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Autism and autism spectrum disorders (ASDs) are behaviorally defined, but the biochemical pathogenesis of the underlying
disease process remains uncharacterized. Studies indicate that antioxidant status is diminished in autistic subjects, suggesting its
pathology is associated with augmented production of oxidative species and/or compromised antioxidant metabolism. This suggests
ASD may result from defects in the metabolism of cellular antioxidants which maintain intracellular redox status by quenching
reactive oxygen species (ROS). Selenium-dependent enzymes (selenoenzymes) are important in maintaining intercellular reducing
conditions, particularly in the brain. Selenoenzymes are a family of ~25 genetically unique proteins, several of which have roles in
preventing and reversing oxidative damage in brain and endocrine tissues. Since the brain’s high rate of oxygen consumption is
accompanied by high ROS production, selenoenzyme activities are particularly important in this tissue. Because selenoenzymes
can be irreversibly inhibited by many electrophiles, exposure to these organic and inorganic agents can diminish selenoenzyme-
dependent antioxidant functions. This can impair brain development, particularly via the adverse influence of oxidative stress on
epigenetic regulation. Here we review the physiological roles of selenoproteins in relation to potential biochemical mechanisms of

ASD etiology and pathology.

1. Introduction

The causes of autism and autism spectrum disorder (col-
lectively, ASD) remain unknown, in part because of com-
plex behavioral phenotypes and the likelihood that multiple
genetic and environmental factors contribute to its etiology
[1-3]. In the absence of biochemical tests for ASD, the
diagnosis is based solely on clinical assessment of behavioral
criteria that define deficits in social interaction, impairments
in verbal and nonverbal receptive/expression, speech, and
hyperfocused repetitive behaviors. The pathophysiology of
ASD is primarily expressed in the neurologic, immunologic,
and gastrointestinal (GI) systems and affects four times as
many boys as girls [4-6]. Regression, with loss of previ-
ously acquired skills, can also interrupt apparently normal
development. Children with severe autism can exhibit mental
retardation, and autistic children have an elevated rate of
seizure disorders [7].

Although ASD was previously thought to be rare, the
number of persons receiving treatment for ASD has increased
substantially during the past several decades and continues
to increase. A recent US government report estimated the
prevalence of ASD increased by 78% from 2002 to 2008 [8]. In
2011-2012, a prevalence of 20 per 1000 was reported for school
aged children [9]. However, a portion of ASD’s increasing
incidence may reflect changes in diagnostic practice and the
broadening of diagnostic criteria [10]. Other studies indicate
a diagnostic shift or substitution may also have contributed
to the rise in diagnosis, whereby the increase in autism
diagnoses corresponds with declines in the usage of other
diagnostic categories [11, 12]. Based on a meta-analysis of
ASD studies, McDonald and Paul [13] concluded that it does
not seem possible to assess whether or how much of the
observed increases in cumulative incidence are real, although
the number of individuals identified as having ASD has
increased dramatically.
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TABLE 1: Glutathione and oxidative stress in autism.

Authors (Reference) Control n Autisticn ~ GSH status  Additional related findings

James et al. [14] 33 20 46%] |GSH/GSSG, |SAM/SAH, |cysteine
James et al. [15] 73 80 32%] 1GSH/GSSG, |SAM/SAH, |cysteine

D. A. Geier and M. R. Geier [16]  Lab-based normal values 10 36%)] |Cysteine

Adams et al. [17] 55 43 21%] ISAM, |cysteine, |vitamin E, TFIGLU
Pagca et al. [18] 13 15 33%] |Cysteine

Pastural et al. [19] 12 15 35%)] |Cysteine

Al-Gadani et al. [20] 30 30 27%)] TLipid peroxides, |vitamin E, |[SOD, | GPx
Melnyketal 21 0 i e LGSGSSG,LSAMISAR, opsine, IDNA
James et al. [22] 42 40 28%| |GSH/GSSG, |SAM/SAH, |cysteine

Geier et al. [23] 120 28 24%] |Cysteine

Geier et al. [24] Lab-based normal values 28 24%] TGSSG, |cysteine, |taurine, |sulfate

Until reliably accurate differential diagnoses are achieved,
it is difficult to attain the goal of defining the biochemical
and physiological lesions that initiate and/or perpetuate the
dysfunctions of autism. However, one pathological mecha-
nism present in many children with ASD involves defects in
the control of oxidative damage. Distinctions in the nature
of these perturbations in redox control may provide insight
for identifying biochemically defined patient subgroups that
may respond to specific therapeutic interventions. This
paper focuses on potential associations between genetic and
acquired defects in control of oxidative damage, particularly
those that impinge upon selenium- (Se-)dependent enzymes
(selenoenzymes). Se physiology is a vital process in the
brain and neuroendocrine system, [25, 26] and, because
of the high reactivity and low abundance of Se in these
tissues, its vulnerability to inhibition by a variety of toxicants
is markedly enhanced. However, its potential role in the
pathophysiology of ASD remains largely unexplored.

2. Oxidative Stress in ASD

Chemically reactive oxygen-derived products like peroxide
radicals ('0227), hydrogen peroxide (H,0O,), superoxide—
anion (O,"), singlet oxygen ('0,), and hydroxyl radicals
("OH), are products of ongoing aerobic metabolism via
mitochondrial oxidative phosphorylation [27]. If not inter-
cepted and detoxified, reactive oxygen species (ROS) are
capable of chemically damaging all forms of cellular macro-
molecules. To avoid these consequences, numerous ROS-
detoxifying reactions enable cells to maintain redox equi-
librium and metabolic homeostasis. Thus, oxidative stress
is a condition where the level of ROS production exceeds
antioxidant capacity.

