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Summary
In multivariate matching, fine balance constrains the marginal distributions of a nominal variable
in treated and matched control groups to be identical without constraining who is matched to
whom. In this way, a fine balance constraint can balance a nominal variable with many levels
while focusing efforts on other more important variables when pairing individuals to minimize the
total covariate distance within pairs. Fine balance is not always possible; that is, it is a constraint
on an optimization problem, but the constraint is not always feasible. We propose a new algorithm
which returns a minimum distance finely balanced match when one is feasible, and otherwise
minimizes the total distance among all matched samples that minimize the deviation from fine
balance. Perhaps we can come very close to fine balance when fine balance is not attainable;
moreover, in any event, because our algorithm is guaranteed to come as close as possible to fine
balance, the investigator may perform one match and on that basis judge whether the best
attainable balance is adequate or not. We also show how to incorporate an additional constraint.
The algorithm is implemented in two similar ways, first as an optimal assignment problem with an
augmented distance matrix, second as a minimum cost flow problem in a network. The case of
knee surgery in the Obesity and Surgical Outcomes Study motivated the development of this
algorithm and is used as an illustration. In that example, two of 47 hospitals had too few nonobese
patients to permit fine balance for the nominal variable with 47 levels representing the hospital,
but our new algorithm came very close to fine balance. Moreover, in that example, there was a
shortage of nonobese diabetic patients, and incorporation of an additional constraint forced the
match to include all of these nonobese diabetic patients, thereby coming as close as possible to
balance for this important but recalcitrant covariate.

Keywords
Assignment algorithm; fine balance; matching; network optimization; observational study; optimal
matching

1. Introduction
1.1 Motivating example: surgical outcomes in the severely obese

There are reasons to be concerned about surgical care for severely obese patients, those with
a body mass index (BMI) of 35 or more. In part, their health problems may affect their

*danyang@wharton.upenn.edu.

Supplementary Materials
The Web-Based Appendix mentioned in §2 is available under the Paper Information link at the Biometrics website http://
www.biometrics.tibs.org, which describes an algorithm for near-fine matching using minimum cost flow in a network rather than
using the optimal assignment algorithm. The first author’s R package finebalance uses network optimization.

NIH Public Access
Author Manuscript
Biometrics. Author manuscript; available in PMC 2014 March 26.

Published in final edited form as:
Biometrics. 2012 June ; 68(2): 628–636. doi:10.1111/j.1541-0420.2011.01691.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.biometrics.tibs.org
http://www.biometrics.tibs.org


surgical outcomes. In part, Medicare pays surgeons an essentially flat fee for performing a
particular type of operation, but time and effort required from a surgeon in certain operations
is affected by the sheer mass of the patient, the amount of cutting and repair required. This
flat fee entails, in effect, a lower hourly rate of payment for operations on severely obese
patients, with the possible consequence that market forces yield inferior care for the severely
obese. Building upon the Surgical Outcomes Study (e.g., Silber, et al. 2001, 2005), the
Obesity and Surgical Outcomes Study (OBSOS) is designed to compare severely obese
(BMI ≥ 35) and non-obese (20 ≤ BMI < 30) surgical patients in Medicare with respect to
survival, complications, length of stay in the hospital, readmission rates, surgical time which
implicitly determines the surgeon’s hourly rate of compensation, and access to surgical care.
The OBSOS study focuses on five types of surgery, thoracotomy, colectomy without cancer,
colectomy with cancer, hip replacement without fracture, and knee replacement.

Forty seven hospitals, j = 1, 2, …, 47 = J, in Illinois, New York and Texas participated in
OBSOS by performing chart abstractions for selected surgical patients. In addition, we had
Medicare claims data, including mortality, for these hospitals and for all other hospitals in
Illinois, New York and Texas. Because BMI is not in Medicare claims and had to be
determined using chart abstraction, the Medicare claims data from all hospitals except the 47
participating hospitals was of limited use; however, an independent “risk score” was
estimated from these hospitals. The “risk score” used a logit regression for the probability of
death within thirty days of surgery from conditions such as prior heart attacks or a history of
cancer. Because the risk score is estimated using outcomes, it must come from an
independent sample. See Hansen (2008) for discussion of risk scores and, in particular, of
estimating them from an independent sample.

The study design called for matching of severely obese patients to non-obese patients with
‘fine balance’ for J = 47 hospitals and control for various subsets of prognostic factors. For
instance, diabetes is more common among the obese and may complicate surgery, but
among many questions, one question is whether obesity matters apart from its relationship
with diabetes. Among the clinical covariates were: (i) age, (ii) sex, (iii) diabetes, (iv) a
modification of the acute physiology (Apache) score (Knaus et al. 1991), (v) a binary
indicator of a missing Apache score, (vi) the risk-of-death score described above, and (vii) a
propensity score estimating the probability of severe obesity from other covariates. A
matching algorithm is said to match optimally subject to a fine balance constraint if the
match (i) minimizes the total covariate distance within matched pairs, (ii) subject to the
additional requirement that the marginal distribution of a nominal variable is exactly
balanced; see Rosenbaum, Ross and Silber (2007) and Rosenbaum (1989, §3.2; 2010,
Chapter 10).

