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The relief of postprocedural pain and distress is an impera-
tive aspect of animal welfare. However adequate analgesia 
must be achieved without adverse effects on the goals of the 
study. Therefore, the detection and management of pain in 
animal research models is continually being studied and re-
fined. Postprocedural pain is a complex process that involves 
hypersensitivity and hyperalgesia to several stimuli.8,9,19,32,68 
Furthermore, surgical procedures can cause pain through 
inflammation and the manipulation and damage of tissues.1 
Several methods for evaluating postprocedural pain in rodents 
involve variably subjective scoring systems and assessment of 
in-cage locomotor and behavior activity, hypersensitivity to 
stimuli, or observing food and water intake.37,39,43,53-55,61,63 An 
objective functional assessment test may provide a more reliable 
and quantifiable way to measure postoperative pain.

Several rodent models to study musculoskeletal injuries are 
currently being used in biomedical research,6,29,34 including a 
well-established rat model for rotator cuff injury.49,51,56,60 This 
surgical model involves considerable injury to and manipulation 
of both bone and soft tissues. Because “it should be considered 
that procedures that cause pain in humans may also cause pain 
in vertebrate species,” it is clear that this model would also serve 
as a good model for significant postprocedural pain.27,40,65 The 
objective of the current study was to compare the efficacy of 
different analgesic agents by using an established rat model 

for supraspinatus tendon healing and a novel gait-analysis 
system.56

We assessed different classes of analgesics, which we chose to 
represent common recommendations for postprocedural care. 
Buprenorphine is one of the most commonly used analgesics 
in laboratory animal medicine due to its proven analgesic 
qualities in rodents and other species.13,17,25,26,58 However, its 
status as a controlled substance may limit its use, and other 
options may be desirable. NSAID are often chosen for the 
management of postprocedural analgesia in both rodents and 
humans.16,25,26,38 Because ibuprofen is used frequently after 
tendon repair in human medicine, we selected it for analysis 
in the current study. Due to the ease of administration, putting 
analgesics like acetaminophen in the drinking water of rodents 
has been a popular suggestion recently.4,17,62 However, numer-
ous studies have found variation in analgesic efficacy in rodents 
using acetaminophen in the drinking water.11,33,45,50,64 Finally, 
a tramadol–gabapentin combination was recently reported to 
have some analgesic effects in rats, but additional research is 
required.44

A secondary goal of the current study was to determine 
whether these commonly used analgesics affect tendon-to-bone 
healing. NSAID may have adverse effects on tendon healing,10,14 
but these are far less studied than are their effects on the heal-
ing of bone.21,41,59 In addition, pain may influence cage activity 
levels, which consequently could change with the application 
of analgesics.35,39,53 Increased activity may alter loads on the 
healing tissue as well as joint mobility, thus affecting tendon 
healing.7,24,47,69

In the current study, we used various spatial, temporal, and 
force parameters to analyze gait in the rat model of rotator cuff 
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before gait analysis. The control group received surgery with 
no analgesics.

Surgical procedure. Rats underwent unilateral supraspinatus 
detachment and repair surgeries of the left forelimb.5,66 Briefly, 
a 2-cm skin incision was made over the craniolateral aspect of 
the scapulohumeral joint, and the supraspinatus was exposed 
by externally rotating the humerus. The supraspinatus was 
grasped by using a 5-0 polypropylene suture (Surgipro II, Covi-
dien, Mansfield, MA) in a modified Mason-Allen technique and 
detached sharply from its insertion site on the greater tuberosity. 
A tunnel was made transversely through the proximal part of 
the humerus by using a 0.5-mm drill (Multipro 395, Dremel, 
Mt Prospect, IL). Any soft tissue remaining at the insertion was 
removed by using a 1/16-in. burr (Multipro 395, Dremel).The 
suture placed in the tendon was passed through the tunnel, and 
the tendon was reattached to the insertion site. Muscle layers 
were closed with 4-0 polyglactin 910 (Vircryl, Ethicon, Bridge-
water, NJ), and the skin was closed by using skin staples. Rats 
were allowed unrestricted cage activity after the procedure. Rats 
were weighed and observed before and daily for 10 d after the 
surgical procedure to assess their health and wellbeing.