Increased oxidative stress has been observed in children
with ASD [28-30]. Blood collected from autistic children
shows low concentrations of membrane polyunsaturated
lipids, higher phospholipase A,, and loss of the normal
asymmetry of membrane lipoproteins, which may indicate
increased oxidative damage [13, 31]. Levels of endogenous

and exogenous antioxidant capacity are commonly reduced
in ASD. Glutathione (GSH) is the primary intracellular
antioxidant, and the ratio of its reduced (GSH) and oxidized
(GSSG) forms (GSH/GSSG) provides a useful index of redox
status. As shown in Table 1, numerous studies have reported
significantly lower plasma levels of GSH and, in some cases,
lower GSH/GSSG levels. Low GSH levels are associated with
oxidative stress, increased inflammation, impaired immune
response, and a decreased ability to detoxify environmental
contaminants. Autistic children have been reported to be
increasingly susceptible to recurrent infections, neuroinflam-
mation, gastroinflammation, and impaired antioxidant and
detoxification capacity. Diminished glutathione peroxidase
(GPx), superoxide dismutase, and catalase enzyme activities
have been associated with ASD, as well as low cysteine, Se,
zinc (Zn), and Vitamins C, E, and A [32], although these
associations are not consistently observed.

Accumulation of oxidized glutathione (GS-SG) in plasma
is a strong indication of intracellular oxidative stress, as cells
export the GS-SG to maintain redox equilibrium. James and
coworkers [14] were first to report that plasma levels of
cysteine, GSH, and the GSH/GS-SG ratio were significantly
decreased in autistic children. In that study, total GSH
levels were decreased, and GS-SG was increased, resulting
in a threefold reduction in the redox ratio of GSH/GS-SG.
Cysteine, the rate-limiting amino acid for GSH synthesis,
was significantly decreased relative to controls in over 65%
of the autistic children tested. The finding of lower-plasma
GSH has since been replicated by other research groups [17-
20, 33], suggesting this is a prevalent feature of ASD. A recent
meta-analysis finds that children with ASD have decreased
blood GSH (27%), GPx activity (18%), and methionine (13%)
and increased concentrations of GS-SG (45%) relative to
nonautistic children [34]. In addition, levels of NADPH and
NADH, which reflect redox status and help maintain GSH
in its reduced state, were found to be significantly lower in
autistic children [32]. Several studies have reported a decrease
in the level of GSH in postmortem brain samples from ASD
subjects, associated with a decrease in the GSH/GS-SG ratio
and increased levels of oxidative stress biomarkers [35, 36].
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FIGURE 1: Selenoprotein synthesis and activities are sensitive to elemental and organic electrophiles. High exposures to soft electrophiles may
additively impair redox regulation and thyroid hormone production, disrupting epigenetic regulation and normal brain development.

In addition, activities of several GSH-related enzymes,
including the selenoenzyme GPx, were lower in cerebellums
of ASD subjects [37].

The folate and Vitamin B,,-dependent enzyme methio-
nine synthase (MS) is inhibited under oxidative stress con-
ditions, resulting in a decrease in all methylation reactions,
including DNA methylation [38]. The basis for MS inhibi-
tion is oxidation of its Vitamin B,, (cobalamin) cofactor,
which is considered the most readily oxidized biomolecule,
making it an ideal sensor of cellular redox status [39, 40].
Lower MS activity inhibits methylation by lowering the
ratio of the methyl donor S-adenosylmethionine (SAM) to
the methylation inhibitor S-adenosylhomocysteine (SAH),
exerting a global dampening effect on >200 methylation
reactions. Arguably, the most important among these are
methylation of DNA and histones, which combine to exert
epigenetic regulation over gene expression. As noted above,
a decrease in SAM/SAH has been documented in plasma
of ASD subjects in association with a decrease in GSH/GS-
SG, reflecting the reciprocal relationship between oxidative
stress and methylation. In neuronal cells methionine synthase
activity is stimulated by growth factors and dopamine but
inhibited by neurodevelopmental toxins, including mercury
(Hg) [41]. Methionine synthase mRNA levels are significantly
decreased in postmortem brains of autistic subjects, indica-
tive of a deficit in methylation capacity secondary to oxidative
stress [42].

Elevated urinary levels of 8-isoprostane-F,, (8-iso-
PGF,,) and malondialdehyde (MDA), oxidative stress
biomarkers, have also been noted in children with autism
[28, 30]. A bimodal distribution of 8-iso-PGF,, was
reported, with the majority of autistic subjects showing
moderate increases in isoprostane levels, while a smaller

group of autistic children showed dramatic increases. Levels
of urinary 8-hydroxy-2-deoxyguanosine (8-OHdG), a major
product of DNA oxidation, were also measured but did
not reach statistical significance, although they indicated
a trend toward increasing concentrations in children with
autism [30]. No significant correlations were noted between
the levels of these biomarkers and vitamin intake, dietary
supplements, medicine, medical disorders, or history
of regression. Therefore, these results suggest that lipid
peroxidation is increased in autistic children and that certain
autistic children have much greater oxidative stress than
others.