Why is fine balance useful? Randomization in experiments and propensity scores in
observational studies balance observed covariates stochastically, and randomization also
balances unobserved covariates, but neither has much success in balancing many small strata
because of imbalances that occur in small strata by chance. If a completely randomized trial
had 20 strata with 5 patients per stratum, then the binomial distribution yields a 73% chance
that at least one stratum will have maximal imbalance, that is, only treated subjects or only
controls, so that stratum provides no direct information about treatment effects. Matching
with fine balance does not leave the matter to chance, instead forcing balance on a nominal
variable with many categories without constraining who is matched to whom.

Fine balance was possible for thoracotomy, colectomy with or without cancer, and hip
replacement, but not for knee replacement. Severe obesity is a strain on the knees, and knee
surgery is common among the severely obese. In two of the 47 hospitals, namely hospitals
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#3 and #23, there were more severely obese patients having knee surgery than there were
non-obese patients having knee surgery; see Table 1.

How can one match to minimize the total covariate distance subject to the constraint that a
nominal variable is as close as possible to fine balance?

1.2 Goal: close individual matches that minimize deviations from fine balance
We develop a new algorithm that minimizes the total covariate distance within matched
pairs while coming ‘as close as possible to fine balance.’ As is typically done in
combinatorial optimization (e.g., Papadimitriou and Steiglitz 1982), the new problem is
solved by reducing it to another problem for which a fast algorithm exists. One version of
the algorithm in §3 uses the optimal assignment algorithm in a new way with an augmented
distance matrix and Proposition 1 proves that this reduction to the assignment problem does
indeed solve the optimal near-fine matching problem. A second version of the algorithm in
the Web-Appendix uses minimum cost flow in a network. See §1.3 for brief review,
references and availability of software for optimal assignment and minimum cost flow.

Actually, ‘as close as possible to fine balance’ is not a well-defined notion, and the
algorithm permits the user to choose among several alternative definitions. For instance, one
definition distributes the excess from hospitals 3 and 23 among other hospitals to minimize
the total covariate distance. Another definition minimizes the total covariate distance while
distributing the excess from hospitals 3 and 23 as uniformly as possible among the other
hospitals. A third option minimizes a chi-square-like statistic; see (4) below.

Our algorithm comes ‘as close as possible to fine balance,’ but how close that is will depend
upon the data at hand. The investigator will need to examine the degree of balance produced
by coming ‘as close as possible to fine balance,’ as in Table 1 for the OBSOS study. In
OBSOS, a near-fine match is very close to fine balance. If ‘as close as possible to fine
balance’ is not close enough, the investigator may need to abandon pair matching of the
entire treated group in favor of some more flexible design, such as optimal full matching or
optimal subset matching (Rosenbaum 1991, 2011; Hansen and Klopfer 2006). In any event,
by coming ‘as close as possible to fine balance,’ the results produced by the algorithm will
provide a clear basis for a decision about this aspect of study design.

1.3 Review: optimal assignment algorithms and network optimization
Among combinatorial optimization algorithms, the assignment algorithm is one of the most
widely available and studied; see Dell’Amico and Toth (2000). Bertsekas (1981) provides
Fortran code for his auction algorithm which is available in R in the pairmatch function of
Hansen’s (2007) optmatch package. Bergstralh et al. (1996) discuss optimal matching in
SAS. Papadimitriou and Steiglitz (1982) provide a worst-case time bound of O(I3) for one
assignment algorithm, where I is the number of subjects available for matching. For
comparison, if you multiply two I × I matrices in the usual way, the time required is O(I3). A
different class of algorithms for optimal matching in statistics is discussed by Lu et al.
(2011). For a survey of matching in observational studies, see Stuart (2010).

The alternative formulation of the problem in the Web-Appendix in terms of network
optimization requires specialized programming in currently available statistical packages.
The first author has created an R package called finebalance that implements the network
formulation. This solves the implementation problem for R users. In light of this, we discuss
the solution using the assignment algorithm in §3 and briefly the solution using network
optimization in the Web-Appendix.
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For discussion of some other applications of optimal multivariate matching in various fields,
see Ahmed et al. (2006), Apel et al. (2010), Guan et al. (2009), Heller et al. (2009), Marcus
et al. (2008), and Stuart and Green (2007). Matching is one form of adjustment for observed
covariates relevant to nonparametric identification; see, for instance Tan (2006) or Imai et
al. (2010).

