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BACKGROUND AND PURPOSE
The NO redox sibling nitroxyl (HNO) elicits soluble guanylyl cyclase (sGC)-dependent vasodilatation. HNO has high reactivity
with thiols, which is attributed with HNO-enhanced left ventricular (LV) function. Here, we tested the hypothesis that the
concomitant vasodilatation and inotropic actions induced by a HNO donor, Angeli’s salt (sodium trioxodinitrate), were
sGC-dependent and sGC-independent respectively.

EXPERIMENTAL APPROACH
Haemodynamic responses to Angeli’s salt (10 pmol–10 μmol), alone and in the presence of scavengers of HNO (L-cysteine,
4 mM) or of NO [hydroxocobalamin (HXC), 100 μM] or a selective inhibitor of sGC [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-
1-one (ODQ), 10 μM], a CGRP receptor antagonist (CGRP8–37, 0.1 μM) or a blocker of voltage-dependent potassium channels
[4-aminopyridine (4-AP), 1 mM] were determined in isolated hearts from male rats.

KEY RESULTS
Angeli’s salt elicited concomitant, dose-dependent increases in coronary flow and LV systolic and diastolic function. Both
L-cysteine and ODQ shifted (but did not abolish) the dose–response curve of each of these effects to the right, implying
contributions from HNO and sGC in both the vasodilator and inotropic actions. In contrast, neither HXC, CGRP8–37 nor 4-AP
affected these actions.
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CONCLUSIONS AND IMPLICATIONS
Both vasodilator and inotropic actions of the HNO donor Angeli’s salt were mediated in part by sGC-dependent mechanisms,
representing the first evidence that sGC contributes to the inotropic and lusitropic action of HNO in the intact heart. Thus,
HNO acutely enhances LV contraction and relaxation, while concomitantly unloading the heart, potentially beneficial actions
in failing hearts.

Abbreviations
4-AP, 4-aminopyridine; CGRP, calcitonin gene-related peptide; HNO, nitroxyl; HXC, hydroxocobalamin; LV ± dP/dt,
first derivatives of LV pressure; LV, left ventricle; LVDP, LV developed pressure; LVEDP, LV end-diastolic pressure;
LVSP, LV systolic pressure; ODQ, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; RyR, ryanodine receptor; SERCA,
sarco/endoplasmic reticulum Ca2+-ATPase; sGC, soluble guanylyl cyclase; U46619, 9,11-dideoxy-9α,11α-methanoepoxy
PG F2α

Introduction
Nitroxyl (HNO) is the one-electron reduced and protonated
redox sibling of NO. Its therapeutic potential was first sug-
gested when the effects of the anti-alcoholism drug, cyana-
mide, were found to be attributable to the release of HNO
(Nagasawa et al., 1990). HNO is a transient species, readily
undergoing dimerization to form hyponitrous acid with sub-
sequent decomposition into nitrous acid and water (Dumond
and King, 2011). Therefore, HNO donors are utilized in phar-
macological studies, often with the prototypical HNO donor,
sodium trioxodinitrate (Na2N2O3) or Angeli’s salt (Miranda
et al., 2005a). In recent years, HNO has emerged as a novel
regulator of cardiovascular function, with vasoprotective
(vasodilator, anti-aggregatory) and cardioprotective (i.e. posi-
tive inotrope, anti-hypertrophic) properties (Irvine et al.,
2008; Bullen et al., 2011; Tocchetti et al., 2011; Lin et al.,
2012). Interestingly, HNO serves as a positive cardiac ino-
trope and is protective in an experimental model of heart
failure (Paolocci et al., 2001; 2003), an action not shared by
NO. HNO also exhibits antihypertrophic actions in the myo-
cardium, an effect mediated via inhibition of NADPH
oxidase-derived superoxide generation (Lin et al., 2012) and
attenuation of the activity of a pro-hypertrophic signalling
pathway, p38 MAPK (Wanstall et al., 2001; Favaloro and
Kemp-Harper, 2009; Lin et al., 2012). As such, recent interest
in the therapeutic potential of HNO has focused on cardio-
vascular disorders, such as vascular dysfunction, cardiac dys-
function, cardiac remodelling and heart failure (Irvine et al.,
2007; 2008; Ritchie et al., 2009; El-Armouche et al., 2010;
Bullen et al., 2011; Ding et al., 2011; Yuill et al., 2011; Lin
et al., 2012).

