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Abstract
A major challenge in single particle reconstruction from cryo-electron microscopy is to establish a
reliable ab initio three-dimensional model using two-dimensional projection images with unknown
orientations. Common-lines–based methods estimate the orientations without additional geometric
information. However, such methods fail when the detection rate of common-lines is too low due
to the high level of noise in the images. An approximation to the least squares global self-
consistency error was obtained in [A. Singer and Y. Shkolnisky, SIAM J. Imaging Sci., 4 (2011),
pp. 543–572] using convex relaxation by semidefinite programming. In this paper we introduce a
more robust global self-consistency error and show that the corresponding optimization problem
can be solved via semidefinite relaxation. In order to prevent artificial clustering of the estimated
viewing directions, we further introduce a spectral norm term that is added as a constraint or as a
regularization term to the relaxed minimization problem. The resulting problems are solved using
either the alternating direction method of multipliers or an iteratively reweighted least squares
procedure. Numerical experiments with both simulated and real images demonstrate that the
proposed methods significantly reduce the orientation estimation error when the detection rate of
common-lines is low.
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1. Introduction
Single particle reconstruction (SPR) from cryo-electron microscopy (cryo-EM) [12, 57] is
an emerging technique for determining the three-dimensional (3D) structure of
macromolecules. One of the main challenges in SPR is to attain a resolution of 4Å or better,
thereby allowing interpretation of atomic coordinates of macromolecular maps [14, 60].
Although X-ray crystallography and NMR spectroscopy can achieve higher resolution levels
(~ 1Å by X-ray crystallography and 2–5Å by NMR spectroscopy), these traditional methods
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are often limited to relatively small molecules. In contrast, cryo-EM is typically applied to
large molecules or assemblies with size ranging from 10 to 150 nm, such as ribosomes [13],
protein complexes, and viruses.

Cryo-EM is used to acquire 2D projection images of thousands of individual, identical
frozen-hydrated macromolecules at random unknown orientations and positions. The
collected images are extremely noisy due to the limited electron dose used for imaging to
avoid excessive beam damage. A 3D electron density map can be reconstructed
computationally from the 2D projection images. However, a broad computational
framework is required for the reconstruction.

1.1. The algorithmic pipeline of SPR
The main steps of a full SPR procedure can be summarized as follows:

1. Particle selection: The individual molecules are detected and extracted from the
micrograph by image segmentation.

2. Class averaging: Images with similar projection directions are averaged together to
improve their signal-to-noise ratio (SNR).

3. Orientation estimation: This is done via the random-conical tilt technique, or
common-lines–based approaches, or reprojection. This step may also include a shift
estimation.

4. Reconstruction: A 3D volume is generated by a tomographic inversion algorithm.

5. Iterative refinement: The whole procedure is repeated from step 3, using the
outcome of the most recent reconstruction until convergence.

Numerous technical and computational advances have contributed to the different
processing steps in SPR. First, the particles can be automatically selected from micrographs
using algorithms based on template matching, computer vision, neural network, or other
approaches [67]. Then multivariate statistical data compression [22, 56] and classification
techniques [54, 34, 49] can be used to sort and partition the large set of particle images by
their viewing directions, producing “class averages” of enhanced SNR. After class
averaging, an ab initio estimation of the pose parameters can be obtained using the random-
conical tilt technique [40] or common-lines–based approaches [55, 47, 48]. Using the ab
initio estimation of the pose parameters, a preliminary 3D map is reconstructed from the
projection images by a tomographic inversion algorithm. The tomographic inversion is
computed either by applying a weighted adjoint operator [40, 39, 19, 35] or by using an
iterative approach for inversion [17, 28, 15]. We refer to the preliminary 3D map as the ab
initio model or simply initial model. The initial model is then iteratively refined [33] in
order to obtain a higher-resolution 3D reconstruction. In each iteration of the refinement
process, the current 3D model is projected at several pre-chosen viewing directions, and the
resulting reprojection images are matched with the particle images, giving rise to new
estimates of their pose parameters. The new pose parameters are then used to produce a
refined 3D model using a 3D reconstruction algorithm. This process is repeated for several
iterations until convergence is achieved.

In this paper, we address the problem of orientation estimation using common-lines between
cryo-EM images in order to obtain an improved initial model. This is a major challenge in
SPR due to the low SNR of the raw images, especially for small particles.
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1.2. Orientation determination using common-lines between images
The Fourier projection-slice theorem (see, e.g., [31]) plays a fundamental role in common-
lines–based reconstruction methods. The theorem states that restricting the 3D Fourier
transform of the volume to a planar central slice yields the Fourier transform of a 2D
projection of the volume in a direction perpendicular to the slice (Figure 1). Thus, any two
projections imaged from nonparallel viewing directions intersect at a line in Fourier space,
which is called the common-line between the two images. The common-lines between any
three images with linearly independent projection directions determine their relative
orientation up to handedness. This is the basis of the “angular reconstitution” technique of
van Heel [55], which was also developed independently by Vainshtein and Goncharov [53].
In this technique, the orientations of additional projections are determined in a sequential
manner. Farrow and Ottensmeyer [10] used quaternions to obtain the relative orientation of
a new projection in a least squares sense. The main problem with such techniques is that
they are sensitive to false detection of common-lines, which leads to the accumulation of
errors. Penczek, Zhu, and Frank [37] tried to obtain the rotations corresponding to all
projections simultaneously by minimizing a global energy functional, which requires a brute
force search in an exponentially large parametric space of all possible orientations for all
projections. Mallick et al. [26] and Singer et al. [47] applied Bayesian approaches to use
common-lines information from different groups of projections. Recently, Singer and
Shkolnisky [48] developed two algorithms based on eigenvectors and semidefinite
programming for estimating the orientations of all images. These two algorithms correspond
to convex relaxations of the global self-consistency error minimization and can accurately
estimate all orientations at relatively low common-line detection rates.

When the SNR of the images is significantly low, the detected common-lines consist of a
modest number of noisy inliers, which are explained well by the image orientations, along
with a large number of outliers, which have no structure. The standard common-lines–based
methods, including those using least squares (LS) [10, 48], are sensitive to these outliers. In
this paper we estimate the orientations using a different, more robust self-consistency error,
which is the sum of unsquared residuals [32, 51] rather than the sum of squared residuals of
the LS formulation. Convex relaxations of least unsquared deviations (LUD) have recently
been proposed for other applications, such as robust principal component analysis [23, 64]
and robust synchronization of orthogonal transformations [61]. Under certain noise models
for the distribution of the outliers (e.g., the haystack model of [23, 64]), such convex
relaxations enjoy proven guarantees for exact and stable recovery with high probability.
Such theoretical and empirical improvements that LUD brings compared to LS serve as the
main motivation for considering in this paper the application of LUD to the problem of
orientation estimation from common-lines in SPR.

