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Inflammation has been implicated in the progressive nature of 
neurodegenerative diseases (1), and inflammatory processes 
are now considered key contributors to acute and chronic 
neurodegenerative disorders, such as ischemic stroke and 
Alzheimer’s disease (2). In the last decade, experimental and 
clinical findings support a crucial role of inflammatory pro-
cesses in epilepsy (3), in particular in the mechanisms underly-
ing the generation of seizures. Since inflammation represents 
a homeostatic response to brain injury or pathological threats, 
its involvement in epilepsy should be envisaged when the 
extent or duration of inflammatory processes in brain tissue is 
exceeding the homeostatic threshold.

Sources and Targets of Cytokines and Inflammatory 
Mediators in Epileptic Tissue
Experimental evidence in rodents demonstrates that seizures 
induce high levels of inflammatory mediators in brain regions 
involved in the generation and propagation of epileptic 
activity. In particular, a rapid-onset inflammatory response is 
triggered in glia by seizures induced by chemoconvulsants 
or electrical stimulation (4–11). Prototypic inflammatory 
cytokines—such as interleukin(IL)-1b, IL-6 and TNF-α—are 
upregulated in activated microglia and astrocytes, and then 

trigger a cascade of downstream inflammatory events that 
also involves neurons and endothelial cells of the blood-brain 
barrier (BBB) (i.e., activation of NFkB, COX-2, complement 
system, chemokines, acute phase proteins) (3,10,12). The rapid 
release of high-mobility-group box 1 (HMGB1) from neurons, 
microglia, and astrocytes following proconvulsant injuries, and 
its activation of Toll-like receptor (TLR) signaling in astrocytes 
and neurons has been proposed as a crucial event for initiating 
brain inflammation and decreasing seizure threshold (13). 
HMGB1 is considered to be a danger signal released from 
injured or stressed cells to alert the microenvironment of an 
immediate or ongoing injury. Its interaction with cognate TLR4 
triggers innate immune mechanisms in tissue and activates 
the related inflammatory events (14). Penetration into the 
brain parenchyma of leukocytes has also been described after 
seizure occurrence (10,15–19; for review, see 3), likely as a 
consequence of activation of innate immunity in the brain (i.e., 
microglia and astrocytes derived inflammatory mediators) and 
upregulation of adhesion molecules in endothelial cells of the 
BBB.

Investigation of the pattern of expression of cytokine 
receptors in seizures has given information on the cell popula-
tions targeted by the cytokines. IL-1R1, which mediates the 
biological responses to IL-1β, is rapidly increased in neurons 
after seizures, as well as later in astrocytes (8, 15), thus indicat-
ing both paracrine and autocrine actions of IL-1β acting as a 
soluble mediator of glioneuronal communications in epilep-
togenic tissue. Strong IL-1b and IL-1R1 immunoreactivity is 
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found also in perivascular astrocytes and in endothelial cells 
of the microvasculature; these changes are associated with 
evidence of albumin extravasation in brain tissue reflecting 
BBB breakdown (15). Cytokines can indeed affect the permea-
bility properties of the BBB via disruption of the tight-junction 
organization or production of nitric oxide and activation of 
matrix methalloproteinases in endothelial cells (for review, see 
2). Alterations in BBB permeability favors neuronal hyperexcit-
ability (for review, see 20), by resulting in albumin extravasa-
tion and its astrocytic uptake; this phenomenon compromises 
astrocytes ability to buffer extracellular K+ and to reuptake 
extracellular glutamate (21–23; for review, see 24). The extent 
of BBB leakage positively correlates with the frequency of 
spontaneous seizures in rats suggesting a reciprocal cause–ef-
fect relationship (25).

Inflammation in Human Epileptic Brain
The activation of both innate and adaptive immune systems 
has been described in human epilepsy. The analysis of brain 
specimens from drug-refractory epileptic patients showed 
upregulation of IL-1β and HMGB1 and their receptors IL-1R1 
and TLR4, in glia and neurons in epileptogenic tissue. This sug-
gests that the activation of these signaling pathways occurs in 
human epilepsy (13, 15, 17, 18, 26, 27).

Moreover, upregulation of complement system and COX-2 
were also shown in parenchymal brain cells (28–30). Note-
worthy, in epilepsy associated with malformations of cortical 
development, a positive correlation was found between the 
percentage of IL-1b-positive brain cells and the frequency of 
seizures prior to surgical resection (27). Cells of adaptive im-
munity were detected in some but not all types of epilepsy; for 
example, a notable absence of lymphocytes was described in 
temporal lobe epilepsy specimens (15), and this is clearly dif-
ferent from Rasmussen’s encephalitis or from epilepsies associ-
ated with malformations of cortical development where these 
cells were found often in close apposition with degenerating 
or dysmorphic neurons (17, 18, for review, see 31).

The finding that inflammatory events persist during epilep-
togenesis in experimental models—thus outlasting the initial 
precipitating event (e.g., status epilepticus, prolonged febrile 
seizures) (6, 15, 32)—suggests that inflammatory processes 
may precede the onset of epilepsy in humans, possibly playing 
an etiopathogenetic role in the occurrence of spontaneous sei-
zures. The use of transgenic mice overexpressing TNF-a or IL-6 
indicates that a chronic inflammatory state in the brain can 
indeed predispose to the occurrence of seizures (33–36). Fur-
ther, long-term increase in brain excitability was demonstrated 
in rodents after systemic administration of lipopolysaccharide 
(LPS), a proinflammatory agent mimicking bacterial infection 
that induces both systemic and brain inflammation (37).