In contrast to NO, HNO possesses several unique pharma-
cological properties. Firstly, HNO is resistant to scavenging by
the reactive oxygen species (ROS), superoxide (levels of which
are commonly elevated in cardiovascular pathologies),
whereas NO is highly reactive with superoxide, forming a
second ROS, peroxynitrite (Miranda et al., 2002). In addition,
tolerance does not develop to vasodilator actions of HNO , a
favourable difference from traditional clinically used nitrov-
asodilators (Irvine et al., 2007; 2011). HNO reacts readily with
metal centres of proteins such as iron-containing haem in
oxymyoglobin and soluble guanylyl cyclase (sGC; nomencla-
ture follows Alexander et al., 2013a, and in contrast to NO,
preferentially targets ferric (Fe3+) rather than ferrous (Fe2+)
haem groups and thus may activate these proteins when their

iron is in the oxidized state (Miranda et al., 2003). Further-
more, HNO (but not NO) is highly thiolphilic, directly tar-
geting thiol-containing proteins. Such an action of HNO
underlies many of its unique properties in the CVS (Fukuto
and Carrington, 2011). Indeed, the interaction of HNO with
cysteine residues on Ca2+-cycling proteins, that is ryanodine
receptors (RyR) and the sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA) on the sarcoplasmic reticulum of cardiomyo-
cytes leads to enhanced cardiac contractility (Fukuto and
Carrington, 2011; Tocchetti et al., 2011). The therapeutic
advantages of HNO over NO are likely to be more obvious in
settings where NO are exposed to significant levels of ROS
which would limit the bioavailability of NO but not of HNO
(Irvine et al., 2008; Ritchie et al., 2009; Bullen et al., 2011),
and/or where specific HNO interactions with key cysteine
residues confers protection, as with SERCA, a property not
shared by NO (Fukuto and Carrington, 2011; Tocchetti et al.,
2011). It is anticipated that HNO donors would thus be com-
parable with NO donors in other settings such as via inhala-
tion for pulmonary hypertension (De Witt et al., 2001).
However, the distinct pharmacological profile of HNO sug-
gests that it offers favourable therapeutic advantages over its
free radical sibling, NO, in vascular dysfunction, cardiac dys-
function, cardiac remodelling and heart failure.

NO predominantly utilizes sGC/cGMP to mediate
vasodilatation and suppression of cardiomyocyte hypertro-
phy. In contrast, HNO has been shown to signal via both
sGC-dependent and -independent pathways in the vascula-
ture and myocardium. The mechanism of vasodilator actions
of the HNO donor, Angeli’s salt are largely sGC-dependent
(Fukuto et al., 1992; Ellis et al., 2000; Irvine et al., 2003; 2007;
Favaloro and Kemp-Harper, 2007; 2009), with a smaller con-
tribution from K+ channels (Kv and KATP; nomenclature
follows Alexander et al., 2013b) and calcitonin gene-related
peptide (CGRP) evident in the resistance (Irvine et al., 2003;
Favaloro and Kemp-Harper, 2007) and coronary vasculature
(Favaloro and Kemp-Harper, 2007) respectively. These vaso-
dilator properties are evident in both large (e.g. aorta) as well
as smaller vessels such as in rodent-isolated thoracic aorta,
rodent-isolated mesenteric arteries or isolated hearts in vitro
(Ellis et al., 2000; Wanstall et al., 2001; Irvine et al., 2003;
Favaloro and Kemp-Harper, 2007). The antihypertrophic
actions of HNO donors in isolated cardiomyocytes are
similarly cGMP dependent (Lin et al., 2012), whereas the
superoxide-suppressing actions have been variably reported
as cGMP dependent (Lin et al., 2012) or cGMP independent
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(Bullen et al., 2011), in cardiomyocytes and arteries respec-
tively. In contrast, the acute enhancement of cardiac contrac-
tility elicited by HNO donors in the intact heart have been
regarded as cGMP-independent, as no detectable changes in
plasma cGMP content were observed in vivo (Paolocci et al.,
2003). These studies in the intact heart have not however
investigated HNO actions on cardiac contractility in the pres-
ence of cGMP inhibition. Of note, cardiac contractility is
acutely enhanced by HNO donors in failing and normal
hearts to an equivalent extent (Paolocci et al., 2001; 2003).

The vasodilator and cardiac inotropic effects of HNO
donors have been commonly attributed to cGMP-dependent
and -independent mechanisms respectively. The concomi-
tant effects of an HNO donor on vascular and cardiac func-
tion, and the net mechanism(s) of these actions, however,
remain unresolved. The objective of the present study was to
thus test the hypothesis that the concomitant vasodilator
and inotropic actions induced by the HNO donor, Angeli’s
salt, are sGC-dependent and sGC-independent, respectively,
in the rat isolated heart.

Methods

This investigation complies with the National Health and
Medical Research Council of Australia code of practice for the
care and use of animals for scientific purposes. All the proce-
dures involved in this project were approved by The Alfred
Medical Research Educational Precinct (AMREP) Animal
Ethics Committee. All studies involving animals are reported
in accordance with the ARRIVE guidelines for reporting
experiments involving animals (Kilkenny et al., 2010;
McGrath et al., 2010). A total of 53 animals were used in the
experiments described here.