3. Selenium-Dependent Antioxidant
Metabolism and ASD

Selenoproteins are essential for brain development, redox
control, and preventing and reversing oxidative damage in
the brain and neuroendocrine tissues (Figure 1, Table 2).
Therefore, control of intracellular oxidative tone and findings
of increased oxidative damage in children with ASD may
be indicative of disruptions of selenoenzyme activities. The
molecular forms of Se most common in foods are the amino
acids selenocysteine (Sec) and selenomethionine (SeMet),
although traces of water-soluble inorganic forms (e.g., sele-
nate and selenite) can also be present in food and drinking
water. For both the organic and inorganic Se forms, bio-
chemical utilization in selenoenzymes is initiated through the
common intermediate hydrogen selenide (H,Se). Therefore,
all ingested (and endogenous) forms of Se must be degraded
to inorganic selenide before Se can be used for synthesis of
Sec, the physiological active form of Se. Although proteins
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FIGURE 2: Selenoenzymes are central to providing antioxidant electrons to accomplish reduction of molecules in a number of biochemical
processes. NADPH = nicotinamide adenine dinucleotide phosphate; GR = glutathione reductase; T(SH), = reduced thioredoxin; GSH
= reduced glutathione; TRx = thioredoxin reductase; GSSG = oxidized glutathione; TGR = thioredoxin-glutathione reductase; GPx =
glutathione peroxidase; MsrB = methionine sulfoxide reductase; Prx = peroxiredoxin; Grx = glutaredoxin; e~ = electron. Levels of plasma
GSH, erythrocyte NADH, and NADPH are notably reduced (P < 0.001) in children with autism [16, 32].

with SeMet contain Se, they are not considered selenoproteins
because SeMet is nonspecifically incorporated into proteins
as if it were Met. The nonspecific insertion of SeMet or Met is
directed by AUG codons and no significant distinctions in the
biochemical functions have been observed. This is in contrast
to Sec, which is the catalytically active primary amino acid
present in all selenoproteins [43] and is responsible for the
principal functions of these enzymes (Table 2). In contrast to
other amino acids, Sec is not recycled for reincorporation into
new proteins but is, instead, degraded to release inorganic Se
which can be utilized for resynthesis of Sec.

While Cys, the analogous sulfur amino acid, is inserted
at UGU/UGC codons, the insertion of Sec is in response
to UGA which is otherwise the “opal” stop codon for other
proteins [44-46]. The selenoprotein mRNAs include a dis-
tinct Sec insertion sequence (SECIS) stem-loop structure in
their untranslated 3’ region of the mRNA. This is recognized
by specific SECIS binding proteins which function together
with several transacting factors as well as a unique tRNA
with an anticodon complementary to UGA to initiate de novo
Sec synthesis. The tRNA is aminoacylated with serine prior
to biosynthesis of Sec which is inserted into the protein’s
primary structure. In mRNA of most selenoproteins, the
UGA of the Sec insertion codon is followed by a second or
terminal UGA, which is then read as the stop codon.

Since the discovery of these genetically unique pro-
teins, their enzyme activities have become increasingly well
defined. Associations between compromised Se and ASD
have been reported including low Se levels in red blood cells
[47]. Since blood Se is less prone to contamination and more
indicative of tissue selenoenzyme activities, it is considered
to be a more reliable index than hair. Indeed, hair Se is
variously reported as being increased [48], decreased [49], or
unchanged [50] in subjects with ASD.

When considering the developmental roles of selenopro-
teins, as well as their involvement in redox control and pro-
tection from oxidative stress, the potential for selenoenzyme
dysregulation in relation to the pathologies associated with
ASD appears worthy of investigation. The three main fam-
ilies of characterized selenoproteins—iodothyronine deio-
dinases (DIO), thioredoxin reductases (TRx), and GPx—
have critical roles in thyroid function, fetal development,
hormone metabolism, and oxidative stress detoxification,
particularly in endocrine and brain tissues. Although ~25

selenoproteins are known, only members of the major sele-
noenzyme/selenoprotein families with potential relevance to
autism etiology and pathology are discussed below.

3.1 Roles of Selenoenzymes in Thyroid Hormone Regulation.
Selenoenzymes regulate thyroid synthesis and metabolic
functions contributing to thyroid hormone biosynthesis,
antioxidant defense, redox control of thyrocytes, and thyroid
hormone metabolism. Thyroid hormones have important
roles in regulating many key biochemical reactions, especially
protein synthesis and enzymatic activity, accompanied by an
increase in basal metabolic rate. Thyroid hormone regulates
several processes that are associated with brain differentia-
tion, including dendrite and axon growth, synaptogenesis,
neuronal migration, and myelination [51]. Disruption of
thyroid hormone production during early child development
leads to permanent deficiency in intelligence and sensorimo-
tor functions [52], and it is hypothesized that Se deficiency
may be responsible for the initiation of autoimmune thy-
roid disorders [53]. Interestingly, thyroid hormone increases
plasma Se levels, as well as the levels of selenoenzymes such
as DIO [54]. This relationship is logical, since increased
metabolic activity places a higher demand on antioxidant
resources.

The central nervous system is very sensitive to thy-
roid hormone supply during growth and development. The
selenoprotein family of DIOs (DIO], 2, and 3) is involved in
the formation and regulation of the active thyroid hormone,
triiodothyronine (T;). More than 80% of T; in the brain
is derived from intracellular deiodination of T, by DIO2
[55, 56]. Since circulating T does not readily gain access to
intracellular nuclear receptors [57], DIO2 provides an impor-
tant regulatory function in the brain and central nervous
system (CNS). During early childhood, T; bound to nuclear
receptors is entirely dependent on its local production from
T, via this selenoprotein.