1.4 Outline
The paper is organized as follows. Section 2 develops notation and defines the optimization
problem. Intuition is built up in §3.1 and §3.2 by considering two tiny examples, and then a
general procedure and proof is given in §3.3 using the assignment algorithm. Extensions to
matching with L ≥ 1 controls are straightforward and are discussed in §2.2 and the Web-
Appendix. The OBSOS study faced an additional problem not mentioned in §1.1, namely a
severe shortage of non-obese diabetics for use as controls, and a modification of the
procedure in §3.3 is described in §4 that additionally constrains the match so that every one
of the rare and therefore highly informative, non-obese diabetics is included in the matched
sample. In §5, the near-fine matched sample is constructed for the example in §1.1, and in
§5.2 the near-fine match is contrasted with a conventional match for the same data. An
alternative but equivalent formulation in terms of network optimization is described in the
Web-Appendix; it can be more efficient in its use of computer memory. Finally, §6
discusses other related matching problems that can be solved with the same approach.

2. Notation, Definitions, and Statement of the Problem
2.1 Minimum distance pair matching

There are T treated subjects, 𝘛 = {τ1, …, τT} and C ≥ T potential controls, 𝘊 = {γ1, …, γC}
with a nonnegative, possibly infinite, distance δτtγc ≥ 0 between τt and γc. In effect, an
infinite distance, δτt,γc = ∞, will forbid matching τt to γc. Write Δ for the T × C matrix of
δτt,γc. In modern practice, δtc is some form of robust Mahalanobis distance with a caliper
based on a propensity score; see Rosenbaum (2010, Part II) for review of these standard
devices. For a finite set A write |A| for the number of elements of A, so |𝘛| = T.

A pair matching is a function μ : 𝘛 → 𝘊 such that  whenever , that is,
each treated subject τt is matched to a different control, μ(τt). Without further constraints, an
optimal pair matching is one that minimizes the total distance within the T matched pairs,
that is, μ(·) minimizes Στt∈𝘛 δτt,μ(τt). Although there are C!/(C − T)! possible matchings μ(·),
it is possible to find an optimal assignment in at most O{(T + C)3} arithmetic operations
using the optimal assignment algorithm; see Papadimitriou and Steiglitz (1982).

There is a nominal variable ν with J integer values, that is, ν : 𝘛 ∪ 𝘊 → {1, 2, …, J}. In §1,
J = 47 and ν(τt) is the hospital that performed surgery on obese patient τt. A match μ(·) is
finely balanced if the T treated subjects in 𝘛 and their T matched controls in μ(𝘛) = {μ(τt), t
∈ 𝘛} ⊆ 𝘊 have the same number of individuals with each value of the nominal variable, that
is if

(1)

Importantly, (1) is a constraint on the marginal distributions of ν(·), not on who is matched
to whom, that is, not on the joint distribution of ν(τt) and ν{μ(τt)}. An optimal finely
balanced match satisfies (1) and minimizes the total covariate distance Στt∈𝘛 δτtμ(τt) among
all matches μ that satisfy (1).
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The constraint (1) is not always feasible: there may be no match μ such that (1) is true. Write
nj = |{τt ∈ 𝘛 : ν(τt) = j}|, Mj = |{γc ∈ 𝘊 : ν(γc) = j}|, and mμj = |{τt ∈ 𝘛 : ν{μ(τt)} = j}|, so (1)
says nj = mμj, but of necessity mμj ≤ Mj for every μ, so no matching μ can satisfy (1) if nj >
Mj. In Table 1, n3 = 94 > 75 = M3, so no finely balanced match exists.

A near-fine optimal match is one that minimizes the total distance Στt∈𝘛 δτt,μ(τt) among all
matches μ that make the mμj as close as possible to the nj. Because there are J differences nj
− mμj, there are actually several senses in which they may be made as close as possible. For
a function f : A → B, the constraint f = min means that a feasible solution must be in the set
{a ∈ A : f(a) = mina′∈A f(a′)}.

For instance,  if the total of the absolute differences |nj − mμj| is
minimized. For any pair-match, the total number of treated subjects equals the total number

of controls, , so positive nj − mμj must counterbalance negative nj − mμj. In
§1, there are n3 − M3 = 94 − 75 = 19 extra obese knee surgeries from hospital j = 3 and n23 −
M23 = 2 −0 = 2 extra obese knee surgeries from hospital j = 23, or 19 + 2 = 21 extra patients
in total; these 21 extra patients must be distributed among the other 47 − 2 = 45 hospitals. In

Table 1, the minimum value of  for a match is 42, because n3 − mμ3 ≥ 19

and n23 − mμ,23 ≥ 2 with , so the minimum value of  is 2 ×

(19 + 2) = 42, and the constraint  is the same as the constraint

.

