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Abstract

Phenotypic variation, including that which underlies health and disease in humans, results in part from multiple interactions
among both genetic variation and environmental factors. While diseases or phenotypes caused by single gene variants can
be identified by established association methods and family-based approaches, complex phenotypic traits resulting from
multi-gene interactions remain very difficult to characterize. Here we describe a new method based on information theory,
and demonstrate how it improves on previous approaches to identifying genetic interactions, including both synthetic and
modifier kinds of interactions. We apply our measure, called interaction distance, to previously analyzed data sets of yeast
sporulation efficiency, lipid related mouse data and several human disease models to characterize the method. We show
how the interaction distance can reveal novel gene interaction candidates in experimental and simulated data sets, and
outperforms other measures in several circumstances. The method also allows us to optimize case/control sample
composition for clinical studies.
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Introduction

The rapid progress of sequencing technology, in both accuracy

and cost, has enabled comprehensive Genome-Wide Association

Studies (GWAS) which have identified many genetic contributions

to complex phenotypes in humans (see www.genome.gov) and

continues to be productive. The primary focus of GWAS is the

reliable extraction of relevant genetic markers such as SNPs and

indels that are associated with a complex phenotype. Numerous

studies of gene regulatory networks, protein interaction networks,

and other biological networks have made it clear, however, that

genetic interactions are widespread and therefore important for

full genetic analysis [1]. Moreover, complex, non-additive genetic

interactions are very common and are potentially critical in

determining phenotypes [2–5]. It is clear that the missing heredity

problem has at least part of its solution in the interaction effects

[6]. GWAS and similar studies, including QTL analyses, use

statistical methods based on correlation or likelihood and are

aimed primarily at detecting single locus effects on a phenotype.

These statistical methods usually assume additive models of multi-

gene effects, representing a compound effect of multiple genes on a

phenotype as a sum of the effect of each individual gene [7,8].

Recently, new methods, based on information theory, that are

aimed specifically at detecting complex, non-additive interactions

have been proposed [9–11]. Typically these methods consist of

two major components, a measure of non-additive interaction

defined via information theory, such as interaction information [9]

or ‘‘total correlation information’’ [10], and an algorithm, such as

multifactor dimensionality reduction [12] that searches for

interactions across a large set of genetic markers. In this paper

we focus primarily on the first component, a normalized

interaction measure, which we call Interaction Distance (ID),

leaving the specific, detailed strategy of application of the measures

outside of the scope of this paper.

Information theory based methods have the advantage of being

intrinsically model-free and parsimonious and thus offer an

unbiased and potentially statistically powerful approach to

detection of genetic interactions. Moreover, even in situations

where the sample size is not large enough for making statistically

confident assessments, these methods can often be used to filter

candidate interactions and to generate useful hypotheses [9]. The

application of information theory based methods to human data,

however, is still in its infancy and these methods are yet little

tested. In this paper we show that small minor allele frequencies

(MAFs) affect the current interaction measures sharply and, as a

result, the downstream interaction search is strongly biased

towards genetic markers with higher MAFs. Note that missing

data and noise have similar biasing consequences.

Here, we propose a novel genetic interaction measure, called

Interaction Distance, which uses information theory concepts with

normalization and helps to address the problem of low MAFs. We

show that our measure can improve the quality and robustness of

the detection of modifier genes and synthetic effects on phenotype.

We apply ID to several examples (yeast, mouse, and simulated

human data) with increasing biological and computational

complexity and evaluate the results using statistical permutation

tests.
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Results

The Approach
In human genetics a typical dataset consists of a large

heterogeneous population characterized genetically by a series of

polymorphisms or genetic markers, and phenotypically by a set of

specific trait variations. To decipher the relationship between

genetic markers and to construct a gene regulatory network we

have to detect the dependency of the phenotypes on multiple

variants in the population. Formally, detecting a genetic interac-

tion corresponds to detecting a statistical dependence of Nz1
random variables, X1, . . . ,XN ,Y , representing N interacting

