcen-
tration surfaces for such X's are cylinders of equation

2= (y2 + z2)/a2 (XXXIV)

Equation XXII reduces to

C/C = 1 -ln (2Xa/b)/ln (4a/b) (XXXV)

As expected, the concentration has the characteristic behavior of
a two-dimensional source. Equation XXXV shows also that in a
two-dimensional simulation of a three-dimensional stoma, the
condition C = 0 must be imposed for X - 2, in order to obtain

the correct concentration near the stoma (for XI << 1). Hence
the position of the surface C = 0 in Cooke's experiments gives
effectively the length of the three-dimensional stomata which he
considers implicitly. His Figures 8, 9, and 10 show clearly that
the stomata are extremely long compared with the interstomatal
spacing. Hence, his experimental results cannot represent the
interference of realistic stomata. If Cooke had imposed the con-
dition C = 0 at a proper distance from the simulated leaf, he
would have found minimal interference effects, in agreement
with the last section.

APPENDIX 2

Keller and Stein (7) considered a pore of radius a diffusing
into a cylinder of radius b and length 1, at the top of which the
concentration is imposed. For simplicity we use Keller and
Stein's notations even if they differ from those that we used
previously. The reason for examining their work is 2-fold. First,
the Brown-Escombe result is obtained below very simply, show-
ing the simplicity of the method. Second, the agreement with
Keller and Stein's numerical analysis is excellent, illustrating the
remarkable precision of the Brown-Escombe approach.
The walls of the cylinder simulate the interaction with neigh-

boring stomata, so that 2b is comparable to an interstomatal
spacing. We define then a region 1 which extends to a distance
aib from the leaf of order b, a being a number of order one.
Region 2 extends to the top of the cylinder. From the Brown-
Escombe approach we expect that

DR = D[Ri + R21 = 14 a + (1 - ab)/7rb2 (XXXVI)

Notice that for b = a, DR is exactly equal to 1/7rb2, which is in
agreement with equation XXXVI when a = ir/4. Hence

DR = Y a + (I -7rb/4)lrb2 (XXXVII)

It is implicitly assumed in equation XXXVII that 1 is sufficiently
larger than a, for R to be effectively the sum of the two inde-
pendent resistances R1 and R2 . When 1 is comparable to a, the
field near the stoma is affected by the top of the cylinder and R
should be smaller than indicated by equation XXXVII. Indeed,
Keller and Stein's numerical results (their Table I) are indis-
tinguishable from those which are predicted by equation XXXVII
as long as 1 > 2a.

APPENDIX 3

Membranes and plates with calibrated pores are geometrically
well defined and are of great interest in simulating diffusion
through stomata (10, 15, 16). Ting and Loomis (15) in particular
have reported results for a variety of plates. They measured the
total resistance R, which in our notations includes the stomatal
resistance RS , and two outer resistances on both sides of the
plate. One, R2, is the resistance above the plate in region 2 as
before. The other, which we can call R2' by analogy to R2, did
not appear in the stomatal study. It corresponds to the resistance
between the water surface situated below the plate at a distance
1 and the stomatal region. Since the water surface can be far
from the membrane (1 = 1.2 cm for Ting and Loomis), such a
resistance can be considerable. The quantity (R2' + R2)/R was
called the "percentage of interference" by Ting and Loomis, a
legitimate name since this quantity is zero for one stoma alone.
Following Bange, we prefer to call R2 and R2' outer resistances
or resistances of "adhering air layers." In this paper interference
effects refer specifically to the difference (R1 - R.), which we
found to be negligible in general.
For instance, let us consider the results reported by Ting and

Loomis in their Figure 6 and let us assume that convection
effects are negligible. In that case R2 is the usual resistance of
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the "macro-vapour cup" (1) and R2' (1 - 7rb/4)/rb2 with
the notations of equation XXXVII, and R8 is given by equation
X. For the membrane used by Ting and Loomis in the case
reported in their Figure 6, R2' is always the largest resistance.
Altogether, using the dimensions of their membrane, we find
easily (R2 + R2')/R c 1/[1 + a/96], where a is the pore radius
expressed in microns. This formula agrees rather well with their
experimental results of Figure 6. Notice that a < 40 , hence
1/[1 + a/96] can be approximated roughly by [1 - a/96],
consequently the "percentage of interference" appears to be a
"linear function of pore diameter" (15).
Another experiment by Cook and Viskanta (3) yields "inter-

ference effects" similar to those of Ting and Loomis but for
actual leaves. This is a surprising result since we should expect
R2' -, 0 for their experiment and consequently little "interfer-
ence." Cook and Viskanta replaced the elongated stomata by
an "equivalent" circle using a "perimeter law"; i.e., they re-
placed the actual stoma by a circle of equal perimeter. If they
had used our equation XI, they would have realized that the
''perimeter law" leads to an equivalent radius which is much too
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large. For instance, for a/b as low as four, their r2 is too large
by a factor of two, and as a/b gets larger the error becomes
rapidly worse. To compensate for this error, their "interference
factor," F, must be artificially close to one (see their equation
V). Their choice of a "perimeter law" to define an equivalent
radius is all the more surprising since the standard rule (1, 10)
of replacing the stoma by a circle of equal area is well known.
Although less accurate than our equation XI, this rule would
have given them a much better result than the "perimeter law."
Another difficulty, experimental this time, is that their result
depends crucially on the value of the excess water concentration
between regions la and lb, over the concentration away from
the leaf. This difference is small and obviously quite difficult to
measure. They tried to obtain it with an infrared beam of finite
thickness, which is apparently comparable to their boundary
layer thickness! This yields a difference in concentration which
is too low and tends to make F even closer to one (see their
equation V). Thus, their conclusion of large interference follows
from their use of a perimeter law and their measurement of a
low concentration, not from actual interference.
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