3.2. Roles of TRx in Redox Regulation. The three distinct
forms of TRx—TRx1, TRx2, and TRx3 (collectively, TRx)—
are important in controlling redox state within major com-
partments of the cell. While TRx1 (cytosolic) and TRx2
(mitochondrial) restore oxidized thioredoxin (T[S-S]) to its
reduced (T[SH],) form and are responsible for reducing a
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TABLE 2
Selenoprotein Functions References
GPxl1 Detoxifies peroxides in aqueous compartment of cellular cytosol (58]
GPx2 Expressed in cytosol of liver and tissues of the digestive system (59]
GPx3 Synthesized primarily by kidney; secreted into plasma for transport to other tissues [60]
GPx4 Prevents and reverses oxidative damage to lipids in brain and other tissues [61]
TRxl Reduces T(SH),, vitamin C, polyphenols, and other substrates to regulate intercellular (62-64]
redox state
TRx2 Located in mitochondria and controls and regulates redox state [63, 64]
TRx3 Reduces mitochondrial glutathione disulfide, abundant in testes [63, 64]
MsrB1 Restores oxidatively damaged methionine (R-sulfoxides) to native configuration (64]
DIO1 Converts T, (thyroxine) prohormone into T; (active thyroid hormone) [65]
DIO2 Regulates thyroid hormone status, activating as well as inactivating T, [65]
DIO3 Activates thyroid hormone in brain, placenta, important in fetal development [65]
SPS2 Creates the Se-phosphate precursor required for synthesis of all selenoproteins [64]
SelM Notably high expression levels in the brain, possible thiol-disulfide oxidoreductase [64, 66]
SelN Interacts with ryanodine receptor, mutations result in congenital muscular dystrophy [64]
SelP Transports Se in plasma (10 Sec/molecule) and delivers Se to brain and endocrine tissues (64]
Selw Expressed in a variety of tissues and may regulate redox state of 14-3-3 proteins [64, 66, 67]
Sell5 Oxidoreductase that may assist in disulfide formation and protein folding [64]

variety of other essential antioxidant molecules [63] includ-
ing Vitamin C [62]. Thioredoxin is a ubiquitous 12kDa
protein that employs vicinal cysteines (CXXC motif) and
becomes oxidized to intramolecular disulfides T(S-S) during
reduction of other molecules (Figure 2). Its action is essential
for countering oxidative damage in the cytosol of aerobic
organisms from bacteria to humans [68]. Since T(SH), is
a central regulator of cellular redox status that is required
for the redox-regulated function of transcription factors
and hormonally regulated nuclear receptors, it is critical
in DNA production, gene expression, cell survival, and
embryogenesis. Thus TRx maintains T(SH), levels to enable
basic processes and regulate multiple metabolic events. The
antioxidant functions of TRx occur because they directly
facilitate reduction of oxidized proteins through cysteine-
thiol-disulfide exchange, forming an oxidized disulfide T(S-
S) in the process. TRx is also directly involved in prevention
and repair of damage caused by H,O,-based oxidative stress.
Because intracellular reduction of selenite is required for de
novo synthesis of Sec selenoproteins, TRx clearly has a central
role in all Se physiology. It is assumed that Se’s pivotal role in
TRx explains why targeted disruption of the TRx1 [69] and
T(SH), [70] genes are embryonically lethal.

Additionally, investigations have shown that TRx1 syn-
thesized without its penultimate Sec is an apoptosis initiator
(GRIM-12) [71]. The only difference between the truncated
GRIM-12 and full-length TRx1 is the absence of the final
two amino acids, Sec and glycine. Truncation occurs when
the codon UGA is interpreted as a stop codon instead of a
signal for Sec insertion during times of Se deficiency or when
its Sec is selectively derivatized. The Sec-deficient form of
TRx1, GRIM-12, is a notably powerful apoptosis initiator that
rapidly induces cell death [71].

3.3. Roles of GPx in Redox Regulation. GPx (five geneti-
cally distinct forms, GPx1-4 and GPx6) are selenoenzymes
involved in antioxidant defense and redox regulation and
modulation. GPx provide protection against oxidative dam-
age and aid in the maintenance of membrane integrity by
using GSH as a cofactor to catalyze reduction of hydro-
gen peroxide, forming oxidized glutathione (GS-SG) in the
process. Thyroid hormone synthesis requires a continuous
production of high concentrations of H,O,, which appears
to be its rate-limiting step [72-74]. Therefore, since the
thyrocyte is continually exposed to potentially toxic con-
centrations of H,O, and lipid hydroperoxides, appropriate
antioxidant defense systems are essential to control excess
oxidative stress. Three of the five GPx are expressed in
thyrocytes and thyroid tissue [75-77]. Studies indicate a
distinct regulation of expression, secretion, and function
of these selenoproteins for controlling thyrocyte growth,
differentiation, and function [76-83]. When Se intake is
adequate, the intracellular GPx and TRx systems protect
the thyrocyte from peroxides; however, in Se deficiency, the
thyrocyte’s apoptotic response to H,O, is increased [84].
Furthermore, in iodine deficiency, where hyperstimulation
of the thyroid-stimulating hormone (TSH) receptor signals
increased H,0, production, GPx production is also stim-
ulated, thus upregulating antioxidant protection. By virtue
of its ability to increase basal metabolism, thyroid hormone
increases oxygen utilization, thereby increasing the demand
for antioxidant.