genetic markers and the phenotypic trait. In the most common

case of two interacting genes, the corresponding statistical

dependence then involves three variables, X1,X2,Y : We distin-

guish three kinds of genetic interactions: interactions between QTLs

with marginal effects, modifier interactions, and synthetic interactions. The

first type spans only loci with individual effects on the phenotype

and are the easiest to detect. Modifier interactions, on the other

hand, link genetic markers, some of which exhibit marginal effects

and some are markers with no effect by themselves, called

modifiers of the significant loci (QTLs). The most difficult kind of

interaction to detect is synthetic, which links genetic markers that

have no marginal effect on the phenotype when present alone, but

have an effect when present together. Formally, this corresponds

to having no pairwise dependence between either gene variable,

Xi, and the phenotype, Y , but a collective dependence among all

three variables X1,X2,Y . We use the term genetic interaction as a

general short term referring to the interaction among genetic

variants. Note that while we fully recognize the differences among

the terms locus, QTL, modifier locus and gene, we use the term

‘‘genetic interaction’’ in the interest of brevity where the meaning

is sufficiently clear.

Synthetic and modifier interactions are the focus of this work. In

order to identify these interactions we have devised the Interaction

Distance (ID) measure that extends the concept of interaction

information (II) first proposed by McGill [13]. Interaction

information has been applied in many fields and recently was

successfully used in the analysis of genetic interactions [9,10].

We define interaction information for three variables, X1,X2,Y ,
in terms of the mutual information I X1; X2ð Þ by the recursive

relation

I X1; X2; Yð Þ~ I X1; X2DYð Þ{I X1; X2ð Þ: ð1Þ

The conditional entropy, H Y DXið Þ, is a measure of dependence

of Y on a single variable Xi: Similarly, H Y DX1,X2ð Þ can measure

dependence of Y on a pair of variables X1 and X2. Although

H Y DX1,X2ð Þ implicitly accounts for the interaction between X1

and X2, it is not suitable for interaction detection since its value

corresponds to a cumulative effect of both individual variables as

well as a pair of variables on the phenotype variable. This is

illustrated by the application to yeast and mouse data in Figure 1

and Figure 2.

In contrast to the mutual information, which is a non-negative

quantity, the interaction information can take both positive and

negative values. With our sign convention positive values of the

interaction information indicate presence of an informational

‘‘synergy’’, or collective dependence among X1, X2, and Y : This

means that the pair of variables (X1,X2) together contains more

information about Y than X1 and X2 do when considered singly

[13–15]. On the other hand, negative values suggest that X1 and

X2 are redundant to some extent.

The interaction information can then, in principle, indicate

synergy among variables. However, this measure is affected

significantly when the entropy of the single variables is extreme.

This situation arises in genetics, for example, when the minor

allele frequency is particularly low, making the entropy also low.

To account for this situation we adjust the interaction information

by normalizing its components and define interaction distance as a

new measure.

Recall that two random variables, X1 and X2, are said to have a

synergistic effect on the third variable, Y , iff the amount of shared

information between X1 and X2 increases when conditioning on

Y : This is expressed in Equation 1. Note that the level of the

shared information between variables in Equation 1 is expressed in

terms of the unnormalized mutual information. We can replace

the mutual information with the information distance [16] that

normalizes the mutual information. The information distance

between X1 and X2 is defined as

d X1; X2ð Þ~1{
I X1; X2ð Þ

max H X1ð Þ,H X2ð Þ½ � ð2Þ

and its conditional version is

d X1; X2DYð Þ~1{
I X1; X2DYð Þ

max H X1DYð Þ,H X2DYð Þ½ � : ð3Þ

Note that, when the correlation between pairs of variables grows,

the mutual information grows, and the information distance

decreases.

Following the notion of recursion as used in Equation 1 we use

(2) and (3) to define the interaction distance (ID) between X1 and

X2 given Y :

ID:d X1; X2.Yð Þ~d X1; X2ð Þ{d X1; X2DYð Þ: ð4Þ

Unlike Equation 1, we subtract the conditional distance from

the unconditional here to maintain the convention we adopted for

the interaction information that a positive value of an interaction

measure means a synergistic effect, while a negative value indicates

redundancy. Note that, again unlike the interaction information,

the interaction distance is not symmetric; i.e., it depends on the

choice of the third variable. Three-way symmetry is an elegant

property but it is not a necessary feature for such a measure. ID

has been designed as a tool for genetic applications where the two

genetic markers and the phenotype are clearly distinguished. The

third variable in our case is the phenotype throughout the entire

analysis. Then, ID is clearly symmetric with respect to X1 and X2:
A striking difference between ID and the interaction informa-

tion is that ID is a normalized measure. Normalization allows ID

to adjust its information components so as to tackle the problem of

small minor allele frequencies as we will illustrate.