Gait analysis. An instrumented walkway was used to quantify 
forelimb gait and ground reaction forces (Figure 1).56 Rats were 
placed in the walkway prior to surgery to familiarize them 
with the environment. Furthermore, before data collection, rats 
were allowed to become comfortable with and explore the gait 
analysis system freely. Data were captured only after rats were 
moving freely between both ends of the walkway, in an attempt 
to avoid capturing data from rats that might be compensating 
due to the fear of being in a novel environment. Data were 
collected on days 2, 4, 6, 14, and 28 after tendon-detachment 
surgery. Ground reaction force data for the operative limb 
were collected at each time point and included medial–lateral, 
braking, propulsion, and vertical forces. In addition, rate of 
loading was calculated as the vertical force divided by stance 
time. Temporal and spatial parameters were measured by using 
pawprint analysis and included stride length, step length, and 
speed. Stride length is defined as the distance between the first 
paw placement of the operative limb and the subsequent paw 
placement of that limb. Step length is defined as the distance 
between the paw placement of the operative limb and the con-
tralateral limb in the forward direction. At each time point, at 
least 2 walks were recorded for each rat, in addition to its body 
weight. Parameters were averaged across walks and normalized 
to the body weight for each time point.

Biomechanical testing of tendons. Rats were euthanized on 
day 29 after surgery and were frozen (−20 °C) until supraspi-
natus tendon harvest per standard protocol.5,48 The day before 
testing supraspinatus tendons were dissected free from all 
surrounding tissue, leaving the insertion to the humerus intact. 
The bone–tendon units then were removed, and all soft tissue 
other than the supraspinatus tendon was fine-dissected from 
surrounding connective tissue. The same person performed 
all of the dissections and was blinded to the group allocation 
of all samples. Stain lines were used to track localized tendon 
strain optically (insertion site and midsubstance) and were 
placed on the tendon at 1, 2, 4, and 8 mm from the insertion 
site by using Verhoeff stain. A custom laser device was used to 
measure the cross-sectional area of the tendons after the stain 
lines were applied.15 The humerus was embedded in a hold-
ing fixture by using polymethylmethacrylate (Ortho Jet, Lang 
Dental Manufacturing, Wheeling, IL). Tissues were allowed to 
sit in a refrigerated PBS bath overnight. The next day, tendons 
were fixed between 2 layers of sandpaper by using an adhesive 

healing. In other species, pain in a forelimb decreases stride 
length, limb speed, and gait forces.28,31,36,46 We expected to find 
similar changes in the gait of rats after surgery when analgesia 
is inadequate. Our custom gait-analysis system allowed us to 
measure several parameters, which were compared between 
treated and control groups to determine whether significant 
differences occurred. We used biomechanical testing procedures 
to determine how changes in tendon-to-bone healing after repair 
differed among the various analgesics. The weakest point of the 
tendon is the healing site, because of the development of new 
immature tissue, and changes in the mechanical properties of 
the repaired tendon indicate alterations in healing. Therefore, 
poor healing leads to decreases in the mechanical properties 
of the repaired tendon.22,23 We hypothesized that the different 
analgesics evaluated all would provide pain relief in this model 
but would demonstrated differences in tendon-to-bone healing 
and in gait parameters compared with those of a no-analgesia 
control group.

Materials and Methods
Animals. The University of Pennsylvania IACUC approved 

all procedures used in this study. Male Sprague–Dawley rats 
(Rattus norvegicus; n = 50; weight at acquisition, 400 to 450 g; 
Charles River Laboratories, Wilmington, MA) were assigned 
randomly to 1 of 5 analgesic groups (n = 10): control with no 
analgesia; oral ibuprofen; tramadol and gabapentin injections; 
buprenorphine injections; and flavored acetaminophen in the 
drinking water. Rats were housed in accordance with the Guide 
for the Care and Use of Laboratory Animals27 in an AAALAC-
accredited facility on a 12:12-h light:dark cycle at a density of 
2 rats per static polycarbonate microisolation cage (Rat Cage, 
Alternative Design, Siloam Springs, AR) containing disposable 
bedding (0.12-in.-diameter Bed-O-Cobs, Animal Specialties 
and Provisions, Quakertown, PA). Wire-lid food hoppers in 
cages were filled to capacity with rodent chow (LabDiet 5001, 
Animal Specialties and Provisions), and rats were maintained 
on water supplied by bottle. Rats were housed in rooms with 
sentinel rats that were exposed to soiled bedding and that 
were tested during 3 quarters by serology according to the 
Prevalent panel (Charles River Laboratories). Live sentinels are 
sent submitted annually for testing by using the HM Prevalent 
profile (Charles River Laboratories). Sentinels were negative 
for common pathogens.