The LUD minimization problem is solved here via semidefinite relaxation. When the
detection rate of common-lines is extremely low, the estimated viewing directions of the
projection images are observed to cluster together (see Figure 4). This artificial clustering
can be explained by the fact that images that share the same viewing direction also share
more than one common-line (see more details in section 5). In order to mitigate this spurious
clustering of the estimated viewing directions, we add to the minimization formulation a
spectral norm term, either as a constraint or as a regularization term. The resulting
minimization problem is solved by the alternating direction method of multipliers (ADMM).
We also consider the application of the iteratively reweighted least squares (IRLS)
procedure, which is not guaranteed to converge to the global minimizer but performs well in
our numerical experiments. We demonstrate that the ab initio models resulting from our new
methods are more accurate and require fewer refinement iterations compared to LS-based
methods.
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The paper is organized as follows. In section 2 we review the detection procedure of
common-lines between images. Section 3 presents the LS and LUD global self-consistency
cost functions. Section 4 introduces the semidefinite relaxation and rounding procedure for
the LUD formulation. The additional spectral norm constraint is considered in section 5. The
ADMM method for obtaining the global minimizer is detailed in section 6, and the IRLS
procedure is described in section 7. Numerical results for both simulated and real data are
provided in section 8. Finally, section 9 is a summary with discussion.

2. Detection of common-lines between images
Typically, the first step for detecting common-lines is to compute the 2D Fourier transform
of each image on a polar grid using, e.g., the nonuniform fast Fourier transform (NUFFT)
[9, 11, 18]. The transformed images have resolution nr in the radial direction and resolution
nθ in the angular direction; that is, the radial resolution nr is the number of equi-spaced
samples along each ray in the radial direction, and the angular resolution nθ is the number of
angularly evenly distributed Fourier rays computed for each image (Figure 1). For
simplicity, we let nθ be an even number. The transformed images are denoted by

( ), where  is an nr-dimensional vector, m ∈
{0, 1, …, nθ − 1} is the index of a ray, k ∈ {1, 2, …, K} is the index of an image, and K is
the number of images. The zero frequency term is shared by all lines independently of the
image and is therefore excluded from comparison. To determine the common-line between

two images Pi and Pj, the similarity between all nθ radial lines  from the

first image and all nθ radial lines  from the second image is measured

(overall,  comparisons), and the pair of radial lines  and  with the highest
similarity is declared as the common-line pair between the two images. However, as a radial

line is the complex conjugate of its antipodal line, the similarity measure between  and

 has the same value as that between their antipodal lines  and 
(where addition of indices is taken modulo nθ). Thus the number of distinct similarity

measures that need to be computed is , obtained by restricting the index m1 to take
values between 0 and nθ/2 and letting m2 take any of the nθ possibilities (see also [55] and
[36, p. 255]). Equivalently, it is possible to compare real-valued 1D line projections of the
2D projection images, instead of comparing radial Fourier lines that are complex-valued.
According to the Fourier projection-slice theorem, each 1D projection is obtained by the

inverse Fourier transform of the corresponding Fourier radial line  and its antipodal line

, and is denoted as . The 1D projection lines of a cryo-EM image can be
displayed as a 2D image known as a “sinogram” (see [55, 45]).

Traditionally, the pair of radial lines (or sinogram lines) that has the maximum normalized
cross correlation is declared as the common line, that is,

(2.1)

where mi,j is a discrete estimate for where the jth image intersects with the ith image. In
practice, a weighted correlation, which is equivalent to applying a combination of high-pass
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and low-pass filters, is used to determine proximity. As noted in [55], the normalization is
performed so that the correlation coefficient becomes a more reliable measure of similarity
between radial lines. Note that, even with clean images, this estimate will have a small
deviation from its ground truth (unknown) value due to discretization errors. With noisy
images, large deviations of the estimates from their true values (say, errors of more than 10°)
are frequent, and their frequency increases with the level of noise. We refer to common lines
whose mi,j and mj,i values were estimated accurately (up to the discretization error tolerance
10°) as “correctly detected” common lines, or “inliers,” and to the remaining common lines
as “falsely detected” or “outliers.”

A simple inliers-outliers model was introduced and analyzed in [48, sections 5.1 and 7].
That model assumes that each common-line pair is an inlier with probability p, independent
of the remaining common-lines, while the directions of the outliers are uniformly
distributed. It was noted, however, already in [48, p. 560] that this model is too simplistic as
it assumes independence while there must be dependency: The number of common-line
pairs is (K2), and since there are only (Knθ) radial lines, there must be dependency
among the pairs for sufficiently large K. It is therefore difficult to provide a theoretical
analysis for the evaluation of the practical performance of the different common-lines–based
orientation determination algorithms.

3. Weighted LS and LUD
We define the directions of detected common-lines between the Fourier transformed image
P̂i and the Fourier transformed image P ̂j as the following unit vectors (Figure 1):

(3.1)

(3.2)

where c⃗ij and c⃗ji are on the Fourier transformed images P̂i and P ̂j, respectively, and mij and
mji are discrete estimates for the common lines’ positions using (2.1). Let the rotation
matrices Ri ∈ SO(3), i = 1, …, K, represent the orientations of the K images. According to
the Fourier projection-slice theorem (Figure 1), the common lines on every two images
should be the same after the 2D Fourier transformed images are inserted in the 3D Fourier
space using the corresponding rotation matrices; that is,

(3.3)

These can be viewed as  linear equations for the 6K variables corresponding to the
first two columns of the rotation matrices. (The third column of each rotation matrix does
not contribute in (3.3) since it is multiplied by the zero third entries in (c⃗ij, 0) and (c⃗ji, 0).)
The weighted LS approach for solving this system can be formulated as the minimization
problem

(3.4)
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where the weights wij indicate the confidence in the detections of common-lines between
pairs of images. Since (c⃗ij, 0)T and (c⃗ji, 0)T are 3D unit vectors, their rotations are also unit
vectors; that is, ||Ri(c⃗ij, 0)T|| = ||Rj(c⃗ji, 0)T|| = 1. It follows that the minimization problem (3.4)
is equivalent to the maximization problem of the sum of dot products:

(3.5)

When the weight wij = 1 for each pair i ≠ j, (3.5) is equivalent to the LS problem that was
considered in [37], and more recently in [48] using convex relaxation of the nonconvex
constraint set. The solution to the LS problem may not be optimal due to the typically large
proportion of outliers (Figure 2).

To guard the estimation of the orientations from outliers, we replace the sum of weighted
squared residuals in (3.4) with the more robust sum of unsquared residuals and obtain

(3.6)

or equivalently,

(3.7)

We refer to the minimization problem (3.6) as the least unsquared deviation (LUD) problem.
The self-consistency error given in (3.6) reduces the contribution from large residuals that
may result from outliers. We note that it is also possible to consider the weighted version of
(3.6), namely,

For simplicity, we focus here on the unweighted version.