Hearts isolated from male Sprague-Dawley rats (350–
450 g) n = 53 under ketamine-xylazine anaesthesia (100 and
12 mg·kg−1 i.p., respectively) were Langendorff perfused with
Krebs buffer (pH 7.4, composition in mM: NaCl 118, KCl 4.7,
MgSO4.7H2O 1.18, KH2PO4 1.2, EDTA 0.5, CaCl2 1.75,
NaHCO3 25.0 and D-glucose 11, bubbled with 95% O2 and 5%
CO2 at 37°C) under constant pressure, using the ADInstru-
ments Langendorff System® (ADInstruments Pty, Ltd., Bella
Vista, Australia). The STH Pump Controller (ADInstruments
Pty, Ltd.) continuously detected coronary flow, in addition to
maintaining a constant perfusion pressure (set to achieve
coronary flow at baseline of 10 mL·min−1). A fluid-filled
balloon was positioned in the left ventricle (LV) for continu-
ous monitoring of LV systolic pressure (LVSP), LV end-
diastolic pressure (LVEDP), LV developed pressure (LVDP) and
the first derivatives of LV pressure (LV ± dP/dt). The ADIn-
struments PowerLab data acquisition system acquired these
variables, as well as coronary perfusion pressure, coronary
flow and heart rate, throughout the protocol.

After 30 min equilibration, the thromboxane A2 mimetic
U46619 (9,11-dideoxy-9α,11α-methanoepoxy PG F2α, 3 μM)
was continuously infused into the aorta via a syringe infusion
pump (0.1–2.5 mL·min−1), via a port just above the aortic
cannula, to preconstrict the coronary vasculature to give a
∼50% reduction in baseline coronary flow-rate (i.e. from ∼10
to ∼5 mL·min−1). A single bolus dose of NaOH (10 mM,
vehicle for Angeli’s salt) was then administered to the heart

via an injection port just above the aortic cannula, followed
by a serial dose–response curve to Angeli’s salt (10 pmol–
10 μmol), constructed by administering bolus doses of the
HNO donor to the heart via a second injection port just above
the aortic cannula, in increasing doses 1 min apart. All
parameters of contractile function had returned to baseline
levels achieved with U46619 preconstriction. For coronary
flow, this had either returned to baseline levels or had stabi-
lized to a plateau, prior to the addition of the next bolus dose
of Angeli’s salt. In a parallel series of experiments, hearts were
administered serial bolus doses of the equivalent volume of
10 mM NaOH, as a vehicle control.

Subsequent experiments were performed to examine the
mechanism of the haemodynamic effects of Angel’s salt in
the intact heart, in which dose–response curves to Angeli’s
salt were performed in the presence of various selective phar-
macological inhibitors, added to the reservoir of Krebs perfu-
sion buffer. The relative contribution of HNO and NO to the
actions of Angeli’s salt was investigated in the presence of
the HNO scavenger L-cysteine (4 mM), the NO scavenger
hydroxocobalamin (HXC, 0.1 mM) or the thiol DTT
(100 μM). Parallel experiments utilized the sGC inhibitor,
1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM),
the CGRP receptor antagonist CGRP8–37 (0.1 μM), or the Kv

channel blocker 4-aminopyridine (4-AP, 1 mM) to further
examine the mechanisms of Angeli’s salt actions. For com-
parison, dose–response curves to the pure NO donor
diethylamine-NONOate (DEA-NO) were also performed.

Data analysis
Changes in all haemodynamic variables induced by each
vasodilator dose were measured as the change (Δ) in each
response relative to that elicited by the vehicle control
(10 mM NaOH for Angeli’s salt). All results were expressed as
group mean ± SEM, with the number of independent experi-
ments denoted as ‘n’. Data analysis was performed using
Graphpad Prism® (version 5.0, La Jolla, CA, USA). Vasorelax-
ant responses were fitted to a sigmoidal logistic equation, to
derive the pEC50 (vasodilator dose eliciting 50% maximal
response, expressed as –log mol) and Rmax (maximal vasodila-
tor response). The coefficient of variation, R2, for vasodilator
responses was consistently >0.8 in all hearts studied. Dose–
response curves to Angeli’s salt in the absence and presence of
each pharmacological inhibitor were compared on two-way
ANOVA, with the Bonferroni post hoc test. Baseline haemody-
namic variables and the pEC50 and Rmax for Angeli’s salt in the
absence and presence of various inhibitors, were analysed
using one-way ANOVA with Dunnett’s post hoc test for multiple
comparisons. In all cases, P < 0.05 was considered statistically
significant.

Materials
Angeli’s salt, U46619, ODQ and DEA-NO were obtained from
Cayman Chemical Company (Ann Arbor, MI, USA). All other
reagents were purchased from Sigma Aldrich (St. Louis, MO,
USA).

All stock and working solutions of Angeli’s salt or
DEA-NO were prepared fresh daily in 10 mM NaOH, and kept
on ice until required. Aliquots of U46619 (1 mM in 100%
ethanol) were stored at −20°C, and were further diluted on
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the day of use in Krebs buffer. Stock solutions of ODQ were
prepared fresh daily (1 mM in 100% ethanol) with further
dilution in Krebs buffer. Aliquots of CGRP8–37 (0.1 mM in
distilled water) were stored at −20°C, with subsequent dilu-
tion in Krebs buffer on the day of use. L-cysteine, HXC, 4-AP
and isoprenaline solutions were all prepared in Krebs buffer.