Write dμ(j) for the jth largest |nj − mμj|, so dμ(1) ≤ ··· ≤ dμ(J), and dμ = {dμ(1), …, dμ(J)}T. By
dμ = min we mean: dμ(J) = min, and subject to this condition dμ(J−1) = min, and so on. In
Table 1, dμ = min entails dμ(47) = 19 because of hospital j = 3, dμ(46) = 2 because of hospital
j = 23, dμ(45) = ··· = dμ(25) = 1 and dμ(24) = ··· = dμ(1) = 0; then the 21 control patients not
available from hospitals 3 and 23 are drawn instead from 21 other hospitals taking one
patient per hospital.

Three of the many possible precise definitions of near-fine optimal match follow:

(2)

(3)

and

(4)

The version (4) is equivalent to minimizing the one-sample chi-square statistic in which the
nj act as the “expected counts.” One can impose other sorts of constraints, such as max1≤j≤J |
nj − mμj| ≤ β or max1≤j≤J |nj − mμj|/nj ≤ β instead of the constraints in (2)–(4) or in addition to
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these constraints, and the finebalance function in the R package finebalance permits a wide
variety of combinations.

Our suggestion is to begin with the constraint (2), check the resulting (nj, mμj)’s, and
consider alternative constraints only if some of the (nj, mμj) seem unacceptably discrepant.

2.2 Matching with L ≥ 1 controls per treated subject
With many more potential controls than treated subjects, T ≪ C, one may wish to match
each treated subject to L ≥ 1 controls, where C/T ≥ L. Optimal near-fine matching with L ≥ 1
may be solved as a special case of optimal near-fine pair matching. To match with L = 2
controls, duplicate the treated group, find the optimal match, then ‘remember’ that the two
copies of each treated subject are actually the same person yielding a 1-to-2 match.
Specifically, to match with L = 2 ≤ C/T controls, replace 𝘛 = {τ1, …, τT} by

 with  for each t, c, and with τt and  having the
same value for the nominal covariate, . Then a minimum distance near-fine pair
match of 𝘛* with 𝘊 is a minimum distance near-fine match of 𝘛 to L = 2 controls in 𝘊. The
case of L ≥ 3 is similar. An alternative but equivalent approach is described in the Web-
Appendix.

3. Near-Fine Balance Using the Assignment Algorithm
3.1 A small example

In the current section, we discuss augmenting the distance matrix Δ so that the assignment
algorithm solves (2). For instance, this could be done in SAS using proc assign or in R using
the pairmatch function of Hansen’s (2007) optmatch package.

Before describing the general procedure in §3.3, a toy example is presented in Table 2 and
another in Table 3. It has T = 5 treated subjects, with τ1, τ2, and τ3 in hospital ν(τt) = 1, τ4 in
hospital ν(τ4) = 2, and τ5 in hospital ν(τ5) = 3. Fine balance is not possible because there are
only two controls in hospital 1, namely γ1 and γ2, but there are three treated subjects in
hospital 1. Table 2 augments the distance matrix Δ by adding two rows, labeled ε21 and ε31
and one column ξ1 to produce a 7 × 7 = K × K matrix ϒ; that is, Table 2 is ϒ. Write υkℓ for
the element of ϒ in row k and column ℓ. Assume each δτt,γc in Δ satisfies 0 ≤ δτt,γc ≤ ∞.

Consider any assignment α(·) in ϒ with finite distance . In this assignment,

no treated subject τt will be assigned to ξ1 because the total distance  would
then be ∞; so α(τt) ≠ ξ1 for t = 1, …, T. For the same reason, α(ε21) must equal γ3 or γ4 or
ξ1, and α(ε31) must equal γ5 or γ6 or ξ1. Finally, either α(ε21) = ξ1 or α(ε31) = ξ1; otherwise,
α(τt) = ξ1 for some t, and, as just noted, this cannot happen. Define the match μ(τt) = α(τt)
for t = 1, …, T. It is easy to see that any match μ(·) built in this way from an assignment α(·)

in ϒ with finite distance  satisfies the constraint in (2): μ(·) has mμ1 = 2
and either (mμ2, mμ3) = (2, 1) or (mμ2, mμ3) = (1, 2), whereas n1 = 3, n2 = 1, n3 = 1, so

. Moreover, for any assignment α(·) in ϒ with finite distance, we

have  because υ6,α(6) = υ7,α(7) = 0. Conversely, every match

μ(·) with  corresponds with an assignment α(·) such that υ6,α(6) =
υ7,α(7) = 0 and υt,α(t) ≠ ξ1 for t = 1, …, 5. Finally, if α(·) is an optimal assignment with finite

distance, that is, if it minimizes  and the minimum value is finite, then μ(·)
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solves (2) with . Indeed, in this very special case, the solution
also solves (3) and (4).