Analgesic dosing. All doses for analgesics were determined 
from previously published literature.13,30,42,44,45,57,67 Rats re-
ceiving either tramadol (10 mg/kg IP; Wedgewood Pharmacy, 
Swedesboro, NJ) or buprenorphine (0.05 mg/kg SC; Buprenex, 
Reckitt Benckiser Healthcare Limited, Hull, England) were 
given a preoperative dose and a subsequent dose 6 h later. 
Buprenorphine and tramadol were given every 8 to 12 h there-
after for 5 d after surgery. A modified version of a published 
method for training rats to voluntarily accept oral medication3 
was used for ibuprofen (Actavis Mid Atlantic, Lincolnton, 
NC); rats received 20 mg/kg PO preoperatively and then every 
8 to 12 h for 5 d after surgery. Rats receiving tramadol also 
received gabapentin (80 mg/kg SC; Wedgewood Pharmacy) 
preoperatively and then every 24 h for 5 d postsurgery. Animals 
receiving acetaminophen (Assured Children’s Acetaminophen 
Liquid, Bio-pharm, Levittown, PA) were allowed free access 
to cherry-flavored acetaminophen-treated drinking water 
(concentration, 4.48 mg/mL). To minimize the effects of neo-
phobia, the treated water was given to rats starting 48 h prior 
to the surgical procedure;4,62 acetaminophen-treated water was 
continued for 5 d after surgery. Rats received analgesics 2 to 3 h  
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stride length was significantly longer in the buprenorphine  
(P < 0.001) and ibuprofen (P = 0.002) groups than in the control 
group. Rats in the tramadol–gabapentin group differed (P = 
0.002) only compared with those in the buprenorphine group. 
At 4 d after surgery, stride length differed (P < 0.001) signifi-
cantly only between the buprenorphine and control groups. No 
differences in stride length were noted between groups at 6 d 
after surgery or later.

A significant (P < 0.001) interaction effect was found between 
analgesic groups for step length (Figure 5). Post hoc t tests dem-
onstrated that at 2 d after surgery, rats in the buprenorphine 
(P < 0.001), ibuprofen (P < 0.001), and gabapentin–tramadol  
(P = 0.007) groups had longer step lengths than did the control 
group. At 4 d after surgery, step length differed (P < 0.001) only 
between the buprenorphine and control groups. No differences 
were noted between groups at 6 d postsurgery or later.

No interaction effects were found for propulsion forces, rate 
of loading, or operative limb speed, but a significant main effect 
for group was found. Compared with control rats, those treated 
with buprenorphine showed differences in propulsion force  
(P < 0.001), rate of loading (P = 0.006), and operative limb speed 
(P < 0.001; Figures 6 through 8). There was a trend toward higher 
propulsion forces for the ibuprofen (P = 0.062) and tramadol–
gabapentin (P = 0.065) groups compared with the control group. 
Operative limb speed did not differ between the ibuprofen and 
control or buprenorphine groups. In addition, no differences 
were found among any groups for braking and medial–lateral 
forces, stance width, or unaffected limb speed.

On day 2 after surgery, 3 rats in the acetaminophen group 
and 4 rats in the control group exhibited nonweight-bearing 
lameness of the operative limb during gait analysis. On day 4 
after surgery, 2 rats in the acetaminophen group demonstrated 
nonweight-bearing lameness of the operative limb during gait 
analysis. None of the rats in the other groups had nonweight-
bearing lameness of the operative limb at any time point.

Tendon properties. Tendon stiffness was significantly lower  
(P < 0.001) in the ibuprofen group compared with the control 
group (Figure 9); stiffness did not differ between any other 
groups. Modulus (Figure 10), maximal failure load, and percent-
age relaxation (data not shown) were similar among all groups.