Results

Angeli’s salt elicits HNO/sGC-dependent
vasodilator actions in the whole heart
The baseline characteristics of all buffer-perfused rat hearts
used in this study, at the end of equilibration, prior to com-
mencement of any interventions, are shown in Table 1.
Haemodynamic variables after the commencement of infu-
sion with pharmacological inhibitors and U46619 precon-
striction are also shown. Baseline coronary flow prior to
commencement of any interventions, as well as that imme-
diately following U46619 preconstriction, was generally com-
parable across all experimental groups. A representative
recording of all haemodynamic parameters on construction
of a dose–response curve to Angeli’s salt is shown in Figure 1.
In the presence of U46619 preconstriction, the HNO donor,
Angeli’s salt (10 pmol–10 μmol) elicited a dose-dependent
vasodilatation, with pEC50 (–log mol) of 8.55 ± 0.24 and Rmax

(mL·min−1) of 5.14 ± 0.69 (Table 2, Figure 2A). Significant
increases in coronary flow were evident with doses of Angeli’s
salt ≥ 10 nmol. The selective HNO scavenger L-cysteine
(4 mM, n = 6) caused a rightward shift in the dose–response
curve of the vasodilator actions of Angeli’s salt, with signifi-
cant reductions in both the pEC50 and Rmax. In contrast, the
selective NO scavenger HXC (100 μM, n = 5) not only failed to
blunt the vasodilator effect of Angeli’s salt, but actually
tended to enhance the vasorelaxant effect of Angeli’s salt
(Figure 2A). The thiol DTT (100 μM, n = 5) did not affect the
dose–response curve for Angeli’s salt.

As shown in Figure 2B, the selective sGC inhibitor, ODQ
(10 μM, n = 6) also caused a rightward shift in the dose–
response curve of the vasodilator actions of Angeli’s salt, with
significant reduction in the pEC50 (Figure 2B). The Rmax to
Angeli’s salt was not significantly affected by ODQ (Table 2).
Both the selective CGRP receptor antagonist CGRP8–37

(0.1 μM, n = 5) and the Kv channel inhibitor 4-AP (1 mM, n =
5) failed to affect the vasodilator actions of Angeli’s salt
(Figure 2B). Furthermore, serial bolus doses of 10 mM NaOH
vehicle failed to elicit significant haemodynamic response
(Figure 2B). As shown in Table 1, neither L-cysteine, HXC
alone nor other pharmacological inhibitors had any signifi-
cant effect on basal vascular function, although DTT tended
to enhance coronary flow and heart rate. For comparison, the
NO donor DEA-NO (10 pmol–10 μmol) elicited a dose-
dependent vasodilatation which was also shifted rightwards
by HXC (both n = 5, Figure 2C and Table 2).

Relative contribution of HNO/sGC (but not
NO) to the inotropic effects of Angeli’s salt
The vasorelaxant effect of Angeli’s salt was accompanied by
concomitant dose-dependent enhancement of myocardial
inotropic function. Significant increases in LVSP (Figure 3A),

LVDP (Figure 4A) and LV+dP/dt (Figure 5A), parameters of
cardiac contractile function, were evident from ≥10 nmol
Angeli’s salt. Both L-cysteine and DTT (but not HXC) mark-
edly blunted the effects of Angeli’s salt on each of LVSP
(Figure 3A), LVDP (Figure 4A) and LV+dP/dt (Figure 5A).
Maximal increases in parameters of cardiac contractility
induced by Angeli’s salt were suppressed by ∼60% in the
presence of L-cysteine. Angeli’s salt also tended to increase
heart rate at the highest dose studied (by 59 ± 7 beats per
min), this was unaffected by either L-cysteine or HXC.
Further, there was no evidence of arrhythmic events observed
at any time. Inhibition of sGC with ODQ also markedly
blunted (but did not abolish) the positive inotropic effect of
Angeli’s salt, on each of LVSP (Figure 3B), LVDP (Figure 4B)
and LV+dP/dt (Figure 5B), by ∼50%. In contrast, inhibition of
CGRP receptors or Kv channels failed to suppress the positive
inotropic actions of Angeli’s salt. Interestingly, the LV+dP/dt
response tended to be exaggerated by 4-AP. For comparison,
the NO donor DEA-NO elicited comparatively modest
increases in LVSP (Figure 3C), LVDP (Figure 4C) and LV+dP/dt
(Figure 5C), evident at higher doses of DEA-NO, which were
insensitive to HXC (both n = 5). None of these inhibitors
alone (L-cysteine, DTT, HXC, ODQ, CGRP8–37 and 4-AP)
affected these parameters of contractile function prior to the
construction of the dose–response curve to Angeli’s salt, as
shown in Table 1).