GPx4 reduces hydroperoxides of membrane phospho-
lipid fatty acids and has particular relevance for autism.
Along with TRxl, TRx2, DIO2, DIO3, and selenoprotein P
(SelP), GPx4 is considered an essential selenoprotein whose
levels are preserved in brain and endocrine tissues during Se



deficiency. Suppression of neuronal GPx4 expression resulted
in a selective loss of parvalbumin-expressing GABAergic
interneurons [85] that are essential for dopamine-dependent
regulation during attention [86] and has been linked to
attention deficit hyperactivity disorder (ADHD) [87, 88].
Earlier studies also showed that expression of these interneu-
rons was inhibited when glutathione synthesis was impaired,
indicating a critical role for redox status in establishing the
capacity for attention [89, 90].

3.4. Selenoenzyme Metabolism and Physiology. In addition to
the TRx and GPx selenoenzyme families, further selenopro-
teins have recently been implicated in processes known to
be involved in neurodegenerative diseases, including protein
folding, degradation of misfolded membrane proteins, and
control of cellular calcium homoeostasis [91]. Cerebral Se
deficiency is associated with neurological disorders such as
seizures and ataxia [92, 93], consistent with a restriction
in the development of inhibitory interneurons. Knockout
of selenoprotein synthesis in neurons specifically interfered
with development of parvalbumin-expressing GABAergic
interneurons, and knockout of GPx4 produced a similar
deficit, indicating that these neurons have a particular
requirement for Se [85]. Thus impaired selenoprotein syn-
thesis or loss of their activities could contribute to the
neurocognitive dysfunction and seizure activity in ASD.

The cerebral cortex, hippocampus, cerebellum, and olfac-
tory bulb express the highest numbers of selenoproteins
[94]. The brain and endocrine tissues are preferentially sup-
plied with Se, predominantly through directed distribution
and cellular uptake of SelP. Although other selenoproteins
uniformly incorporate only a single Sec per molecule, SelP
uniquely contains 10 Sec per molecule. Studies with SelP-
deficient mice indicate that moderate reductions of brain Se
content will impair brain function [95, 96].

Not only is SelP important for Sec transport, but it also
appears to have a vital role in neurogenesis. A study of its
brain distribution found a remarkably higher concentration
in ependymal cells, which are found at the ventricle surface
[97]. Ependymal cells are a source of neural stem cells
which are produced upon asymmetric cell division and give
rise to neuronal, astrocyte and oligodendrocyte lineages in
the subependymal region [98]. Neurotrophic growth factors
stimulate mitosis of these precursor cells [99] and provide
an important source of postnatal neurons. SelP is taken up
by neurons via apolipoprotein E receptor 2 (ApoER2), which
is localized to synapses, and ApoER2 knockout mice show
a decrease in synapse density as well as a decrease in the
number of dendritic spines [100, 101].

All brain selenoenzymes are affected by loss of Se in the
absence of SelP, but the DIOs, TRxs, and GPxs are the seleno-
proteins considered to have the most critical roles in the
brain and endocrine system. Therefore, loss or compromise
of their functions [96] would have dramatic effects on matu-
ration of the neuroendocrine system. The unusual capacity
of the brain and endocrine tissues (e.g., pituitary, testes)
to retain their selenoenzyme activities during prolonged
or even multigenerational deficiency states [43] indicates
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that their redox regulation effects are important in these
tissues. The low GSH level of neurons (~0.2 mM) provides a
unique opportunity for redox signaling as a mechanism for
epigenetic control. Neurotrophic factors stimulate cysteine
uptake and increase both GSH/GS-SG and SAM/SAH in
association with a significant increase in DNA methylation
[102]. However, Se-dependent redox regulation is more
vulnerable to soft electrophiles, positively charged chemical
species which bind to selenoproteins with exceptionally high
affinity, as discussed below.

4. Genetic Influences and Metabolic
Disturbances in ASD

Observations from family studies suggest that ASD has a
strong genetic component [103-105], although the failure to
identify genetic factors affecting more than a small propor-
tion of ASD cases suggests that multiple etiologies may be
responsible for the pathologies and neurobehavioral features
of the disorder [106-117]. Moreover, genetic factors may
increase the probability of oxidative damage and diminish the
body’s ability to detoxify ROS and free radicals. Interactions
between genetic and environmental factors may potentiate
increased oxidative stress in autistic children.

Genetic risk of autism may be related to a differential
sensitivity to environmental factors. Using a strict definition
of autism, a recent study found a 58% concordance rate
for monozygotic male twins and 60% for females and 21%
and 27% for male and female dizygotic twins, respectively
[118]. Using the broader definition of ASD, monozygotic
concordance increased to 77% and 50% for males and
females, while dizygotic concordance was 31% and 36%,
respectively. These rates are substantially lower than earlier
estimates, and the authors concluded that environmental
factors are more important than genetic factors, although
genetic factors clearly play an important role. Moreover,
no individual genetic cause of autism has been identified
to account for more than 1%-2% of cases and, with the
exception of Rett syndrome, there is no current evidence that
ASD is linked to any specific genetic or nongenetic disorder.
However, there is evidence suggesting that epigenetic factors
and exposures to environmental modifiers may contribute
to variable expression of autism-related traits [42]. Variants
of major effect genes and numerous common variants with
smaller effect genes have been identified in individuals
with ASD and related conditions. These genetic variances
are providing insights to common pathways and metabolic
disturbances affected in ASD, particularly genes involved in
oxidative stress and detoxification pathways [15, 119, 120].