Animal weights. Both the control and acetaminophen groups 
demonstrated decreases from baseline body weight on days 2 
and 4 after surgery (Table 1), but both groups gained weight 
compared with baseline on day 6 after surgery. Rats in the 

(Loctite, Henkel, Rocky Hill, CT) and clamped between custom 
metal grips. The potted tissues were placed in a 37 °C PBS bath 
and tensile-tested by using a mechanical test frame (model 5543, 
Instron, Norwood MA) according to previously described proto-
cols (Figure 2).5,14 Tendons underwent 10 preconditioning cycles, 
followed by a stress–relaxation and ramp-to-failure tests. Images 
were acquired during ramp to failure at a rate of 2 frames per 
second. Custom MatLab software (The Mathworks, Natick, MA) 
was used to calculate optical strain and to determine several 
mechanical properties (percentage relaxation, maximal load, 
maximal stress, stiffness, and elastic modulus).

Statistics. Two-way (group and time) ANOVA with repeated 
measures on time was used to assess the ambulation data. 
Follow-up t tests were conducted when a significant interaction 
effect was present, to determine where the significant interaction 
occurred. Because of lack of compliance by rats, data (approxi-
mately 4%) for a specific animal on a specific day occasionally 
were missing; multiple imputations therefore were conducted 
to allow for a rigorous repeated-measures analysis. Multiple im-
putations were conducted by using the standard Markov chain 
Monte Carlo method. The average of 5 imputations was used 
for the final analysis. Tendon mechanics were assessed by using 
an unpaired one-tailed t test. Because of multiple comparisons, 
Bonferroni corrections were performed by defining significance 
as a P value of less than 0.0125. SPSS version 20 (IBM, Armonk, 
NY) was used for all statistical analyses.

Results
Gait analysis data. A significant (P = 0.01) vertical force × 

time interaction effect was identified (Figure 3). Post hoc t tests 
demonstrated that at 2 d after surgery, forces were significantly 
higher in the buprenorphine (P < 0.001) and ibuprofen (P = 0.008) 
groups than in the control group. In addition, vertical force in 
the buprenorphine group differed (P = 0.007) from that of the 
ibuprofen group. Force on postoperative day 2 did not differ  
(P = 0.066) between the tramadol–gabapentin and control group 
but did differ (P < 0.001) between the tramadol–gabapentin 
and buprenorphine groups. At 4 d after surgery, force differed 
significantly (P < 0.001) only between the buprenorphine and 
control groups. As expected, no differences were noted between 
groups at 6 d after surgery and later, because analgesic dosing 
had been completed by those time points.

A significant (P = 0.003) stride × time interaction was present 
(Figure 4). Post hoc t tests demonstrated that at 2 d after surgery, 

Figure 1. Rats were allowed to freely walk through a custom gait 
analysis system. Two force plates in the center of the image registered 
forces exerted by individual limbs. Mirrors on each side allow for bet-
ter visualization of limb placement. The right forelimb is isolated on 
the second force plate in this image.

Figure 2. Supraspinatus tendon in a PBS bath. The humeral head is 
placed in PMMA (bottom of the image), and the free end of the tendon 
is gripped in a custom steel device (top of the image). The grip is at-
tached to a load cell and Instron device, which applies tensile forces 
on the tendon.
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parameters that were of particular importance were stride 
length, step length, and vertical force. Our data also support the 
hypothesis that there would be a difference in tendon-to-bone 
healing between several common analgesics. Specifically, the 
ibuprofen group demonstrated significantly decreased stiffness 
(and therefore poorer healing) at the tendon insertion site.

For this study, we used a control group that received the 
surgical injury to the left limb and subsequent repair with no 
analgesics. This group, rather than a completely naïve ‘normal’ 
group, was necessary for comparison in our study for 2 spe-
cific reasons. First, regardless of whether the analgesics given 
eliminated all pain, the functional mechanical properties of 
the tendon insertion and joint space have been modified. This 
manipulation could alter the gait parameters in such a way that 
they might never return completely to normal, baseline values. 
The improvement of particular parameters relative to those 
of our control group, therefore, reflects the analgesic efficacy. 
Second, without a control group that underwent injury and 

buprenorphine, tramadol–gabapentin, and ibuprofen groups 
maintained or gained weight through day 2 after surgery; only 
the ibuprofen group had a weight gain on day 6 after surgery. 
Both the buprenorphine and tramadol–gabapentin groups lost 
weight relative to baseline on day 6 after surgery. All groups 
gained weight during the subsequent weeks.