Contribution of HNO/sGC to the effects of
Angeli’s salt on cardiac relaxation
Angeli’s salt elicited dose-dependent enhancement of myo-
cardial lusitropic function, with progressive reduction in
LVEDP (Figure 6) and potentiation of LV-dP/dt (Figure 7).
These actions were blunted by L-cysteine, DTT and ODQ
(Angeli’s salt enhancement of LV-dP/dt was particularly sen-
sitive to these inhibitors), but not by HXC or 4-AP (both of
which tended to enhance the Angeli’s salt effect). CGRP8–37

was without effect on the cardiac relaxation response to
Angeli’s salt (Figures 6 and 7). None of these inhibitors alone
(L-cysteine, DTT, HXC, ODQ, CGRP8–37 and 4-AP) affected
these parameters of cardiac relaxation alone, prior to the
construction of the dose–response curve to Angeli’s salt
(Table 1).

Discussion

The key findings of the present study are that the HNO donor,
Angeli’s salt, elicits concomitant coronary vasodilator, ino-
tropic and lusitropic actions in the intact rat heart, all of
which are mediated by L-cysteine-sensitive, HNO-dependent
mechanisms, with a significant contribution mediated via
sGC. There appeared to be no role for extracellular oxidation
of HNO to NO, or for CGRP receptors or Kv channels in the
haemodynamic responses to Angeli’s salt. These results are
the first evidence that sGC may contribute, at least in part, to
the inotropic and/or lusitropic action of HNO in the intact
heart.

Our observations here that Angeli’s salt induces HNO/
sGC-mediated, dose-dependent vasodilatation in the intact
rat heart are consistent with previous reports in isolated large
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Figure 1
Representative dose–response curve to Angeli’s salt, showing effects on LV pressure (LVP), perfusion pressure (PP), heart rate (HR), coronary flow
and LV dP/dt.

Table 2
Sensitivity (pEC50) and maximal relaxation response (Rmax) for the dose–response curves to AS and DEA-NO on coronary flow, in the absence and
presence of selective inhibitors

Experimental group pEC50 (-log mol) Rmax (mL·min−1) n

AS 8.55 ± 0.24 5.14 ± 0.69 8

AS + L-cysteine 7.53 ± 0.18** 2.62 ± 0.44* 6

AS + HXC 9.12 ± 0.12 6.85 ± 0.47 5

AS + DTT 7.85 ± 0.40 5.65 ± 0.93 5

AS + ODQ 7.36 ± 0.29** 3.88 ± 0.52 6

AS + CGRP8–37 8.49 ± 0.26 4.76 ± 0.52 5

AS + 4-AP 8.40 ± 0.30 5.36 ± 0.85 5

DEA-NO 9.60 ± 0.18 8.82 ± 0.61 5

DEA-NO + HXC 8.56 ± 0.19## 4.77 ± 1.01## 5

*P < 0.05, **P < 0.01 versus AS alone and ##P < 0.01 versus DEA-NO alone.
AS, Angeli’s salt; DEA-NO, diethylamine-NONOate; HXC, hydroxocobalamin; LVDP, left ventricle diastolic pressure; LVEDP, left ventricle
end-diastolic pressure; LVSP, left ventricle systolic pressure; ODQ, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one
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conduit and smaller resistance-like vessels in vitro (Irvine
et al., 2003; Favaloro and Kemp-Harper, 2009), as well as in
the intact heart studied under conditions of constant flow ex
vivo (Favaloro and Kemp-Harper, 2007). Although coronary
vascular tone under basal, physiological conditions is largely
regulated by Kv channels (Leblanc et al., 1994; Shimizu et al.,
2000), we observed no role for Kv signalling in the vasodilator

response to Angeli’s salt in the rat coronary vasculature,
consistent with previous observations (Irvine et al., 2003;
Favaloro and Kemp-Harper, 2007). In contrast, the vasorelax-
ant actions of Angeli’s salt are mediated, in part, via Kv chan-
nels in the mesenteric circulation (Irvine et al., 2003; Favaloro
and Kemp-Harper, 2009), perhaps because of regional differ-
ences in K+ channel subtype distribution. Although KATP chan-
nels may also play a role in coronary vasodilatation in

Figure 2
Dose–response curves to Angeli’s salt (AS) (n = 8) on coronary flow
in the absence and presence of (A) the HNO scavenger L-cysteine
(4 mM, n = 6), the NO scavenger HXC (100 μM, n = 5) or the
reducing agent DTT (100 μM, n = 5); and (B) the sGC inhibitor ODQ
(10 μM, n = 6), the CGRP receptor antagonist CGRP8–37 (0.1 μM, n =
5) and the Kv channel inhibitor 4-AP (1 mM, n = 5). Serial bolus doses
of 10 mM NaOH vehicle are shown for comparison (n = 3). *P < 0.05,
**P < 0.01, ***P < 0.001 versus AS; two-way ANOVA with Bonferroni
post hoc test for multiple comparisons. (C) The dose–response curves
to DEA-NO (n = 5) on coronary flow in the absence and presence of
HXC (100 μM, n = 5) are shown for comparison.