3.2 A second small example
The procedure in §3.1 augments the distance matrix Δ so that the assignment algorithm
solves (2), but that approach does not generally solve problems of the form (3) or (4).

Problem (2) is concerned only with the total, , whereas problem (3) is
concerned to make individual |nj − mμj| as small as possible.

Consider the small example in Table 3 which has the seven treated subjects τt and ten
controls γc. Fine balance is infeasible: there are five treated subject and two controls with ν

= 1, so |n1 − mμ1| ≥ 3 for every match and the minimum value of  is 6.
Problem (2) would allow seven controls to be selected so that |n1 − mμ1| = 3, |n2 − mμ2| = 3, |

n3 − mμ3| = 0 with , but problems (3) and (4) would each insist that |n1 −
mμ1| = 3, |n2 − mμ2| = 2, |n3 − mμ3| = 1 or |n1 − mμ1| = 3, |n2 − mμ2| = 1, |n3 − mμ3| = 2 with

. In other words, problem (2) would permit the use of 1, 2, 3 or 4
controls with ν(γc) = 2 (and similarly for ν(γc) = 3), but problems (3) and (4) would each
insist that dμ = {dμ(1), dμ(2), dμ(3)}T = (1, 2, 3)T.

In Table 3, the 7 × 10 distance matrix Δ is augmented into an 11 × 11 = K × K matrix ϒ in a
manner similar to but slightly different from Table 2. In Table 3, two rows, ε21 and ε31,
resemble the augmenting rows in Table 2. Two additional rows, ζ21 and ζ31, are almost the
same except in the ξ1 column where the ε’s have a 0 and the ζ’s have an ∞.

An assignment α(·) in ϒ with finite total distance  is easily seen to satisfy

dμ = {dμ(1), dμ(2), dμ(3)}T = (1, 2, 3)T by reasoning as follows. To have ,
the assignment α(·) must avoid the ∞’s, so one of γ3, γ4, γ5, γ6 must be assigned to ζ21 and

one of γ7, γ8, γ9, γ10 must be assigned to ζ31. Also, if  then either ε21 is
paired with one of γ3, γ4, γ5, γ6 and ε31 is paired with ξ1 or else ε31 is paired with one of γ7,
γ8, γ9, γ10 and ε21 is paired with ξ1. In consequence, the match μ(·) formed by restricting the
assignment α(·) to 𝘛 uses both γ1 and γ2 and two or three of γ3, γ4, γ5, γ6 and two or three of
γ7, γ8, γ9, γ10 so dμ = {dμ(1), dμ(2), dμ(3)}T = (1, 2, 3)T.

3.3 A general procedure
Problems (2)–(4) are each special cases of a more general problem, namely

(5)

where κj ≤ κ̄j are numbers that are determined by the nj’s and Mj’s. In problem (2), κj = min
(nj, Mj) and κ̄j = Mj.

The general procedure for (5) is as follows.
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Add rows. Augment the T × C distance matrix Δ by appending

 rows defined as follows. For j = 1, …, J, append κ̄j − κj
rows εjp, p = 1, …, κ̄j − κj, with the distance between εjp and γc equal to 0 if ν(γc) = j
and equal to ∞ otherwise. For j = 1, …, J, append Mj − κ̄j rows ζjp, p = 1, …, Mj − κj,
with the distance between ζjp and γc equal to 0 if ν(γc) = j and equal to ∞ otherwise.
Call this matrix Λ.

Add columns. Augment the (T + R) × C matrix Λ by appending T + R − C columns ξq, q
= 1, …, T + R − C defined as follows. The distance between τt and ξq is ∞ for all t, q,
the distance between εjp and ξq is zero for all jp, q, and the distance between ζjp and ξq
is ∞ for all jp, q. Write K = T + R and call this K × K matrix ϒ.

Find an optimal assignment. Find an optimal assignment α(·) in ϒ.

Remove extraneous material. Define the match μ(τt) = α(τt) for t = 1, …, T.

If Mj ≥ nj for j = 1, …, J, then: (i) exact fine balance is feasible, (ii) R = C − T and K = C so
no columns ξq are appended, and (iii) the algorithm reduces to the procedure in Rosenbaum,
Ross and Silber (2007). The proof of Proposition 1 is in the Appendix.

Proposition 1—If this optimal assignment α(·) produced by the above procedure has

infinite total distance, , then there is no solution to (5) having finite total

distance. Conversely, if  then μ(τt) = α(τt) for t = 1, …, T solves (5). In the
worst case, the solution runs in polynomial time, specifically in O(K3) = O{(T + C)3}
arithmetic operations.