4. Semidefinite programming relaxation (SDR) and the rounding procedure
Both the weighted LS problem (3.4) and the LUD problem (3.6) are nonconvex and
therefore extremely difficult to solve if one requires the matrices Ri to be rotations, that is,
when adding the constraints

(4.1)

where I3 is the 3 × 3 identity matrix. A relaxation method that neglects the constraints (4.1)
will simply collapse to the trivial solution R1 = ··· = RK = 0, which obviously does not satisfy
the constraint (4.1).

The relaxation in [48] that uses semidefinite programming (SDP) can be modified in a
straightforward manner in order to deal with nonunity weights wij in (3.5). We present this
modification here for three reasons. First, the weighted version is required by the IRLS
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procedure (see section 7). Second, the rounding procedure after the SDP employed here is
slightly different than the deterministic rounding procedure presented in [48] and is closer in
spirit to the randomized rounding procedure of Goemans and Williamson for the MAX-CUT
problem [16]. Finally, in the appendix we prove exact recovery of the rotations by the SDR
procedure when the detected common-lines are all correct.

4.1. Constructing the Gram matrix G from the rotations Ri

We denote the columns of the rotation matrix Ri by , and , and write the rotation
matrices as

We define a 3 × 2K matrix R by concatenating the first two columns of all rotation matrices:

(4.2)

The Gram matrix G for the matrix R is a 2K × 2K matrix of inner products between the 3D
column vectors of R; that is,

(4.3)

Clearly, G is a rank-3 semidefinite positive matrix (G ≽ 0), which can be conveniently
written as a block matrix

where Gij is the 2 × 2 upper left block of the rotation matrix , that is,

In addition, the orthogonality of the rotation matrices ( ) implies that

(4.4)

where I2 is the 2 × 2 identity matrix.

Wang et al. Page 7

SIAM J Imaging Sci. Author manuscript; available in PMC 2014 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2. SDR for weighted LS
We first define two 2K × 2K matrices S = (Sij)i,j=1,…,K and W = (Wij)i,j=1,…,K, where the 2 ×
2 subblocks Sij and Wij are given by

and

Both matrices S and W are symmetric, and they store all available common-line information
and weight information, respectively. It follows that the objective function (3.5) is the trace
of the matrix (W ∘ S) G:

(4.5)

where the symbol ∘ denotes the Hadamard product between two matrices. A natural
relaxation of the optimization problem (3.5) is thus given by the SDP problem

(4.6)

(4.7)

(4.8)

The nonconvex rank-3 constraint on the Gram matrix G is missing from this SDR [25]. The
problem (4.6)–(4.8) is an SDP that can be solved by standard SDP solvers. In particular, it
can be well solved by the solver SDPLR [4], which takes advantage of the low-rank
property of G. SDPLR is a first-order algorithm via low-rank factorization and hence can
provide approximate solutions for large-scale problems. Moreover, the iterations of SDPLR
are extremely fast.

4.3. SDR for LUD
Similar to defining the Gram matrix G in (4.3), we define a 3K × 3K matrix G̃ as G̃ =

(G̃ij)i,j=1,…,K, where each G̃ij is a 3 × 3 block defined as . Then, a natural SDR for
(3.7) is given by

(4.9)

The constraints missing in this SDP formulation are the nonconvex rank-3 constraint and the
determinant constraints det(G̃ij) = 1 on the Gram matrix G̃. However, the solution G̃ to (4.9)
is not unique. Note that if a set of rotation matrices {Ri} is a solution to (3.7), then the set of
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conjugated rotation matrices {JRiJ} is also a solution to (3.7), where the matrix J is defined
as

Thus, another solution to (4.9) is the Gram matrix  with the 3 × 3 sub-

blocks given by . It can be verified that  is also a
solution to (4.9). Using the fact that

the problem (4.9) is reduced to

(4.10)

This is a SDR for the LUD problem (3.6). The problem (4.10) can be solved using ADMM
(see details in section 6.2).

4.4. The randomized rounding procedure
The matrix R is recovered from a random projection of the solution G of the SDP (4.6). We
randomly draw a 2K ×3 matrix P from the Stiefel manifold V3(ℝ2K). The random matrix P
is computed using the orthogonal matrix Q and the upper triangular matrix R from QR
factorization of a random matrix with standard i.i.d. Gaussian entries; that is, P = Q sign
(diag (R)), where sign stands for the entrywise sign function and diag(R) is a diagonal matrix
whose diagonal entries are the same as those of the matrix R. The matrix P is shown to be
drawn uniformly from the Stiefel manifold in [29]. We compute the Cholesky
decomposition of G = LLT and then project the lower triangular matrix L onto the subspace
spanned by the columns of the 2K × 3 matrix LP.1

The 2K × 3 matrix LP is a proxy for the matrix RT (up to a global 3 × 3 orthogonal
transformation). In other words, we can regard the 3 × 2K matrix (LP)T as composed from K
matrices of size 3 × 2, denoted Ai (i = 1, …, K), namely,

1The 3D subspace can also be spanned by the eigenvectors associated with the top three eigenvalues of G, while the fourth largest
eigenvalue is expected to be significantly smaller; see also [48].
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The two columns of each Ai correspond to  and  (compare to (4.2)). We therefore

estimate the matrix  as the closest matrix to Ai on the Stiefel manifold
V2(ℝ3) in the Frobenius matrix norm. The closest matrix is given by (see, e.g., [1])

, where  is the singular value decomposition of Ai. We note that,
except for the orthogonality constraint (4.7), the SDP (4.6)–(4.8) is identical to the
Goemans–Williamson SDP for finding the maximum cut in a weighted graph [16], where
the SDR and the randomized rounding procedure [50, 25] for maximum cut problem is
proved to have a 0.87 performance guarantee. Currently we do not have a similar
performance guarantee for the SDP relaxation of the LS problem (3.5). From the complexity
point of view, SDP can be solved in polynomial time to any given precision. The idea of
using SDP for determining image orientations in cryo-EM was originally proposed in [48].

5. The spectral norm constraint
In our numerical experiments (see section 8) we observed that in the presence of many
“outliers” (i.e., a large proportion of misidentified common-lines) the estimated viewing
directions2 that are obtained by solving either (4.6)–(4.8) or (4.10) are highly clustered
(Figure 4). This empirical behavior of the solutions can be explained by the fact that images
whose viewing directions are parallel share many common-lines, which results from the
overlapping Fourier slices. In other words, when the viewing directions of Ri and Rj are
nearby, the fidelity term ||Ri(c⃗ij, 0)T − Rj(c⃗ji, 0)T|| (that appears in all cost functions) can
become small (i.e., close to 0), even when the common-line pair (c⃗ij, c⃗ji) is misidentified.
When the proportion of outliers in the detected common-lines is large enough, the solution
to either the LS problem or the LUD problem can consist of many rotations with similar
viewing directions, so that most of the fidelity terms have small values. In such cases, the
Gram matrix G has just two dominant eigenvalues, instead of three.