Figure 3
Dose–response curves to Angeli’s salt (AS) (n = 8) on LVSP in the
absence and presence of (A) L-cysteine (n = 6), HXC (n = 5) or DTT
(n = 5); and (B) ODQ (n = 6), CGRP8–37 (n = 5) and 4-AP (n = 5). Serial
bolus doses of 10 mM NaOH vehicle are shown for comparison (n =
3). *P < 0.05, **P < 0.01, ***P < 0.001 versus AS; two-way ANOVA with
Bonferroni post hoc test for multiple comparisons. (C) The dose–
response curves to DEA-NO (n = 5) on LVSP in the absence and
presence of HXC (100 μM, n = 5) are shown for comparison.
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response to Angeli’s salt (Favaloro and Kemp-Harper, 2007),
this was not investigated in the present study.

Previous studies have suggested a potential contribution
of CGRP to the coronary vasodilator response to Angeli’s salt,
as described in the isolated rat heart studied under constant
flow conditions ex vivo (Favaloro and Kemp-Harper, 2007),
but not to the peripheral arterial or venous vasorelaxation, as
reported in a canine model in vivo (Paolocci et al., 2001).
Although we detected no contribution of CGRP-dependent

signalling to the vasodilator actions of Angeli’s salt in the
isolated rat heart studied under constant pressure conditions
ex vivo, the reason for this discrepancy remains unresolved.
Angeli’s salt co-releases both HNO and nitrite at physiological
pH (Miranda et al., 2005a), HNO rather than nitrite is likely to
mediate the vasodilator responses observed here. Firstly, the
HNO-selective scavenger, L-cysteine, markedly impaired
these responses, and secondly, nitrite has almost negligible
dilator activity in the rat coronary vasculature, with 15 000-
fold less potency than Angeli’s salt (Irvine et al., 2003;

Figure 4
Dose–response curves to Angeli’s salt (AS) (n = 8) on LVDP in the
absence and presence of (A) L-cysteine (n = 6), HXC (n = 5) or DTT
(n = 5); and (B) ODQ (n = 6), CGRP8–37 (n = 5) and 4-AP (n = 5). Serial
bolus doses of 10 mM NaOH vehicle are shown for comparison (n =
3). *P < 0.05, **P < 0.01, ***P < 0.001 versus AS two-way ANOVA with
Bonferroni post-hoc test for multiple comparisons. (C) The dose–
response curves to DEA-NO (n = 5) on LVDP in the absence and
presence of HXC (100 μM, n = 5) are shown for comparison.

Figure 5
Dose–response curves to Angeli’s salt (AS) (n = 8) on LV+dP/dt in the
absence and presence of (A) L-cysteine (n = 6), HXC (n = 5) or DTT
(n = 5); and (B) ODQ (n = 6), CGRP8–37 (n = 5) and 4-AP (n = 5). Serial
bolus doses of 10 mM NaOH vehicle are shown for comparison (n =
3). *P < 0.05, **P < 0.01, ***P < 0.001 versus AS; two-way ANOVA with
Bonferroni post hoc test for multiple comparisons. (C) The dose–
response curves to DEA-NO (n = 5) on LV+dP/dt in the absence and
presence of HXC (100 μM, n = 5) are shown for comparison.
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Favaloro and Kemp-Harper, 2007). Given that a residual,
modest Angeli’s salt-induced vasodilatation remains in the
presence of L-cysteine, we cannot rule out the possibility of
oxidation of HNO to NO under our experimental conditions.
However, the inability of the NO-selective scavenger HXC to
blunt the vasodilator response to Angeli’s salt suggests this is
unlikely, at least in the extracellular milieu. Intriguingly, this
vasodilator response was actually augmented in the presence

of HXC; whether this reflects a loss of endogenous NO and
thus an increased responsiveness of sGC to stimulation by
HNO was however not determined.

The positive cardiac inotropic and lusitropic actions of
HNO donors are well established, both in the intact heart in
vivo, as well as in isolated cardiomyocytes and trabeculae in
vitro (Paolocci et al., 2001; Tocchetti et al., 2007; Kohr et al.,
2010). We now confirm that the prototypical HNO donor,
Angeli’s salt, potently enhances both cardiac contraction and
relaxation in the intact rat heart ex vivo. These actions were

Figure 6
Dose–response curves to Angeli’s salt (AS) (n = 8) on LVEDP in the
absence and presence of (A) L-cysteine (n = 6), HXC (n = 5) or DTT
(n = 5); and (B) ODQ (n = 6), CGRP8–37 (n = 5) and 4-AP (n = 5). Serial
bolus doses of 10 mM NaOH vehicle are shown for comparison (n =
3). *P < 0.05, ***P < 0.001 versus AS on two-way ANOVA with Bonfer-
roni post hoc test for multiple comparisons. (C) The dose–response
curves to DEA-NO (n = 5) on LVEDP in the absence and presence of
HXC (100 μM, n = 5) are shown for comparison.