4. Forcing the use of certain controls
In §1.1, an additional issue concerns diabetes. Diabetes is more common among the obese,
and indeed among the 1430 severely obese patients undergoing knee surgery, there were 510
diabetics, whereas among the 2696 non-obese knee surgeries there were only 467 diabetics.
Even if all of the 467 non-obese diabetes were included as matched controls, there would be
a small deficit, and nothing in the procedure in §3.3 ensures that all 467 diabetic controls
will be included in the matched sample. There is a simple adjustment to the procedure in
§3.3 that adds an additional constraint to the one in (5), namely that all 467 diabetic controls
be included in the match, and then minimizes the total distance subject to both constraints.
Let 𝘚 ⊂ 𝘊 be the subset of potential controls who are diabetic. To force a subset 𝘚 ⊂ 𝘊 of
controls to be included in the match: if γc ∈ 𝘚 and ν(γc) = j then (i) change the entry in ϒ for
row εjp and γc from 0 to ∞, (ii) change the entry in ϒ for row ζjp and γc from 0 to ∞, and
(iii) call the result ϒ𝘚. Reasoning parallel to the proof of Proposition 1 shows that a finite
minimum distance assignment in this adjusted matrix ϒ𝘚 is a minimum distance match
subject to the two constraints that all γc ∈ 𝘚 be matched and κj ≤ mμj ≤ κ̄j, j = 1, …, J.
Conversely, if δτt,γc < ∞ for all τt, γc, then an infinite minimum distance assignment in ϒ𝘚
indicates that there is no match μ that uses all controls γc ∈ 𝘚 and satisfies κj ≤ mμj ≤ κ̄j, j =
1, …, J. For instance, in Table 3, if all δτt,γc < ∞ and 𝘚 = {γ3, γ4, γ5}, then a minimum
distance assignment α(·) with finite distance exists having α(ζ21) = γ6 and α(ε21) = ξ1.
However, if 𝘚 = {γ3, γ4, γ5, γ7, γ8, γ9} then an optimal assignment α(·) in ϒ𝘚 must have
infinite total distance, and if all δτt,γc < ∞ this signifies the infeasibility of joint
requirements γc ∈ 𝘚 and κj ≤ mμj ≤ κ̄j, j = 1, …, J.

The procedure above forces the use of a subset 𝘚 ⊂ 𝘊 of controls when constructing a match
with near-fine balance for a nominal variable such as the 47 hospitals. In some other context,
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one might wish to force the use of all 467 diabetic controls without fine balance. To force
the use of a subset 𝘚 ⊂ 𝘊 of controls in optimal matching without fine balance, begin with
the T ×C matrix Δ of distances, and append C – T rows having C columns with ∞ in
columns for γc ∈ 𝘚 and 0 in columns for γc ∉ 𝘚, calling the resulting C×C matrix Ψ with ψkℓ
in row k and column ℓ. An assignment α (·) in Ψ defines a match as μ (τt) = α (τt) ∈ 𝘊, t = 1,

…, T. A minimum distance assignment α (·) in Ψ with finite total distance 

is a minimum distance match with  subject to the
constraint that for each γc ∈ 𝘚 there is a τt ∈ 𝘛 such that γc = μ (τt).

5. Matching in the Study of Obesity and Surgical Outcomes
5.1 A near-fine match

As noted in §1, fine balance was not achievable for knee surgery in Table 1 because two
hospitals performed more knee surgeries on the severely obese with a BMI of 35 or more
than among the non-obese with a BMI between 20 and 30. The matching will solve (2),
coming as close to fine balance on the hospital as possible, with the additional constraint in
§4 that all 467 diabetic controls be included in the match.

In addition to the seven covariates mentioned in §1 and an indicator for a missing Apache
score (Rosenbaum 2010, §13), the match will use an analog of the propensity score, namely
an estimated probability of obesity given these five covariates, making seven covariate in
total; see Rosenbaum and Rubin (1985) for discussion of the propensity score in matching.
The distance δτt,γc used a caliper on the obesity probability implemented using a penalty
function together with a robust version of the Mahalanobis distance; see Rosenbaum (2010,
Part II) for specifics of these standard matching techniques.

Figure 1 depicts the distribution of the four continuous covariates among the 1430 severely
obese patients undergoing knee surgery, their 1430 matched controls, and the 1266
unmatched potential controls. The unmatched potential controls are older, have lower
estimated obesity probabilities and slightly higher but still very low estimated log-odds of
death. For the four variables in Figure 1, the Spearman rank correlation between the severely
obese patient and the matched control was 0.93 for age, 0.81 for the Apache Score, 0.91 for
the obesity probability, and 0.82 for the risk score. All 467 diabetic controls were included
in the match, but this was still somewhat less than the 510 diabetics among the severely
obese. In total, 84% of pairs were matched for diabetes and 91% were matched for sex.