Functional and Pharmacological Studies in Experimental 
Models
The role of inflammatory molecules in seizures has been 
investigated using genetically modified mice with perturbed 
inflammatory systems or by pharmacological means to specifi-
cally block inflammatory pathways. The application of proin-
flammatory molecules—such as IL-1β (11, 38), HMGB1 (13), 
complement system component (39), or specific prostaglan-

dins (28, 40) in rodent brains—can result in receptor-mediated 
proconvulsant effects. In contrast, the intracerebral injection 
of specific antagonists of some of these proinflammatory 
molecules (or interference with related intracellular signaling 
pathways) mediates powerful anticonvulsant effects (4, 13, 38, 
41–45). As an example, the injection of IL-1b in rodent brain 
increases seizure frequency induced by the glutamate analog 
kainic acid or the GABAA antagonist bicuculline (11, 45). Impor-
tantly, the intracerebral injection of the endogenous receptor 
antagonist of IL-1β, IL-1ra, mediates powerful anticonvulsant 
effects (41, 45); furthermore, transgenic mice overexpressing 
IL-1ra in astrocytes have a reduced susceptibility to seizures 
(45), demonstrating that IL-1b contributes to seizures in these 
models. Accordingly, selective blockade or gene deletion 
of interleukin-converting enzyme (ICE or caspase-1)—the 
enzyme that produces the biologically active form of IL-1b—
reduces seizures significantly in acute models and in chronic 
epileptic mice (46, 47).

Since IL-1b acts as pyrogen after its central or systemic ad-
ministration, recent studies have addressed the possibility that 
the increase in IL-1b during fever evokes seizures in immature 
rodent brain (48, 49): Intracerebral application of IL-1b reduced 
the threshold to seizures in two models of febrile convulsions 
caused by hyperthermia (48) or by LPS (49). Moreover, mice 
with a deletion of the IL-1R1 gene were resistant to induction 
of hyperthermia-induced seizure, thus demonstrating the 
significant contribution of IL-1b (48).

Role of Cytokines in Neuronal Excitability
In addition to the classical induction of NFkB-mediated gene 
transcription described during peripheral inflammation, non-
conventional intracellular signaling pathways are activated by 
proinflammatory mediators in the epileptogenic tissue. These 
novel mechanisms are likely to contribute to neuronal hyper-
excitability underlying seizures, mediating at least part of the 
inflammation related glioneuronal interactions that have a role 
in decreasing seizure threshold.

For example, recent evidence demonstrates that IL-1β ac-
tivation of neuronal IL-1R1 induces Src kinase-mediated tyro-
sine phosphorylation of the NR2B subunit of the N-methyD-
aspartate (NMDA) receptor, a key glutamate receptor 
involved in seizures. As a consequence of this action, NMDA 
receptor-mediated Ca2+ influx into neurons is enhanced by 
IL-1β, and this effect plays a role in promoting excitotoxic-
ity (50) and seizure generation (38). This mechanism is also 
shared by HMGB1, another proinflammatory molecule that is 
implicated in experimental seizure precipitation and recur-
rence (13).

Activation of other kinase families (e.g., MAPK, PKA, PKC) 
by proinflammatory molecules has been implicated in rapid 
posttranslational changes in voltage-dependent Ca2+, Na+, and 
K+ ion channels with significant impacts on neuronal excitabil-
ity (28, 51).

IL-1β can also inhibit the astrocytic reuptake of gluta-
mate (52, 53) and increases its glial release possibly via TNF-α 
production (54), resulting in elevated extracellular glutamate 
levels. It has been recently reported that the astrocytic glu-
tamate release may have a role in the genesis or strength of 
seizure-like events (55, 56).
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These neuronal and astrocytic effects of IL-1β underlie its 
proconvulsant activity via an increase in glutamatergic trans-
mission. IL-1b can also inhibit GABA-mediated Cl- fluxes, thus 
possibly reducing inhibitory transmission (57, 58).

Long-term transcriptional events may also occur due to the 
presence of inflammatory molecules in the brain, which would 
result in activation of genes involved in plasticity phenomena 
underlying epileptogenesis (3, 59).

Conclusions
Various brain insults—such as neurotrauma, stroke, infection, 
perinatal injury, febrile seizures, and status epilepticus—can 
induce inflammation in the brain (31), and these injuries in 
humans represent risk factors for the development of epilepsy. 
This evidence suggests that an epileptogenic event, even if 
subclinical, occurring at birth or during the lifetime may initi-
ate a cascade of chronic inflammatory processes in the CNS 
that contributes to the onset of epilepsy (Figure 1).

The initiation of an inflammatory response in the brain 
can be envisaged as a consequence of an intrinsic “injurious” 
event, or the initial challenge may originate within peripheral 
lymphoid tissues; for example, when epilepsy evolves after 
systemic infectious diseases, encephalitis, or in prolonged 
seizures associated with fever. Experimental studies show 
that once seizures develop, they can contribute to perpetuate 
inflammation in the brain via mechanism(s) which are being 
investigated (13).

In the clinical setting, steroids and ACTH display an-
ticonvulsant activity and may control seizures that are 
otherwise refractory to classical antiepileptic drugs (3), and 
these effects, at least in part, may be mediated by their 
anti-inflammatory properties. Further investigations into 
the role of cytokines—and more broadly into inflammatory 
mediators—in epilepsy may add important insights not only 
into the mechanisms of seizure generation but also for the 
development of innovative strategies to block activation of 

Figure 1. Pathophysiological cascade of events leading from inflammation to epilepsy. See Conclusion section for explanation.
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inflammatory signaling in diseased conditions, thus high-
lighting potential new targets for therapeutic intervention, 
particularly for epileptic patients not responding to conven-
tional antiepileptic drugs.
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