Polymorphisms of genes involved in glutathione
metabolism, including genes for GPx and glutathione S-
transferase (GST), have been reportedly associated with ASD.
GPxl is the predominant and most abundant isoenzyme of
GPx and plays an integral role in reducing oxidative stress
by catalyzing the reduction of potentially harmful peroxides.
Ming et al. [121] found significant disequilibrium in the
overall transmission of a sequence polymorphism of GPxlI in
ASD. Williams et al. [122] showed that the GSTP1-313A allele



Autism Research and Treatment

may be acting as a teratogenic allele, contributing to the
phenotype of the affected child. GST proteins conjugate and
detoxify products of oxidative stress and conjugate toxins that
produce oxidative stress. By assessing genotypes of mothers
and maternal grandparents, it was shown that the GSTP1A
haplotype was significantly more frequently transmitted to
mothers of individuals with ASD, suggesting that it may
be acting in mothers during pregnancy to contribute to the
phenotype of autism during fetal development [122].

James et al. [15] examined the frequency of several single
nucleotide polymorphisms (SNPs) capable of affecting redox
and methylation pathways in autistic subjects. They found
significant differences in allele frequencies for the reduced
folate carrier (RFC 80G>A), transcobalamin I (TCN2 776
G>C), methylenetetrahydrofolate reductase (MTHFR) 677
C>T and 1298 (A>C), catechol-O-methyltransferase (COMT
472 G>A), and GST M1 between autistic and control cohorts.
These differences were associated with abnormal metabolite
levels, suggesting that individuals with genetic vulnerability
affecting redox and methylation capacity may be linked
to a higher risk for autism. Any deficit in the function of
selenoproteins could synergize with these genetic risk factors.

DNA copy number variants (CNVs) represent a major
category of genetic risk for ASD and are implicated in approx-
imately 10% of cases [123, 124]. Several of the genes likely
affected by homozygous deletions are regulated by neuronal
activity, and the expression of these genes can change in
response to neuronal stimulation. Synapses mature partially
as a function of experience-dependent neuronal activity,
so disruption of those genes by mutation or copy number
variation may alter the process of synaptic development.
DNA methylation status is associated with the occurrence of
CNVs [125], raising the possibility that impaired methylation
capacity could contribute to increased CNVs in ASD.

5. Epigenetic Disturbances in ASD

Epigenetic regulation utilizes covalent modifications such
as DNA methylation and the addition/removal of various
chemical moieties to histone tails (collectively known as epi-
genetic marks) to provide stable, transgenerational changes
in gene expression without alteration of the underlying
nucleotide sequence [126,127]. Epigenetic marks are dynamic
and highly sensitive to cellular changes [128]. Thus, normal
physiologic changes in the cellular environment, such as
levels of growth factors, hormones, and neurotransmitters, as
well as xenobiotic exposure, can translate into modifications
in gene expression mediated by epigenetic regulation. Xeno-
biotic exposures affecting epigenetic status can, therefore,
not only produce lifelong consequences, but their effects
can be transmitted through germline cells to affect multiple
succeeding generations [126, 128].

As noted above, MS exerts powerful control over all
methylation reactions via its influence over the SAM/SAH
ratio, and MS inhibition by oxidative stress will cause both a
decrease in SAM and an increase in SAH, while reducing con-
ditions will have the opposite effect. A twofold increase in MS
activity induced by IGF-1is associated with a twofold increase

in global DNA methylation, while inhibition of MS activity by
ethanol is associated with a large decrease [41]. Thus, xenobi-
otics affecting redox status can exert an epigenetic influence.

Beyond its direct epigenetic regulation of gene tran-
scription, DNA methylation also regulates the activity of
repetitive transposable elements dispersed throughout the
human genome. Transposable elements comprise about 45%
of the genome, and their earlier description as “junk DNA”
has recently been revised in recognition of their ability
to modulate gene transcription, mRNA splicing, micro-
RNA formation, and other processes [129]. Reflecting their
viral origin, retrotransposons such as the LINE-1 (long
interspersed nuclear element-1) family are suppressed by
methylation but can replicate and transpose to new locations,
especially during early development and especially when
methylation is suppressed. Based upon its impressive quanti-
tative contribution to the genome, methylation of LINE-1 has
been used as a surrogate for global DNA methylation [130],
and factors regulating MS activity affect LINE-1 methylation
[131]. LINE-1 retrotransposition is reported to occur at a
higher rate in brain than to other tissues [132], and a
higher rate was observed in Rett syndrome subjects carrying
mutations in the methylated DNA binding protein MeCP2
[130]. Although more studies are needed to clarify their
specific contribution, transposable elements such as LINE-
1 are poised to provide a global genomic influence during
development, so agents affecting their methylation state are
likely to disrupt this process.

Oxidative stress and decreased methylation capacity are
common in autism and abnormal epigenetic regulation may
link the metabolic abnormalities to disruptions in brain
development. Other comorbid features of autism, such as
autoimmunity and gastrointestinal (GI) dysfunction [133,
134], may reflect similar manifestations of abnormal epi-
genetic regulation. A genome-wide comparison of DNA
methylation in monozygotic twins discordant for autism
found numerous differentially methylated regions associated
with ASD, and the extent of these differences were correlated
with severity of autistic trait scores [135].

From conception to maturation, human development is
a highly orchestrated expression of epigenetic regulation, so
it is not surprising that genetic and environmental factors
adversely affecting oxidative tone and methylation status
can contribute to developmental disorders. The exceptionally
dynamic redox-dependent epigenetic regulation in the brain
increases its vulnerability to neurodevelopmental disorders.
Autism is a prominent feature of Rett, Angelman, Prader-
Willi, and Fragile-X syndromes, each of which has been
linked to interruption of methylation-dependent regula-
tion [136-138]. Therefore, environmental exposures affecting
redox and methylation status could reasonably result in
neurodevelopment disorders such as ASD.