Table 1 shows the distribution of matched patients mμj by hospital. Hospitals 3 and 23 had
too few non-obese controls to permit fine balance, and their deficit of 19 + 2 = 21 controls is
made up by other hospitals, for instance, hospital 22 which contributed 4 extra controls and
hospital 29 which contributed 1 extra control. Recall that (2) seeks to minimize the total
covariate distance within matched pairs subject to the constraint that the total deviation from
fine balance is as small as possible. This is a constraint on the marginal distribution of
hospital variable, but no attempt is made to match patients to other patients in the same
hospital; rather, the pairing emphasizes clinically important variables such as diabetes, age
and the Apache and risk scores. In particular, only 45 of 1430 pairs or 3% contain two
patients from the same hospital. In Table 1, the Pearson chi-square statistic for the 47 × 2
table hospital × obese-vs-matched-control is 7.8 which is expected to equal its degrees of
freedom of 46 in a completely randomized experiment, so the marginal distributions are
much closer than they would be in a completely randomized experiment.
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5.2 Comparison of the near-fine match with two conventional matches
The near-fine match in §5.1 will now be compared to two conventional optimal matches,
called μ1 and μ2. Both μ1 and μ2 are minimum distance matches using the robust
Mahalanobis distance with penalty function calipers on the propensity score, but without the
augmentation in §3.3 to force near-fine balance on the hospital indicators and without the
forced use of all nonobese diabetics. In μ1 the hospitals are ignored in the matching. In μ2,
the hospitals are included in both the propensity score and the robust Mahalanobis distance.

Before matching, in the obese group, there were 510 diabetics, or 35.7% = 510/1430,
whereas in the nonobese group there were only 467 diabetics or 17.3% = 467/2696, and
exact balance for diabetes is not possible. Consider the 2 × 2 table recording obesity by
diabetes in the matched samples and its associated chi-square test for independence. In §5.1,
the match came as close as possible to balance using all 467 diabetic controls, the matched
controls were 32.7% = 467/1430 diabetic, and the chi-square P-value was 0.098, so the
balance is imperfect but an imbalance of this magnitude would not be extremely unusual
under complete randomization of 2 × 1430 patients to two unmatched groups of equal size.
In contrast, the μ1 match tried to match for diabetes, including it in both the propensity score
and the robust Mahalanobis distance, but it picked as matched controls only 374/467
available diabetics, so its control group was 26.2% = 374/1430 diabetic, with a p-value of
4.7×10−8. The μ2 match also tried to match for diabetes, but it picked as matched controls
only 368/467 available diabetics, so its matched control group was 25.7% = 368/1430
diabetic, with a p-value of 1.1×10−8. In brief, in §5.1, it was helpful to use the augmentation
of the distance matrix in §4 to force the use of all diabetic controls in the marginal
distribution separate from the attempt to match individual diabetics to diabetics.

Consider now the absolute difference in the number of obese and nonobese patients in each
of the 47 hospitals, that is, 47 absolute differences. For the near-fine match in §5.1, all of the
quartiles of these absolute differences were zero patients, the mean absolute difference was
0.89 patients and the maximum absolute difference was 19 patients for hospital #3 which
could not have an absolute difference less than 19. For the μ1 match, the three quartiles of
the absolute differences were 3, 9, and 14.5, the mean difference was 10.0 patients, with a
maximum difference of 53 patients in hospital #3. For the μ2 match, the three quartiles of
the absolute differences were 1, 3, and 5, the mean difference was 4.0 patients, with a
maximum difference of 27 patients in hospital #3. Consider the 2 × 47 table recording
obesity by hospital. In this table, the P-value from the chi-square test of independence is
1.00 for the near-fine match in §5.1, is 1.2 × 10−8 for the μ1 match which ignored the
hospitals, and is 0.998 for the μ2 match. In brief, the best balance on hospitals is from the
near-fine match, though the μ2 match exhibits better balance than expected from complete
randomization of 2 × 1430 patients; however, the μ1 match is not usable.

Finally, the cross-match test in Heller et al. (2010 or the crossmatch package in R) was used
to examine the multivariate balance on the seven covariates. That method takes the matched
pairs, forgets for a moment who is matched to whom, rematches subjects using their
covariates alone (using optimal nonbipartite matching), and counts the number of times a
treated subject was rematched to a control. If the cross-match test were applied to data from
a completely randomized experiment with treated and control groups of equal size, the
cross-match-probability that a rematched pair contains one treated subject and one control is
1/2. When applied to the near-fine match in §5.1, the P-value from the cross-match test was
0.52, and the estimate of the cross-match-probability was 0.50, so this method judges the
multivariate imbalance on the seven covariates to be not unlike the imbalance produced by
complete randomization of 2×1430 patients. In contrast, the same test applied to the μ1
match yields a P -value of 1.00 and an estimate of the cross-match-probability of 0.59, so
the balance on the seven covariates is much better than expected from complete
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randomization. For the μ2 match, the crossmatch P -value is 0.31 and an estimate of the
cross-match-probability is 0.49. Judged by this standard, the balance on the seven covariates
is best for μ1 which ignored the hospitals, but is acceptable for all three matches.