In order to prevent the viewing directions from clustering and the Gram matrix G from
collapsing to a rank-2 matrix, we add the following constraint on the spectral norm of the
Gram matrix G to the optimization problem (4.6)–(4.8) or (4.10):

(5.1)

where I2K is the 2K × 2K identity matrix, or equivalently,

(5.2)

where ||G||2 is the spectral norm of the matrix G, and the parameter  controls the
spread of the viewing directions. If the true imaging orientations are uniformly sampled
from the rotation group SO(3), then by the law of large numbers and the symmetry of the
distribution of orientations, the spectral norm of the true Gram matrix Gtrue is approximately

. (To see this, notice that Tr(G) = Tr(KI2) = 2K. Thus, the sum of eigenvalues of G is 2K.
Recall that G is of rank 3, so if the rotations are uniformly distributed, then each of its three
nontrivial eigenvalues equals .) On the other hand, if the true viewing directions are
highly clustered, then the spectral norm of the true Gram matrix Gtrue is close to K. For a
known distribution of orientations, we can compute the spectral norm of the true Gram
matrix Gtrue accordingly, which can be verified to be a number between  and 1. In practice,
however, the distribution of the viewing directions is usually unknown a priori, and often it
cannot be assumed to be uniform. To prevent a solution with clustered viewing directions,

2The viewing direction is the third column of the underlying rotation matrix.
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we fix the parameter α to some number satisfying , and perhaps even try a few
possible values for α and choose the best value by examining the resulting reconstructions.
Another method for choosing the best value for α is to compare the likelihood scores. We
defer the definition of the likelihood score to section 9.

6. The alternating direction method of multipliers (ADMM) for SDRs with
spectral norm constraint

The application of ADMM to SDP problems was considered in [62]. Here we generalize the
application of ADMM to the optimization problems considered in the previous sections.
ADMM is a multiple-splitting algorithm that minimizes the augmented Lagrangian function
in an alternating fashion such that in each step it minimizes over one block of the variables
with all other blocks fixed and then updates the Lagrange multipliers. We apply ADMM to
the dual problems since the linear constraint (6.2) satisfies  = I, which simplifies the
computation of subproblems. The strong duality theorem, which is known as Slater’s
theorem, guarantees that in the presence of a strictly feasible solution, a primal problem can
be solved by solving its dual problem. To obtain a strictly feasible solution to the primal
problems with a positive semidefinite constraint, the linear constraint (6.2), and the spectral
norm constraint (6.3), we can construct a Gram matrix G in (4.3) using rotations sampled
from a uniform distribution over the rotation group. Therefore, strong duality holds for the
primal problems, and the primal problems can be solved by applying ADMM to their
corresponding dual problems.

6.1. The relaxed weighted LS problem
The weighted LS problem after SDR (4.6)–(4.8) can be efficiently solved using SDPLR [4].
However, SDPLR is not suitable for the problem once the spectral norm constraint on G
(5.2) is added to (4.6)–(4.8). This is because the constraint (5.2) can be written as αKI − G ≽
0, but the matrix αKI − G does not have a low-rank structure. Moreover, SDP solvers using
polynomial-time primal-dual interior point methods are designed for small to medium-sized
problems. Therefore, they are not suitable for our problem. Instead, here we devise a version
of the ADMM which takes advantage of the low-rank property of G.

After the spectral norm constraint (5.2) is added, the problem (4.6)–(4.8) becomes

(6.1)

(6.2)

(6.3)

where

(6.4)

Wang et al. Page 11

SIAM J Imaging Sci. Author manuscript; available in PMC 2014 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



 denotes the (p, q)th element in the 2 × 2 subblock Gij, C = W ∘ S is a symmetric matrix,
and 〈C, G〉 = trace (CG). Following the equality 〈 (G), y〉 = 〈G, (y)〉 for arbitrary

the adjoint of the operator  is defined as

where for i = 1, 2, …, K

It can be verified that  = I. The dual problem of problem (6.1)–(6.3) is

(6.5)

By rearranging terms in (6.5), we obtain

(6.6)

Using the fact that the dual norm of the spectral norm is the nuclear norm (Proposition 2.1 in
[41]), we can obtain from (6.6) the dual problem

(6.7)

where ||·||* denotes the nuclear norm. By introducing a variable Z = C + X + (y), we obtain
from (6.7) that

(6.8)

(6.9)

Since Z is a symmetric matrix, ||Z||* is the summation of the absolute values of the
eigenvalues of Z. The augmented Lagrangian function of (6.8)–(6.9) is defined as
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(6.10)

where μ > 0 is a penalty parameter. Using the augmented Lagrangian function (6.10), we
devise an ADMM that minimizes (6.10) with respect to y, Z, X, and G in an alternating
fashion; that is, given some initial guess, in each iteration the following three subproblems
are solved sequentially:

(6.11)

(6.12)

(6.13)

and the Lagrange multiplier G is updated by

(6.14)

where  is an appropriately chosen step length.

To solve the subproblem (6.11), we use the first-order optimality condition

and the fact that  = I, and we obtain

By rearranging the terms of  (yk+1, Z, Xk, Gk), it can be verified that the subproblem (6.12)
is equivalent to

where . Let Bk = U Λ UT be the spectral decomposition of the
matrix Bk, where Λ = diag (λ) = diag (λ1, …, λ2K). Then Zk+1 = U diag (ẑ) UT, where ẑ is the
optimal solution of the problem
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(6.15)

It can be shown that the unique solution of (6.15) admits a closed-form solution called the
soft-thresholding operator, following a terminology introduced by Donoho and Johnstone
[8]; it can be written as

The problem (6.13) can be shown to be equivalent to

where . The solution  is the Euclidean
projection of Hk onto the semidefinite cone (section 8.1.1 in [3]), where

is the spectral decomposition of the matrix Hk, and Σ+ and Σ− are the positive and negative
eigenvalues of Hk.