6. ASD in relation to Exposures to
Potentially Neurotoxic Agents

Certain soft electrophiles are known to be neurotoxic at
high exposures, presumably due to their effects on sulfur



metabolism. Although these electrophilic species are highly
interactive with cellular nucleophiles such as thiols, the Se of
Sec is by far the strongest intracellular nucleophile. Therefore,
selenoproteins are very vulnerable to enzyme inhibition by
binding to neurotoxic electrophiles. Their toxic concentra-
tions are generally miniscule in relation to sulfur, toxic levels
generally equal or exceed the normal tissue concentrations of
Se. Therefore, because of their high reactivity and low molar
abundance, selenoenzymes are highly vulnerable to selective
inhibition by high concentrations of electrophiles such as Hg.
Soft electrophiles such as Hg have larger ionic radii and a
more dispersed surface charge, making them more reactive
with soft nucleophiles such as the Se of Sec at the active sites
of enzymes.

Only certain electrophiles are notably neurotoxic. Those
that bind and potentially sequester Se would cooperatively
diminish the biological availability of Se for performance
of its necessary physiological roles (Figure 1). For example,
a multitude of electrophilic agents are naturally present in
food in small amounts and the Se-sequestering effects of each
would usually be minor. However, their additive effects on
selenoenzyme synthesis and function could be detrimental in
individuals with compromised Se status or metabolism.

Likewise, additional exposures to electrophiles are
encountered in the form of environmental contaminants,
such as toxic metals, pesticides, herbicides, and others.
In addition, soft electrophiles are present as the active
ingredients in many pharmaceuticals and food preservatives,
while still others are produced during the degradation of
these products. Therefore, instead of examining relationships
between ASD incidence and exposures to individual agents,
it may be more informative to examine ASD incidence in
relation to aggregate exposures to these soft electrophiles
and/or their effect on selenoenzyme activity in vulnerable
individuals.

6.1. Thio-/Selenoreactive Elements. High exposures to soft
electrophiles have the potential to incapacitate various sulfur-
and Se-dependent metabolic processes, thus disrupting many
redox regulatory mechanisms that are required for healthy
cell growth and function, particularly in brain and endocrine
tissues. Increased selenium status is known to counteract
the adverse effects of elevated exposures to neurotoxic
electrophiles such as Hg, cadmium (Cd), lead (Pb), and
vanadium (V) [139]. These electrophilic elements may all be
capable of selective, irreversible inhibition of selenoenzyme
activities similar to the mechanism of Hg toxicity [140, 141].
However, relationships between Se status and the neurotoxic
effects of these other elements have not been adequately
examined, and additional mechanisms of toxicity have been
recognized for some of these elements [142]. Because it is rich
in cysteine, hair has often been used to provide a reflection
of circulating amounts of thio-reactive electrophiles present
in exposed individuals. The concentrations of Hg, As, Cd,
or Pb in hair do not indicate consistent relationships with
ASD incidence; however, some studies report unusually low
concentrations in hair samples and suggest that individu-
als with ASD have diminished abilities to eliminate toxic
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metals [143, 144]. This is consistent with the finding that
lower Hg concentrations are present in the hair of young
(<6 y) children with ASD [144-146] although Majewska et
al. [146] found older ASD children have higher hair Hg.
Although serum was studied instead of RBC’s or whole blood,
a large study of Hg in relation to autism [147] reported
finding no significant differences between nonautistic and
ASD children. This is supported by the finding that no
distinctions in expression levels of four genes that are known
to respond to metal exposures were noted between ASD and
typical children [148]. However, Stamova et al. [149] found
a distinctive correlation between gene expression and blood
Hg levels in boys with autism suggesting it is associated
with a different pattern of gene transcription in response
to Hg exposure. The ability of both Hg and Se to exert
epigenetic effects was recently demonstrated in embryonic
stem cells [150]. Several studies have reported potent toxic
effects of methylmercury on neural stem cell differentiation
and survival [151, 152], indicating its potential capacity for
altering gene expression during development.

To prevent bacterial contamination in multiple-dose
vials, thimerosal, the ethylmercury derivative of thiosalicylic
acid, has been used as a preservative in various medical
products, including vaccines. As autism rates increased,
Bernard et al. [153] suggested that vaccine-derived Hg might
be a contributing cause, a highly controversial proposal
[154-156]. As a result, thimerosal was removed from all
pediatric vaccines, except for some influenza vaccines, in
the United States starting in 2001, but the incidence of
autism continued to rise [157], furthering the doubts that
vaccine-derived Hg exposures contributes to autism inci-
dence. While a number of epidemiological studies do not
indicate an association between thimerosal exposure and
ASD [158,159], possible associations between developmental
disorders with Hg-containing vaccines [157] and delayed or
even transgenerational influence of epigenetic changes have
been suggested [160]. Such genetic or epigenetic defects of
the antioxidant enzyme system could cooperatively inter-
act with other environmental electrophiles and make vul-
nerable individuals more sensitive to exposure levels that
would otherwise be harmless. Since deficits in selenoen-
zyme synthesis or function can increase the potential for
oxidative stress and epigenetic dysregulation, sensitivity to
neurotoxins, such as Hg and similar soft electrophiles, may
differ among individuals. In this regard, there have been
several reports of decreased GPx activity in autism [161, 162]
and selective transmission of GPx-1 allelic variants [121].
Interestingly, Pasca et al. [120] found an inverse correlation
between homocysteine and GPx activity in autistic subjects,
indicating an association between low GPx activity and
impaired methylation. Therefore, Castafeda et al. suggested
that the removal of thimerosal from vaccines might not
be immediately reflected as a reversal of epigenetic effects,
especially if they involved effects on germline cells [163].
Notably, lower levels of DNA methylation increase novel
insertions of transposable elements and increase the fre-
quency of CNVs in germline cells [164-166], which are
also elevated in autism. Therefore, the effects of elemental
electrophiles on selenometabolism may be a contributing
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FIGURE 3: Depiction of potential etiologic contributors to disruptions of selenoenzyme physiology that may lead to disruptions of redox
control and pathological consequences of autism and ASD. The factors and agents depicted are not all necessarily involved, but increases in
predisposing factors along with additive contributions of increased exposures to thio- and selenoreactive electrophiles would be expected to

increase the likelihood of progression to pathology.

factor to ASD etiology and/or progression in vulnerable
individuals.