Figure 7
Dose–response curves to Angeli’s salt (AS) (n = 8) on LV)-dP/dt in the
absence and presence of (A) L-cysteine (n = 6), HXC) (n = 5) or DTT
(n = 5); and (B) ODQ) (n = 6), CGRP8–37 (n = 5) and 4-AP) (n = 5).
Serial bolus doses of 10 mM NaOH vehicle are shown for comparison
(n = 3). **P < 0.01, ***P < 0.001 versus AS on two-way ANOVA with
Bonferroni post hoc test for multiple comparisons. (C) The dose–
response curves to DEA-NO) (n = 5) on LV-dP/dt in the absence and
presence of HXC (100 μM, n = 5) are shown for comparison.
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markedly attenuated by both L-cysteine and DTT, specifically
implicating HNO. The positive inotropic and dilator effects of
Angeli’s salt are not likely to be mediated by co-release of
nitrite, as this has no appreciable effect on cardiomyocyte
contractility (Kohr et al., 2010). Early reports describing the
positive inotropic actions implicated the neuropeptide CGRP
at least in part in this mechanism of action, based on sensi-
tivity to the CGRP receptor antagonist, CGRP8–37 (Paolocci
et al., 2001; receptor nomenclature follows Alexander et al.,
2013c). CGRP itself elicits positive inotropic and lusitropic
effects via activation of cAMP/PKA/L-type Ca2+ channel
signalling (Huang et al., 1999). These actions are however
dependent on β-adrenoceptor signalling (Katori et al., 2005),
in contrast to those of HNO, which are β-adrenoceptor-
independent (Paolocci et al., 2003). Our results here are con-
sistent with the absence of a role for CGRP in the inotropic
and lusitropic actions of Angeli’s salt.

As the myocardial effects of Angeli’s salt are all evident
even at relatively low doses (e.g. from 10 nmol), concomitant
with doses required to elicit vasodilatation, this raises the
possibility that these myocardial effects are a secondary effect
to vasorelaxation, in accordance with the Gregg effect
(Westerhof et al., 2006). However, the vasodilator response
plateaus at ∼1 μmol, whereas the enhancement of LV contrac-
tility and relaxation induced by Angeli’s salt progress further
with increasing doses of the HNO donor, Angeli’s salt. Given
that previous reports suggest that the vasodilator actions of
Angeli’s salt are evident at markedly lower concentrations
(e.g. 0.1 μM) than required for effects on cardiomyocyte
function (e.g. 500 μM) (Favaloro and Kemp-Harper, 2007;
Tocchetti et al., 2007), it remains likely that Angeli’s salt-
mediated vasodilatation occurs at lower concentrations while
the contractile effect of Angeli’s salt occurs only at higher
concentrations.

The cardiac inotropic and lusitropic effects of HNO
donors have been traditionally attributed to cGMP-
independent mechanisms, through a thiol-mediated interac-
tion with the sarcoplasmic reticulum Ca2+-handling proteins,
RyR and SERCA (Tocchetti et al., 2007; Kohr et al., 2010).
These previous reports concluded that the myocardial actions
of HNO were cGMP-independent on the basis of an absence
of detectable increases in plasma cGMP in vivo (Paolocci et al.,
2001), as well as a perceived lack of sensitivity to ODQ
(Tocchetti et al., 2007). Of note, the only previous investiga-
tion of the role for cGMP in the cardiac inotropic and lusi-
tropic effects of HNO donors utilized isolated cardiomyocytes
rather than the intact heart, and the concentration of HNO
donor (1 mM) far exceeded that used for ODQ (10 μM)
(Tocchetti et al., 2007). ODQ is considered an oxidizer (rather
than a competitive inhibitor) of sGC, which irreversibly
inhibits the enzyme. There is however one report that suprap-
harmacological concentrations of Angeli’s salt (1 mM) may
still be able to stimulate any residual sGC still in its reduced
state (Zeller et al., 2009). In the present study, the effects of
HNO on LV contractility and relaxation were determined in
the intact heart, concomitantly with its vasorelaxant effects.
Administration of ODQ under these conditions significantly
attenuated (but did not abolish) the LV inotropic and lusi-
tropic effects of Angeli’s salt, suggesting for the first time that
HNO may mediate a part of these actions via sGC/cGMP-
dependent signalling.