Discussion
The objective of the study was to quantify and compare the 

efficacy of different analgesic agents by using an established 
rat model for supraspinatus tendon healing and a novel gait-
analysis system. We demonstrated that temporal, spatial, and 
force parameters of gait analysis can be used to compare the 
effectiveness of several common analgesics. The results support 
our hypothesis that significant differences in rat ambulation 
indicative of pain would occur between analgesic groups. Gait 

Figure 3. Vertical force registered on the force plate by the left forelimb 
(operative limb). The vertical dashed line represents the final day on 
which rats received analgesics. Ibuprofen and buprenorphine groups 
differed significantly from the control group on postoperative day 2. 
Only the buprenorphine group was statistically different from the con-
trol on day 4 postoperative. The increased forces in the ibuprofen and 
buprenorphine groups on day 2 can be interpreted as increased use of 
the operative limb due to adequate analgesia. Buprenorphine was the 
only agent that achieved significantly increased analgesia on postop-
erative day 4. *, Value significantly (P ≤ 0.0125) different from that of 
the control group (n = 10); bar, 1 SD.

Figure 4. Stride length of the left forelimb (operative limb). The verti-
cal dashed line represents the final day on which rats received analge-
sics. The ibuprofen and buprenorphine groups differed significantly 
from the control group on postoperative day 2; only the buprenor-
phine group was statistically different from the control on day 4. The 
increased stride length in the ibuprofen and buprenorphine groups 
on day 2 can be interpreted as increased use of the operative limb due 
to adequate analgesia. Buprenorphine was the only agent achieving 
significantly increased of analgesia on postoperative day 4. *, Value 
significantly (P ≤ 0.0125) different from that of the control group (n = 
10); bar, 1 SD.

Figure 5. The step length between the left forelimb (operative limb) 
and right forelimb. The vertical dashed line represents the final day 
rats received analgesics. Significant differences from the control group 
were found in the ibuprofen, buprenorphine, and tramadol–gabapen-
tin groups on postoperative day 2, but only the buprenorphine group 
was statistically different from the control on postoperative day 4. The 
increased step length in the ibuprofen, buprenorphine, and tramadol–
gabapentin groups on day 2 can be interpreted as increased use of 
the operative limb due to adequate analgesia. Buprenorphine was the 
only agent achieving significantly higher state of analgesia on postop-
erative day 4. *, Value significantly (P ≤ 0.0125) different from that of 
the control group (n = 10); bar, 1 SD.

Figure 6. Propulsion forces of the left forelimb (operative limb) regis-
tered by the force plates. The vertical dashed line represents the final 
day on which rats received analgesics. No interaction effect was noted; 
however a significant group effect was noted, with the buprenorphine 
group being significantly (P ≤ 0.0125; n = 10) different from the control 
group. This finding indicates that the buprenorphine group was the 
only group achieving a state of analgesia at which propulsion forces 
were increased. Bar, 1 SD.
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phine treatment was discontinued, there was a shift in gait 
parameters toward control values on day 6, and this shift was 
maintained throughout the remainder of the study. In addition, 
the buprenorphine group was the only group which displayed 
statistically higher propulsion forces, operative limb speed, and 
rate of loading compared with the control group. Furthermore, 
buprenorphine-treated rats displayed gait parameters closest to 
the historic ‘normative’ uninjured animal data. In particular, the 
values for stride length, step length, and vertical force on days 
2 and 4 after surgery were very similar to historic normative 
values (data not shown). These findings are indicative of highly 
effective analgesia. However, we cannot exclude the possibility 
that buprenorphine may be inducing a hyperactive state.12,18,53 
Nevertheless, we believe that, among the agents we tested, 
buprenorphine provided the most effective analgesia.

The other analgesic that had increased gait-analysis param-
eters relative to the control group was oral ibuprofen. Similar 
to the buprenorphine group, ibuprofen-treated rats showed 
significant increases in stride length, step length, and vertical 
force on day 2 after surgery. However, despite consistently 
increased parameters, data from the ibuprofen group—unlike 

repair without analgesia, we would have no baseline values 
to determine whether the level of analgesia provided by the 
different agents had any effect on gait parameters at all. This 
consideration is of particular importance for the group that re-
ceived acetaminophen in their drinking water, given the current 
debate regarding whether this method provides any significant 
analgesia at all. In addition, historic data from previous studies 
using rats of the same ages and weights were available, and we 
were able to make general comparisons with our current data 
(discussed following).