6.2. Thio-/Selenoreactive Organic Electrophiles. Organic mol-
ecules such as acrylamide, acrolein, and diethyldithio-
carbamate are structurally diverse, but these electrophilic
species all share the potential to chemically react with
strong nucleophiles [167]. Just as for inorganic electrophiles,
the most likely target will be the most nucleophilic moi-
eties of enzymes, such as Sec or thiols of Cys residues.
Acetaminophen, the most commonly used analgesic and
antipyretic drug in much of the world, is associated with
toxic effects at high exposures. Excessive intake leads to
impaired sulfur metabolism and life-threatening hepatotox-
icity, involving depletion of GSH [168]. A survey of parents
reported a higher frequency of acetaminophen use after the
MMR (measles-mumps-rubella) vaccine for autistic children
than for unaffected children [169], leading to the suggestion
that use of acetaminophen might be causally linked to an
increase in autism rates [170].

Interestingly, the major acetaminophen-binding protein
in the liver is Se binding protein-2 (SeBP2) [171, 172]. Both
SeBP1 and SeBP2 bind Se, but not in the Sec form charac-
teristic of the genetically encoded selenoproteins. Increased
expression of SeBP2 is associated with increased suscepti-
bility to acetaminophen cytotoxicity [173]. In view of the
male predominance of autism, it is interesting to note that
SeBP2 levels are higher in males [174] and their vulnerability
to acetaminophen hepatotoxicity is also greater. Males also
display a decreased capacity to restore their GSH levels to
normal [175] following high acetaminophen exposures.

N-acetylcysteine protects against acetaminophen-
induced hepatotoxicity by maintaining or restoring hepatic
concentrations of GSH [176]. Glutathione is required to

inactivate N-acetyl-p-benzoquinone imine (NAPQI), a
metabolic product of acetaminophen breakdown that is
thought to be the proximal cause of hepatotoxicity following
acetaminophen overdoses. When excessive quantities of
NAPQI are formed, the primary metabolic (glucuronide
and sulfate conjugation) pathways apparently become
saturated. N-acetylcysteine is thought to counteract toxicity
by either reducing NAPQI to the parent compound or
providing sulthydryl for conjugation of this metabolite [176].
If supplementation with a sulthydryl-containing compound
such as N-acetylcysteine can directly inactivate NAPQI,
supplementation with Se to restore selenoenzyme status
may be an important adjunct therapy to restore healthy
redox status in the affected tissues. The significance of the
liver in providing Se for delivery to the brain suggests that
compromised Se availability in the liver temporarily induced
by exposures to NAPQI and/or other electrophiles could
diminish the amount of Se the brain receives. Exposures
to agents which could cause either prolonged or excessive
diminishments in the supply of Se to neuroendocrine tissues
may therefore be important factors to consider in relation to
ASD.

7. Summary and Conclusions

The nosology of ASD is complicated by the difficulties to
differentiate the syndrome into subsets with similar symp-
toms and distinct etiologies. Children that share the diagnosis
of ASD represent more than one distinct pathophysiological
condition. Recognizing and distinguishing between groups
with separate etiologies require identification of objective
laboratory indices that clinicians can use for diagnosis and
to monitor progression and treatment effects. The objective of
this review is to discuss metabolic defects that may contribute
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to the onset and pathology of ASD, particularly in relation to
Se physiology.

Existing evidence indicates children with ASD have
disruptions in GSH metabolism, and that impaired selenoen-
zyme and thiol metabolic pathways may be involved. These
disruptions could occur as the result of multiple exposures to
elemental and organic electrophiles (Figure 3) with exacerba-
tions related to congenital vulnerabilities. Therefore, genetic
predisposing factors for ASD may be exacerbated secondary
to high aggregate exposures to electrophiles acquired through
environmental, pharmaceutical, or foodborne routes. Cur-
rently, no specific causal agents or conditions have been
recognized in ASD and not all children with potentially
predisposing congenital defects or environmental exposures
acquire ASD. This may indicate that the contributing effects
of causal agents have low potency or that more than one
predisposing factor is required. Therefore, a confluence of
determinants of individual vulnerabilities and sufficiently
high exposures to potential causal agents may be required
to result in pathological effects. Likewise, the mechanisms
of action may additively or synergistically accentuate risks to
individuals with underlying genetic, epigenetic, or nutritional
susceptibilities.

Based upon the mechanisms outlined above, interven-
tions designed to diminish oxidative damage and support
methylation capacity could improve the health of individuals
afflicted with ASD, particularly those with inadequate antiox-
idant defenses. In such individuals, dietary interventions
may offer low-risk approaches with potential for significant
improvements in neurodevelopmental outcomes. Although
the etiology and pathology of ASD remain poorly resolved,
research suggests that afflicted children may benefit from
treatments designed to improve their antioxidant capacity.
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