It follows from the update rule (6.14) that

6.2. The relaxed LUD problem
Consider the LUD problem after SDR:

(6.16)

where G, , and b are defined in (4.3) and (6.4). The ADMM devised to solve (6.16) is
similar to and simpler than the ADMM devised to solve the version with the spectral norm
constraint. We focus on the more difficult problem with the spectral norm constraint. By

introducing  and adding the spectral norm constraint ||G||2 ≤ αK, we
obtain
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(6.17)

The dual problem of problem (6.17) is

(6.18)

By rearranging terms in (6.18), we obtain

(6.19)

where θ = (θij)i,j=1,…, K, ,

for p, q = 1, 2. It is easy to verify that for 1 ≤ i < j ≤ K

(6.20)

In fact, (6.20) is obtained using the inequality

(6.21)

and the inequality in (6.21) holds when θij and xij have the same direction. Using (6.20) and
the fact that the dual norm of the spectral norm is the nuclear norm, we can obtain from
(6.19) the dual problem

(6.22)

(6.23)

The augmented Lagrangian function of problem (6.22)–(6.23) is defined as

(6.24)
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for ||θij|| ≤ 1, where μ > 0 is a penalty parameter. Similar to section 6.1, using the augmented
Lagrangian function (6.24), ADMM is used to minimize (6.24) with respect to y, θ, Z, X,
and G alternatively; that is, given some initial guess, in each iteration the following four
subproblems are solved sequentially:

(6.25)

(6.26)

(6.27)

(6.28)

and the Lagrange multiplier G is updated by

(6.29)

where  is an appropriately chosen step length. The methods for solving
subproblems (6.25), (6.27), and (6.28) are similar to those used in (6.11), (6.12), and (6.13).
To solve subproblem (6.26), we rearrange the terms of  (yk+1, θ, Zk, Xk, Gk) and obtain an
equivalent problem,

(6.30)

where , and .
Problem (6.30) is further simplified as

whose solution is

The practical issues related to how to take advantage of low-rank assumptions of G in the
eigenvalue decomposition performed at each iteration, strategies for adjusting the penalty
parameter μ, the use of a step size γ for updating the primal variable X, and termination rules
using the infeasibility measures are discussed in detail in [62]. The convergence analysis of
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ADMM using more than two blocks of variables can be found in [20]. However, there are
some conditions of Assumption A in [20, p. 5] that cannot be satisfied for our problem. For
example, Assumption A requires that the feasible set be polyhedral, whereas the SDP cone
in our problem is not a polyhedral. To generalize the convergence analysis in [20] to our
problem, we will need to show that the local error bounds (see [20, pp. 8–9]) hold for the
SDP cone. Currently we do not have a rigorous convergence proof for ADMM for our
problem. In practice, we observe that the primal infeasibility, the dual infeasibility,3 and the
relative gap between the primal and dual problems converge simultaneously to zero, quickly
during first hundreds of iterations, then the rate of convergence slows down as the iterates
approach an optimal solution.

7. The iterative reweighted least squares (IRLS) procedure
Since c⃗ij and c⃗ji are unit vectors, it is tempting to replace the LUD problem (3.7) with the
following SDR:

(7.1)

(7.2)

(7.3)

(7.4)

where α is a fixed number between  and 1, and the spectral norm constraint on G (7.4) is
added when the solution to the problem (7.1)–(7.3) is a set of highly clustered rotations.
Notice that this relaxed problem is, however, not convex since the objective function (7.1) is
concave. We propose to solve (7.1)–(7.3) (possibly with (7.4)) by a variant of the IRLS
procedure [6, 23, 64, 5], which at best converges to a local minimizer. With a good initial
guess for G it can be hoped that the global minimizer is obtained. Such an initial guess can
be taken as the LS solution. In section 7.2, we prove that the sequence of IRLS converges to
a stationary point. However, our convergence analysis cannot exclude the possibility of
convergence to saddle points that are not stable.

7.1. Main idea
Before the rounding procedure, the IRLS procedure finds an approximate solution to the
optimization problem (7.1)–(7.3) (possibly with (7.4)) by solving its smoothing version

(7.5)

(7.6)

3The primal infeasibility and dual infeasibility are the residuals in the primal and dual equality constraints.
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(7.7)

(7.8)

where ε > 0 is a small number. The solution to the smoothing version is close to the solution
to the original problem. In fact, let  and G* = arg min F(G); then we
shall verify that

(7.9)

Using the definition of F(G, ε) and F(G), we obtain that

and thus

Since  and , inequality (7.9) holds.

In each iteration, the IRLS procedure solves the problem

(7.10)

on the (k + 1)th iteration, where , and

In other words, in each iteration, more emphasis is given to detected common-lines that are
better explained by the current estimate Gk of the Gram matrix. The inclusion of the
regularization parameter ε ensures that no single detected common-line can gain undue
influence when solving problem (7.10), which is equivalent to

(7.11)

We repeat the process until the residual sequence {rk} has converged or the maximum
number of iterations has been reached.

7.2. Convergence analysis
We shall verify below that the value of the cost function is nonincreasing, and that every
cluster point of the sequence of IRLS is a stationary point of (7.5)–(7.7) in the following

Wang et al. Page 18

SIAM J Imaging Sci. Author manuscript; available in PMC 2014 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



lemma and theorem, for the problem without the spectral norm constraint on G. The
arguments can be generalized to the case with the spectral norm constraint. The proof of
Theorem 7.2 follows the method of proof for Theorem 3 in the paper [30] by Mohan and
Fazel.

Lemma 7.1—The value of the cost function sequence is monotonically nonincreasing; i.e.,

(7.12)

where {Gk} is the sequence generated by the IRLS procedure of Algorithm 1.

Algorithm 1

(the IRLS procedure). Solve optimization problem (7.1)–(7.3) (with the spectral norm
constraint on G (7.4) if the input parameter α satisfies ), and then recover the
orientations by rounding.

Input: a 2K × 2K common-line matrix S, a regularization parameter ε, a parameter α, and the total number of iterations
Niter.

   for all i, j = 1, …, K;

 G0 = 0;

 for k = 1 → Niter, step size = 1 do

  update W by setting ;

  if , obtain Gk by solving the problem (6.1)–(6.3) using ADMM; otherwise, obtain Gk by solving (4.6)–
(4.8) using SDPLR (with initial guess Gk−1);

   ;

   ;

  the residual ;

 end for

 obtain estimated orientations from GNiter using the randomized rounding procedure in section 4.4.

Output: estimated orientations R̂1, …, R ̂K .

Proof: Since Gk is the solution of (7.11), using the Karush–Kuhn–Tucker (KKT) conditions,
there exist yk ∈ ℝ2K and Xk ∈ ℝ2K×2K such that

(7.13)

(7.14)

Hence we have
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(7.15)

(7.16)

where the first and third equalities use (7.13), and the inequality (7.15) uses (7.14). From
(7.16) we obtain

(7.17)

where the last inequality uses the Cauchy–Schwarz inequality and the equality holds if and
only if

(7.18)

where c is a constant. Thus (7.12) is confirmed.

Theorem 7.2—The sequence of iterates {Gk} of IRLS is bounded, and every cluster point
of the sequence is a stationary point of (7.5)–(7.7).