Buprenorphine has several distinct characteristics that render 
it the best choice among the analgesics studied, in terms of 
prolonged duration of action and effective control of pain.20,52 
In our current study, buprenorphine demonstrated the great-
est quantifiable improvement of all gait analysis parameters 
measured. Compared with no analgesia, buprenorphine led to 
significant differences in stride length, step length, and vertical 
forces on both days 2 and 4 after surgery. The buprenorphine 
group was the only one that was significantly different from 
the control group on day 4. This finding can be interpreted 
as indicating that only the buprenorphine group achieved a 
notable level of analgesia at this time point. When buprenor-

Figure 7. The rate of loading of the left forelimb (operative limb) reg-
istered by the force plates. The vertical dashed line represents the final 
day on which rats received analgesics. No interaction effect was noted; 
however, a significant group effect was noted, with the buprenorphine 
group being significantly (P ≤ 0.0125; n = 10) different from the control 
group. This finding indicates that the buprenorphine group was the 
only group that achieved a state of analgesia at which the rate of load-
ing for the operative limb was increased. Bar, 1 SD.

Figure 8. Speed of the left forelimb (operative limb). The vertical 
dashed line represents the final day on which rats received analge-
sics. No interaction effect was noted; however a significant group ef-
fect was found, with the buprenorphine group being significantly (P ≤ 
0.0125; n = 10) different from the control group. This finding indicates 
that the buprenorphine group was the only group that achieved a state 
of analgesia, as demonstrated by the operative limb being used at a 
faster pace. Bar, 1 SD.

Figure 9. Stiffness of the supraspinatus tendon. Stiffness was lower 
(*, P ≤ 0.0125) in the ibuprofen group than the control group (n = 10). 
This reduced tendon stiffness in the ibuprofen group is indicative of 
decreased tendon-to-bone healing. Bar, 1 SD.

Figure 10. Modulus of the supraspinatus tendon at the insertion (re-
pair) site at the humeral head. No significant differences were found 
between any group and the control group (n = 10). Bar, 1 SD.
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after surgery. This finding suggests that acetaminophen may 
have caused the rats to consume less food and water; the other 
groups maintained or gained weight at the day 2 time point. 
However, unlike the ibuprofen group, rats given buprenorphine 
lost weight on days 4 (less than 1%) and 6 (2%) after surgery, 
and the tramadol–gabapentin group lost weight (less than 1%) 
on day 6. The weight loss seen in all groups was very small and 
likely of little concern in terms of animal welfare but may shed 
light on important behavioral changes that could affect analgesic 
utility. Long-term use of buprenorphine in rats has been shown 
to reduce food intake, perhaps explaining their higher weight 
loss despite the drug’s superior analgesic efficacy as determined 
from our gait analysis.36

We hypothesized that we would find decreases in tendon 
biomechanical properties (that is, poor healing) with decreases 
in pain, due to excessive loading at the repair site. Contrary to 
our expectation, most analgesic groups did not differ from the 
control group in these properties. This result does not support 
our original hypothesis, given that we suspected the increased 
activity and limb use in rats treated with analgesics would 
cause excessive loading on healing tissues, leading to impaired 
healing. The findings we obtained suggest that the amount of 
pain experienced by these rats and their subsequent activity 
have no effect on healing of the rotator cuff tendon. However, 
compared with controls, the ibuprofen group had inferior 
biomechanical tendon properties. The decreased stiffness in 
the ibuprofen group is indicative of poor healing. These find-
ings are consistent with other findings indicating NSAID may 
inhibit tissue healing.2,10,14 Therefore, we recommend using 
caution when choosing an NSAID in models of postsurgical 
healing, particularly given that buprenorphine out-performed 
ibuprofen as an analgesic. It should be noted the ibuprofen is 
a nonspecific cyclooxygenase-receptor inhibitor. Other NSAID 
that are selective or preferential for cyclooxygenase 2 may 
have different effects on tissue healing, and additional testing 
is warranted.