Although the effects of both NO and sGC on cardiac
contractile function have been previously examined in a
broad range of scenarios, no consensus has yet been reached,
with negative inotropic (Balligand et al., 1993; Brady et al.,
1993; Grocott-Mason et al., 1994; Weyrich et al., 1994;
Mohan et al., 1995; Kojda et al., 1996; Sandirasegarane and
Diamond, 1999; Muller-Strahl et al., 2000; Gonzalez et al.,
2008; Cawley et al., 2011; Derici et al., 2012), positive ino-
tropic (Klabunde and Ritger, 1991; Smith et al., 1991; Kojda
et al., 1995; 1996; 1997; Sarkar et al., 2000; Layland et al.,
2002; Langer et al., 2003) or no change observed (Ritchie
et al., 2006; 2009). Indeed, the relationship between NO/sGC
and myocardial force may be differentially modulated
by concentration, whereby smaller increases in NO/sGC
levels elicit positive inotropic effects either secondary to
phosphodiesterase-3 inhibition (elevating cAMP), while high
concentrations elicit a cGMP-mediated negative inotropic
effect, perhaps secondary to formation of S-nitrosothiols on
key cardiomyocyte Ca2+-handling proteins such as RyR,
SERCA and phospholamban (Smith et al., 1991; Kojda et al.,
1996; 1997; Zahradnikova et al., 1997; Paolocci et al., 2000;
Layland et al., 2002; Langer et al., 2003; Gonzalez et al., 2007;
2008; Rastaldo et al., 2007; Wang et al., 2008; Ziolo, 2008). It
is also likely that distinct cardiomyocyte pools of cGMP also
contribute to this lack of consensus with respect to the nature
of any possible effect of NO/sGC on inotropic mechanisms, as
has been suggested for natriuretic peptide receptors (Qvigstad
et al., 2010). There is however consensus with respect to
cardiac relaxation, which is enhanced by NO (Paulus et al.,
1994; Carnicer et al., 2013). In our study DEA-NO (which
releases two NO molecules per molecule of DEA-NO) did tend
to enhance systolic function, but this was more modest than
that achieved by the equivalent concentration of Angeli’s salt
(despite it only releasing a single HNO molecule per molecule
of Angeli’s salt). We have previously demonstrated that HNO
donors such as Angeli’s salt and IPA-NO do not increase
cardiomyocyte cAMP or CGRP content (Lin et al., 2012;
Irvine et al., 2013).

In our hands, the thiols L-cysteine and DTT were similarly
effective at blunting the Angeli’s salt enhancement of ino-
tropic and lusitropic function at the concentrations used
(4 vs. 0.1 mM). In contrast, only L-cysteine (and not DTT)
blunted the vasodilatation response. L-cysteine is conven-
tionally used as an HNO scavenger (Tocchetti et al., 2011),
blocking both Angeli’s salt-induced coronary vasodilator and
positive inotropic actions by removing available HNO. HNO
is considered to enhance cardiac contractility and relaxation
by inducing a reversible oxidation of key thiol residues on
specific cardiomyocyte Ca2+ cycling/sensitization proteins
(e.g. RyR and SERCA), without altering net thiol redox status
(i.e. GSH:GSSG ratio; for review see Fukuto and Carrington,
2011; Tocchetti et al., 2011). Our findings with both thiols are
perhaps consistent then with the Angeli’s salt-induced
vasodilatation dependent on HNO and sGC (but not proteins
implicated in Ca2+ cycling/sensitization), whereas its
enhancement of cardiac contractility and relaxation may be
mediated at least in part by both sGC-dependent and sGC-
independent mechanisms (such as HNO-mediated oxidation
of RyR and SERCA).

The thiol modification induced by HNO is quite distinct
to that induced by NO. NO leads to S-nitrosation via an
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indirect action, as it is initially oxidized to nitrous anhydride,
which then reacts with protein thiol groups to form protein-
SNO (Lima et al., 2010; Heinrich et al., 2013). In contrast, the
interaction of HNO with thiols is direct and thus extremely
rapid (Jackson et al., 2009), first generating the intermediate,
N-hydroxysulphenamide, which can then either be irrevers-
ibly arranged to form N-hydroxysulphenamide, or alterna-
tively can reversibly interact with an additional thiol, to form
a disulphide and hydroxylamine. The predominant thiol
modification induced by HNO is thus considered formation
of a sulphinamide or disulphide, rather than S-nitrosation
(Fukuto and Carrington, 2011). As Angeli’s salt only releases
NO at a very acidic pH (Miranda et al., 2005b), together with
our finding that the coronary vasodilator action of Angeli’s
salt was not diminished in the presence of the NO scavenger
HXC, it is highly unlikely that Angeli’s salt will form S-NO in
the presence of thiols such as L-cysteine. Thus, in contrast to
NO donors, Angeli’s salt dose-dependent enhancement of
cardiac contractility and relaxation is unlikely to result from
S-nitrosation of Ca2+-handling proteins.

In conclusion, the HNO donor Angeli’s salt elicits dose-
dependent enhancement of LV systolic and diastolic func-
tion, concomitant with vasodilatation, in the intact rat heart.
These effects are all L-cysteine-sensitive and mediated by
HNO, with contributions from both sGC-dependent and
s-GC-independent mechanisms. No role for CGRP, NO or Kv

in Angeli’s salt cardiac effects was evident. HNO thus acutely
modulates both LV contractile function and LV relaxation,
while concomitantly unloading the heart. These properties,
in combination with the powerful antihypertrophic and
superoxide-suppressing actions we have previously demon-
strated, may favour HNO donors as a potential strategy for
managing heart failure (alone or in addition to standard
care).
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