Proof: Since trace(Gk) = 2K and Gk ≽ 0, the sequence {Gk} is bounded. It follows that Wk

and trace((Wk ∘ S)Gk+1) are bounded. Using the strong duality of SDP, we conclude that
bTyk+1 = trace((Wk ∘ S)Gk+1) is bounded. In addition, from the KKT conditions (7.13)–(7.14)
we obtain – (yk+1) + Wk ∘ S ≽ 0. Using the definition of  and S, the property of
semidefinite matrices, and the fact that Wk is bounded, it can be verified that yk is bounded.
Using (7.13) again, we obtain
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which implies that Xk is bounded.

We now show that every cluster point of {Gk} is a stationary point of (7.5)–(7.7). Suppose
to the contrary, and let Ḡ be a cluster point of {Gk} that is not a stationary point. By the
definition of cluster point, there exists a subsequence {Gki, Wki, Xki, yki} of {Gk, Wk, Xk, yk}
converging to (Ḡ, W̄, X̄, ȳ). By passing to a further subsequence if necessary, we can
assume that {Gki+1, Wki+1, Xki+1, yki+1} is also convergent, and we denote its limit by (Ĝ,
Ŵ, X̂, ŷ). Gki+1 is defined as (7.10) or (7.11) and satisfies the KKT conditions (7.13)–(7.14).
Passing to limits, we see that

Thus we conclude that Ĝ is a maximizer of the following convex optimization problem:

Next, by assumption, Ḡ is not a stationary point of (7.5)–(7.7). This implies that Ḡ is not a
maximizer of the problem above, and thus 〈 W̄ ∘ S, Ĝ 〉 > 〈 W ̄ ∘ S, Ḡ 〉. From this last relation
and (7.17)–(7.18) it follows that

(7.19)

Otherwise if F(Ĝ, ε) = F (Ḡ, ε), then 〈 Ĝij, Sij 〉 = 〈 Ḡij, Sij 〉 due to (7.17)–(7.18), and thus
we would obtain 〈 W̄ ∘ S, Ĝ 〉 = 〈 W ̄ ∘ S, Ḡ 〉, which is a contradiction.

On the other hand, it follows from Lemma 7.1 that the sequence {F(Gk, ε)}converges. Thus
we have that

which contradicts (7.19). Hence, every cluster point of the sequence is a stationary point of
(7.5)–(7.7).

In addition, using Hölder’s inequality, the analysis can be generalized to the reweighted
approach to solve

(7.20)

where 0 < p < 1. The convergence analysis of IRLS (p = 1) in [6, 23] can be extended to
different applications with p < 1. The problem (7.20) is an SDR of the problem
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(7.21)

The smaller p is, the more penalty the outliers in the detected common-lines receive.

8. Numerical results
All numerical experiments were performed on a machine with 2 Intel(R) Xeon(R) X5570
CPUs, each with 4 cores, running at 2.93 GHz. In all the experiments, the polar Fourier
transform of images for common-line detection had radial resolution nr = 100 and angular
resolution nθ = 360. The number of iterations was set to be Niter = 10 in all IRLS procedures.
Reconstruction from the images with estimated orientations used the Fourier-based 3D
reconstruction package FIRM4 [59]. The reconstructed volumes are shown in Figures 5, 6,
and 9 using the visualization system Chimera [38].

To evaluate the accuracy or the resolution of the reconstructions, we used the 3D Fourier
shell correlation (FSC) [43]. FSC measures the normalized cross correlation coefficient
between two 3D volumes over corresponding spherical shells in Fourier space, i.e.,

(8.1)

where (V1) and (V2) are the Fourier transforms of volumes V1 and V2, respectively; the
spatial frequency i ranges from 1 to N/2 − 1 times the unit frequency 1/(N · pixel size); N is
the size of a volume; and Shelli := {j : 0.5 + (i −1) + ε ≤ ||j|| < 0.5 + i + ε}, where ε = 1e − 4.
In this form, the FSC takes two 3D volumes and converts them into a 1D array. In section
8.2, we used the FSC 0.143 cutoff criterion [44, 2] to determine the resolutions of the ab
initio models and the refined models.

8.1. Experiments on simulated images
We simulated 500 centered images of size 129 × 129 pixels with pixel size 2.4Å of the 50S
ribosomal subunit (the top image in Figure 5), where the orientations of the images were
sampled from the uniform distribution over SO(3). White Gaussian noise was added to the
clean images to generate noisy images with SNR = 1/16, 1/32, and 1/64 (Figure 3).
Common-line pairs that were detected with an error smaller than 10° were considered to be
correct. The common-line detection rates were 64%, 44%, and 23% for images with SNR =
1/16, 1/32, and 1/64, respectively (Figure 2).

To measure the accuracy of the estimated orientations, we defined the mean squared error
(MSE) of the estimated rotation matrices R ̂1, …, R̂K to be

(8.2)

where Ô is the optimal solution to the registration problem between the two sets of rotations
{R1, …, RK} and {R1, …, R̂K} in the sense of minimizing the MSE. As shown in [48], there

4The FIRM package is available at https://web.math.princeton.edu/~lanhuiw/software.html.
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is a simple procedure for obtaining both Ô and the MSE from the singular value

decomposition of the matrix .

We applied the LS approach using SDP and ADMM, and the LUD approach using ADMM
and IRLS to estimate the images’ orientations, then computed the MSEs of the estimated
rotation matrices, and lastly reconstructed the volume (Figures 5 and 6). In order to measure
the accuracy of the reconstructed volumes, we measured each volume’s FSC (8.1) (Figure 7)
against the clean 50S ribosomal subunit volume; that is, in our measurement V1 was the
reconstructed volume, and V2 was the “ground truth” volume.

When SNR= 1/16 and 1/32, the common-line detection rate was relatively high (64% and
44%), and the algorithms without the spectral norm constraint on G were enough to make a
good estimation. The LUD approach using ADMM and IRLS outweighed the LS approach
in terms of accuracy measured by MSE and FSC (Figures 5–7). Note that the LS approach
using SDP failed when SNR = 1/32, while the LUD approach using either ADMM or IRLS
succeeded. When SNR = 1/64, the common-line detection rate was relatively low (23%),
and most of the detected common-lines were outliers (Figure 2). As a consequence, we
observed that the algorithms without spectral norm constraint ||G||2 ≤ αK did not work. In
particular, the viewing directions of images estimated by the IRLS procedures without ||G|| ≤
αK converged to two clusters around two antipodal directions, yielding no 3D
reconstruction. The LUD approach using ADMM failed in this case; however, the IRLS
procedure with an appropriate regularization on the spectral norm (i.e., α = 0.67 since the
true rotations were uniformly sampled over SO(3)) gave the best reconstruction.