In brief, the near-fine match in §5.1 had reasonable balance for the 7 covariates, for diabetes
in particular, and excellent balance for the 47 hospitals. The other two matches, μ1 and μ2,
were unacceptable for diabetes, and μ1 was unacceptable for the hospitals.

6. Discussion: interactions, extensions
Minimum distance fine or near-fine matching may address interactions among covariates in
several ways. First, the nominal variable ν (·) may itself be an interaction, for instance not
47 hospitals but 47 × 3 = 141 categories from the 47 hospitals and three 5-year age
categories, (66, 70], (70, 75], (75, 80]. Second, concerning interactions between the nominal
variable ν(·) and other covariates, the distance δτt,γc may include an added penalty for
matching a patient in one hospital to a patient in another hospital; then, the algorithm will
prefer to match patients with similar covariates in the same hospital recognizing that this is
not always possible. Alternatively or additionally, the distance δτt,γc may include covariates
that describe the hospital, such as hospital volume or teaching status; then, the algorithm
will prefer to match similar patients in similar hospitals. Finally, a propensity score can
include covariates that describe the hospital as well as the patient and can include interaction
terms; then, a caliper on the propensity incorporated in δτt,γc will tend to balance hospital as
well as patient characteristics and also their interactions. See Rosenbaum (2010, Part II) for
discussion of the use of penalties and calipers in minimum distance matching.

When fine balance is not feasible, the algorithms in §3.3 and the Web-Appendix minimize
the total covariate distance Στt∈𝘛 δτt,μ(τt) within matched pairs among all matched samples
with minimal deviation from fine balance. In fact, these algorithms can be used in other
ways. The algorithms create a family of methods with exact fine balance at one extreme and
with no attempt at fine balance at the other extreme.

Specifically, by a suitable choice of (κj, κ̄j), j = 1, …, J, the algorithms in §3.3 and the Web-
Appendix may be used to minimize Στt∈𝘛 δτt,μ(τt) while producing a controlled rather than
minimal deviation from fine balance. For example, suppose that fine balance is feasible
because Mj > nj ≥ 1 for every j. In this case, if one set (κj, κ̄j) = (nj − 1, nj + 1), j = 1, …, J,
then the resulting match would deviate from fine balance by at most 1 in each hospital, but
because the constraint is less constraining, the minimum value of the total covariate distance
Στt∈𝘛 δτt,μ(τt) will be no larger than before and is very likely to be smaller. Setting κj =
max(0, nj − λ) and κ̄j = min (Mj, nj + λ) for an integer λ ≥ 0 will limit the maximum
deviation from fine balance to at most λ. For λ = 0, this yields fine balance. For sufficiently
large λ this yields a conventional minimum distance match that makes no effort to balance
the nominal variable. By varying λ, the investigator can control the relative emphasis placed
on balancing the nominal variable versus finding pairs that are close in terms of the
covariate distance.
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Appendix. The proof of Proposition 1
The proof of Proposition 1 parallels the discussion of Tables 2 and 3. Because each υkℓ ≥ 0,

if  then . The first step is to show that

 if and only if κj ≤ mμj ≤ κ̄j for j = 1, …, J, where mμj = |{τt ∈ 𝘛 : ν {μ

(τt)} = j}|. Now  if and only if the Mj − κ̄j rows ζjp are assigned to
different columns γc with ν (γc) = j, and at most κ̄j − κj rows εjp are assigned to other
columns γc with ν (γc) = j; therefore, of the Mj columns γc with ν (γc) = j, at least Mj − κ̄j are
not paired with τt’s and at most Mj − κj are not paired with τt’s, so at least κj and at most κ̄j
columns γc with ν (γc) = j are paired with τt’s. The second step is to note that if

 then  and

so an optimal assignment α (·) in ϒ with  minimizes the total distance in
matched pairs Στt∈𝘛 δτt,μ(τt) subject to the constraint κj ≤ mμj ≤ κ̄j for j = 1, …, J. The time
bound is for the Hungarian method applied to a K × K assignment problem; see
Papadimitriou and Steiglitz (1982, Theorem 11.1).
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Figure 1.
Baseline comparison of 1430 severely obese knee surgery patients, 1430 matched non-obese
knee surgery patients, and 1266 unmatched non-obese knee surgery patients. Severe obesity
is a body mass index (BMI) of at least 35, whereas non-obese refers to a body mass index
between 20 and 30.
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