We have shown that a quantitative approach using a gait-
analysis system can be applied to determining the efficacies of 
analgesic agents. Among the analgesics we tested, buprenorphine 
performed the best, with higher and longer-lasting efficacy and 
with no negative effect on tendon-to-bone healing. Although ibu-
profen was fairly efficacious as an analgesic, we demonstrated that 
careful consideration should be used when selecting an NSAID in 
a healing model due to impairment of optimal healing. Part of the 
refinement of laboratory animal welfare is the introduction of new 
analgesic agents, and the model system we used may be a useful 
tool for future investigations.
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the buprenorphine-treated rats—no longer reached statistical 
significance on day 4. Ibuprofen likely was still providing some 
analgesia but was less effective than buprenorphine at this time 
point. Interestingly, in terms of speed of the operative limb, the 
ibuprofen group did not differ from any group, suggesting that 
the level of analgesia it provides is somewhere between those 
of buprenorphine and the other drugs, which were even lower 
in analgesic efficacy. When considering the analgesic properties 
of ibuprofen alone, the data indicate that it is fairly efficacious 
in relieving early postprocedural pain but may serve better in 
a multimodal approach to analgesia.

The combination of gabapentin and tramadol may provide 
some distinct analgesic properties.44 Rats in this group showed 
a statistically longer step length and tended toward greater 
propulsion forces and stride length. The combination of these 
2 agents does seem to achieve some pain relief after surgery, 
although to a much lower extent than do buprenorphine and 
ibuprofen. In a situation in which controlled substances or 
NSAID cannot be used, gabapentin–tramadol may provide 
some beneficial pain relief.

Due to the ease of its administration in the drinking water, 
flavored acetaminophen is an appealing option as a form of 
postprocedural analgesia. However, the evidence regarding 
acetaminophen as a viable analgesic in the postprocedural ro-
dent model has been the subject of debate.11,33,45,50,64 To account 
for the known neophobia of laboratory rats, we provided treated 
drinking water beginning 48 h prior to the procedure.4,62 When 
compared with the control group, acetaminophen-treated rats 
showed no distinct difference in any gait-analysis parameter. 
In addition, this group was the only experimental group that 
showed evidence of nonweight-bearing lameness of the opera-
tive limb. We strongly believe the data we acquired support the 
finding that acetaminophen in drinking water is a poor form of 
postprocedural analgesia. This method may serve some purpose 
if the model involves minor pain instead of the moderate to 
high level of pain experienced by rats in the model we used. 
In addition, the amount of drinking water consumed was not 
measured, so whether our rats received an adequate dose is 
unknown. Furthermore, acetaminophen-treated rats had a 3.3% 
decrease in body weight relative to baseline by day 4. Therefore, 
rats may have been drinking less and may not have received the 
desired dose. According to the data we obtained in the current 
study, we cannot recommend acetaminophen-treated drinking 
water as a viable form of analgesia.

We noted several different patterns in weight loss and gain 
among the various groups. Pain and the provision of analgesics 
can alter the food and water intake of rodents as well as their 
subsequent weight loss or gain.17,18,37,54,55,62,64 Control rats lost 
weight on days 2 and 4 after surgery, with a loss of less than 
1% on each day. We saw greater losses in the acetaminophen 
group, which showed losses of 2% on day 2 and 3% on day 4 

Table 1. Body weight of rats in each group (n = 10)

Group

Weight (g; mean ± 1 SD)

Before Time after surgery

surgery 2 d 4 d 6 d 14 d 28 d

Control 444.9 ± 17.2 441.5 ± 14.4 444.1 ± 25.4 452.6 ± 16.9 483.9 ± 24.5 527.7 ± 20.2
Acetaminophen 450.1 ± 17.6 441.2 ± 16.0 435.5 ± 20.0 453.0 ± 21.0 498.0 ± 15.9 552.9 ± 41.4
Buprenorphine 454.2 ± 15.8 463.1 ± 15.1 452.1 ± 10.3 444.3 ± 14.3 493.8 ± 19.4 541.9 ± 26.1
Tramadol–gabapentin 427.1 ± 10.4 432.2 ± 12.4 429.0 ± 11.3 425.5 ± 10.6 452.9 ± 23.6 500.9 ± 23.1
Ibuprofen 430.2 ± 17.7 430.2 ± 18.5 432.0 ± 18.2 435.6 ± 19.1 467.1 ± 28.1 508.1 ± 28.6

Rats were weighed immediately prior to the surgical procedure and before each gait-analysis session.
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