8.2. Experiments on a real dataset
A set of micrographs of E. coli 50S ribosomal subunits was provided by Dr. M. van Heel.
These micrographs were acquired by a Philips CM20 at defocus values between 1.37 and
2.06μm, and they were scanned at 3.36 Å/pixel. The particles (particularly E. coli 50S
ribosomal subunits) were picked using the automated particle picking algorithm in EMAN
Boxer [24]. Then, using the IMAGIC software package [52, 58], the 27,121 particle images
of size 90 × 90 pixels were phase-flipped to remove the phase-reversals in the contrast
transfer function (CTF), bandpass filtered at 1/150 and 1/8.4 Å, normalized by their
variances, and then translationally aligned with the rotationally averaged total sum. The
particle images were randomly divided into two disjoint groups of equal number of images.
The following steps were performed on each group separately.

The images were rotationally aligned and averaged to produce class averages of better
quality, following the procedure detailed in [66]. For each group, the images were denoised
and compressed using Fourier–Bessel-based steerable principal component analysis
(FBSPCA) [65]. Then, triple products of Fourier–Bessel expansion coefficients obtained in
FBSPCA were used to compute rotationally invariant features of the images, i.e, the
bispectrums [42, 21, 27]. For each image, an initial set of neighboring images was computed
using the normalized cross-correlation of the bispectrums, which was later refined using the
method described in [49] to produce new sets of neighbors. Finally, we averaged each image
with its ten nearest neighbors after alignment.5 Three examples of averaged images are
shown in Figure 8.

5We observed that, using either the LS or LUD method, the initial model reconstructed from 200 averaged images, which are
averaged over 50 nearest neighbors, has the highest resolution, 11.1Å, that we can achieve. However, averaging too many neighbors
may result in oversmoothing.

Wang et al. Page 23

SIAM J Imaging Sci. Author manuscript; available in PMC 2014 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



One thousand class averages were randomly selected from each group. The LS and LUD
approaches with and without the spectral norm constraint were applied. Two reconstructed
volumes were obtained from the two groups of images. The two resulting volumes were
aligned and averaged to obtain the ab initio model (Figure 9(a)). We observed that the LUD
approach gives much more reasonable ab initio models compared to the LS approach. In
addition, the FSC of the two volumes was computed to estimate the resolution of the ab
initio model (Figure 10). Among all the ab initio models, the one obtained by LS is at the
lowest resolution, 17.2Å, while the one obtained by LUD through IRLS procedure has the
highest resolution, 16.1Å. Notice that the FSC measures the variance error but not the bias
error of the ab initio model. We also notice that the viewing directions of images estimated
by the IRLS procedures without the spectral norm constraint converged to two clusters
around two antipodal directions, resulting in no 3D reconstruction. Moreover, for this
dataset, adding the spectral norm constraint on G with α = 0.85 did not improve the
accuracy of the result, although this helped with regularizing the convergence in the IRLS
procedure.

The two resulting volumes were then iteratively refined using 10,000 raw images in each
group. In each refinement iteration, 2,000 template images were generated by projecting the
3D model from the previous iteration, then the orientations of the raw images were
estimated using reference-template matching, and finally a new 3D model was reconstructed
from the 10,000 raw images with highest correlation with the reference images. Each
refinement iteration took about four hours. Therefore, a good ab initio model should be able
to accelerate the refinement process by reducing the total number of refinement iterations.
The FSC plots in Figure 10(a)–10(e) show the convergence of the refinement process using
different ab initio models. We observed that all the refined models are at the resolution of
11.1Å. However, the worst ab initio model obtained by LS needed 7 iterations (about 28
hours) for convergence (Figure 10(a)), while the best ab initio model obtained by LUD
needed 3 iterations (about 12 hours) for convergence (Figure 10(b) and (d)). Figure 10(f)
uses FSC plots to compare the refined models. We observed that the refined models in
Figure 10(b)–10(e) were consistent with each other, while the refined model obtained by LS
in Figure 10(a) was slightly different from the others.

The average CPU times for computing the ab initio models in these two subsections are
shown in Table 1. It is not surprising to see that the LS approach was the fastest and that
adding the spectral norm constraint slowed down the ADMM and IRLS procedures. The
reason for this slowing is that a large portion of the CPU time in ADMM and IRLS is due to
the projections onto the semidefinite cone. These steps are expected to be accelerated by the
recent advance in eigenspace computation [63]. However, when using the LUD approach for
the real dataset, the time saved in the refinement was about 16 hours, which is much more
than the time cost for computing the ab initio models (about 0.5–1 hour when ADMM was
used).

9. Discussion
To estimate image orientations, we introduced a robust self-consistency error and used the
ADMM or IRLS procedure to solve the associated LUD problem after SDR. Numerical
experiments demonstrate that the solution is less sensitive to outliers in the detected
common-lines than is the LS method approach. In addition, when the common-line detection
rate is low, the spectral norm constraint on the Gram matrix G can help to tighten the
semidefinite relaxation, and thus improves the accuracy of the estimated rotations in some
cases. Moreover, the numerical experiments using the real dataset (section 8.2) demonstrate
that the ab initio models resulting from the LUD-based methods are more accurate than
initial models that result from least squares–based methods. In particular, our initial models
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require fewer time-consuming refinement iterations. We note that it is also possible to
consider other self-consistency errors involving the unsquared deviations raised to some
power p (e.g., the cases p = 1, 2 correspond to LUD and LS, respectively). We observed that
the accuracy of the estimated orientations can be improved by using p < 1, provided that the
initial guess is “sufficiently good.” The LUD approach and the spectral norm constraint on
G can be generalized to the synchronization approach to estimate the images’ orientations
[46].

Both LS and LUD-based algorithms have weaknesses and strengths in applications. The LS
method is much faster than the LUD method, while the LUD method is more robust to
outliers in the detected common-lines than is the LS method. Moreover, adding a spectral
norm constraint can tighten the convex relaxation and thus improve the accuracy of the
result, while it slows down the whole procedure. Based on the observations in our numerical
experiments, we recommend using the LS method, the LUD method, and both methods with
spectral norm constraints, respectively, for images with SNR from high to low. However, it
is hard to quantify the actual value of SNR, due to the unknown 3D structure, and to choose
a method accordingly. We suggest trying the LS method without any spectral norm
constraint first, then examine the top four or five eigenvalues of the Gram matrix G to see
whether G has three dominate eigenvalues. If the spectrum of G is reasonable, we can
examine the ab initio model that is reconstructed using the estimated rotations. If one of the
two examinations fails, the LUD and the spectral norm constraint can be considered to
improve the result. One can also experiment with different orientation determination
algorithms and choose the result with the highest likelihood score. Once an ab initio
estimation of orientations is given, it is possible to evaluate the likelihood score of the
estimation in one of two ways: (1) determine the “common-lines” by the estimated rotations,
compute the Fourier coefficients in the common-lines, and then compute the sum of squared
distances between the implied common-lines in the Fourier space; or (2) reconstruct a 3D
volume using the estimated rotations and compute the sum of deviations between the
original input 2D images and the corresponding 2D projections of the 3D volume (i.e., the
reprojection error).

In [61], the LUD approach is shown to be more robust than the LS approach for the
synchronization problem over the rotation group SO(d). Given some relative rotations

, the synchronization problem is to estimate the rotations Ri ∈ SO(d), i = 1, …, K, up
to a global rotation. It is verified that under a specific model of the measurement noise and

the measurement graph for , the rotations can be exactly and stably recovered using
LUD, exhibiting a phase transition behavior in terms of the proportion of noisy
measurements. The problem of orientation determination using common-lines between cryo-
EM images is similar to the synchronization problem. The difference is that the pairwise

information given by the relative rotation  is full, while that given by the common-

lines  is partial. Moreover, the measurement noise of each detected common-line c⃗ij
depends on images i and j, and thus it cannot be simply modeled, which brings the
difficulties in verifying the conditions for the exact and stable orientation determination that
we observed.
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Appendix. Exact recovery of the Gram matrix G from correct common-lines
Here we prove that if the detected common-lines c⃗ji (defined in (3.1)) are all correct and at
least three images have linearly independent projection directions (i.e., the viewing
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directions of the three images are not on the same great circle on the sphere shown in Figure
4), then the Gram matrix G obtained by solving the LS problem (4.6)–(4.8) or the LUD
problem (4.10) is uniquely that defined in (4.3). To verify the uniqueness of the solution G,
it is enough to show rank(G)= 3 due to the SDP solution uniqueness theorem (see [7, pp. 36–
39], [68]). Without loss of generality, we consider the SDP for the LS approach when
applied on three images (i.e., K = 3 and wij = 1 in the problem (4.6)–(4.8)):

Since the solution G is positive semidefinite, we can decompose G as

where , p = 1, 2 and i = 1, 2, 3, are column vectors. We will show rank(G)= 3; i.e., any

four vectors among { } span a space with dimensionality at most 3.

Define arrays ui as

then the inner product

where the last inequality follows from the Cauchy–Schwarz inequality and the facts that all

c⃗ij are unit vectors,  and  are unit vectors and orthogonal to each other due to the

constraint Gii = I2, and thus all  are unit vectors on the Fourier slices of the
images. The equality holds if and only if

(A.1)

Thus when the maximum is achieved, due to (A.1) and the fact that the projection directions

of the images are linearly independent, , and thus

. Therefore, without loss of generality, we only have to show
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that . Using (A.1), assume that

 and ,
where v1 and v2 are linearly independent vectors (otherwise all three projection directions
are linearly dependent, and thus the three Fourier slices of the images intersect at the same

line). Therefore we have , and

. Thus

.
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Figure 1.
Fourier projection-slice theorem. In the middle, P̂i is the 2D Fourier transform of projection
Pi (left) computed on a polar grid. c⃗ij is a unit vector representing the direction of the
common-line (indicated in red) between P̂i and P̂j on P ̂i. On the right, the two transformed
images P̂i and P̂j intersect with each other at the common-line after rotations Ri and Rj,
yielding (3.3), where Ri and Rj represent the orientations of the projections Pi and Pj,
respectively.
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Figure 2.
The histogram plots of errors in the detected common-lines c⃗ij for all i and j, i.e., ||Ri(c⃗ij, 0)T

− Rj(c⃗ji, 0)T||, where Ri is the true rotation matrix for all i. The fat tail in (c) indicates that the
detected common-lines contain a large number of outliers. The cryo-EM images used for
common-line detection are shown in Figure 3.
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Figure 3.
The first column shows three clean images of size 129×129 pixels generated from a 50S
ribosomal subunit volume with different orientations. The other three columns show three
noisy images corresponding to those in the first column with SNR = 1/16, 1/32, and 1/64,
respectively.

Wang et al. Page 33

SIAM J Imaging Sci. Author manuscript; available in PMC 2014 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
The dependency of the spectral norm of G (denoted as αK here) on the distribution of
orientations of the images. Each red point denotes the viewing direction of a projection. Five
different distributions of viewing directions of K = 500 projections are plotted on spheres.
The larger the spectral norm αK is, the more clustered the viewing directions are.
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Figure 5.
The clean volume (top), the reconstructed volumes, and the MSEs (8.2) of the estimated
rotations. No spectral norm constraint was used (i.e., α = N/A) for all algorithms. The result
using the IRLS procedure without α is not available due to the highly clustered estimated
projection directions. All the volumes have size 129 × 129 × 129 voxels.
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Figure 6.
The reconstructed volumes from images with SNR = 1/64 and the MSEs (8.2) of the
estimated rotations using spectral norm constraints (i.e., α = 0.90, 0.75, and 0.67) for all
algorithms. All the volumes have size 129 × 129 × 129 voxels. The result from the IRLS
procedure with α = 0.67 for the spectral norm constraint is best.
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Figure 7.
FSCs (8.1) of the reconstructed volumes against the clean volume in Figures 5 and 6. The
plots of the correlations show that the LUD approach using ADMM and IRLS (denoted as
the blue dashed lines and green solid lines) outweighed the LS approach using SDP or
ADMM (denoted as the red dot-dashed lines). Note that all of the last four subfigures are
results for images with SNR = 1/64, where the last three subfigures are results using
different α for the spectral norm constraint. In the third subfigure (left to right, top to
bottom), there is no green solid line for the LUD approach using IRLS, since the IRLS
procedure without the spectral norm constraint converges to a solution where the estimated
projection directions are highly clustered and no 3D reconstruction can be computed.
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Figure 8.
Noise reduction by image averaging. Three raw ribosomal images are shown in the first
column. Their closest two neighbors (i.e., raw images having similar orientations after
alignments) are shown in the second and third columns. The average images shown in the
last column were obtained by averaging over 10 neighbors of each raw image.
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Figure 9.
Initial models and refined models. (a) The ab initio models estimated by merging two
independent reconstructions, each obtained from 1000 class averages. The resolutions of the
models are 17.2Å, 16.7Å, 16.7Å, 16.7Å, and 16.1Å (from top to bottom, left to right) using
the FSC 0.143 resolution cutoff (Figure 10). The model using the IRLS procedure without
the spectral norm constraint (i.e., α = N/A) is not available, since the estimated projection
directions are highly clustered. (b) The refined models corresponding to the ab initio models
in (a). The resolutions of the models are all 11.1Å.
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Figure 10.
Convergence of the refinement process. In panels (a)–(e), the FSC plots show the
convergence of the refinement iterations. The ab initio models (Figure 9(a) used in (a)–(e)
were obtained by solving the LS/LUD problems using SDP/ADMM/IRLS. The numbers of
refinement iterations performed in (a)–(e) are 7, 3, 5, 3, and 4, respectively. Panel (f) shows
FSC plots of the refined models in (a), (b), (c), and (e) against the refined model in (d),
which are measurements of similarities between the refined models in Figure 9(b).
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