The current section has presented the basic idea of interaction

distance. More detailed discussion of the theoretical properties of

ID and a further exposition of the theory are provided in the

Methods section.

Applications to Genetic Data
To illustrate our approach we applied ID to diverse genetic data

sets. First we considered data from a relatively simple genetic

system, the budding yeast Saccharomyces cerevisae, then we looked at a

somewhat more complex system, the mouse. I.e., the genetics of
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the crosses are equivalent between yeast and mouse in general, but

the number of states in the genetic loci of the progeny is two in

yeast (haploid progeny are analyzed) and three in the mouse

(diploid progeny). Finally we use models to simulate various

characteristics of human genetics that are accessible using ID. The

exposition and comparison of these applications is the central

theme of this paper.

Analysis of data from a yeast cross. We analyzed a data

set of the genetics of yeast sporulation efficiency [17]. Not only

does this data set provide us with a well-defined genetic system and

a complex phenotype, but also it has been extensively analyzed by

Cohen’s group, allowing us to compare ID results with the

previous findings.

The dataset consists of 374 yeast progeny of a cross between two

Saccharomyces cerevisae strains with very different sporulation

efficiencies (3.5% and 99%). The sporulation efficiency of each

strain was characterized by a real value between 0 and 1, which we

binned into four integer values. We considered two binning

strategies: optimal and uniform (see Methods and the discussion

below). Each strain was genotyped at 225 markers distributed

along the genome. Each marker is a binary variable since the

strains from the cross are haploid and the alleles correspond to

either parent A or parent B.

Initially we focused on single gene effects by calculating the

conditional entropy H Y DXið Þ for the set of strains, where Y and

Xi are the phenotype and a genetic marker (see Figure 1A). The

three spikes in Figure 1A indicate the location of the single

markers carrying significant information about the phenotypes.

These are exactly the three quantitative trait loci (QTLs)

previously identified in [17]. We also detect one of the two

weaker QTLs, marker 7.17– the 17th marker on the 7th

chromosome [17].

For genetic interaction analysis we calculate both the condi-

tional phenotype entropy H Y DXi,Xj

� �
and ID~d X1; X2.Yð Þ for

all pairs of markers, i,j~1, . . . ,225, (Figures 1B–D). Recall that

the conditional entropy H Y DXi,Xj

� �
takes into account both single

effects of individual markers and pair-wise interactions. Since there

are three QTLs with strong marginal effects, plotting a heat map

of H Y DXi,Xj

� �
reveals three main stripes corresponding to these

QTLs. Note that presence of some variation along the stripes

indicates possible modifier interactions with markers that further

decrease the phenotype entropy (Figure 1B). Note also that

Figure 1. Genetic interactions in yeast. A) Conditional entropy of the phenotype given a single marker, H Y DXið Þ. B) A heat map of conditional
entropy H Y DXi,Xj

� �
of the phenotype given two markers. Notice stripes caused by the markers with strongest single effects that make detection of

pairs with small effect difficult, especially for a large number of markers. C) Interaction distance between marker 7.9, which is the marker with the
strongest marginal effect, and every other marker. The ‘‘negative peak’’ shows that neighborhood markers contain redundant information. Most
values fluctuates around zero since they do not interact with 7.9. D) A heat map of interaction distance for all pairs of markers and the phenotype,
d X1; X2.Yð Þ. Note that there are no stripes anymore.
doi:10.1371/journal.pone.0092310.g001
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presence of individual spots of low entropy in a heat map of

H Y DXi,Xj

� �
that are not part of a stripe would indicate possible

synthetic interactions (see Figure 2). QTLs with strong marginal

effects make detection of pairs of markers with small effect on

phenotype using H Y DXi,Xj

� �
difficult. We use ID to disentangle

the interaction signal from the single marker effects. Since

d X1; X2.Yð Þ equals zero if either Xi or Xj are independent from

Y : ID masks some of the single gene effects and helps identify two-

gene effects. The ID heat map (Figure 1D) clearly shows that the

effect of three major QTLs is reduced, leading to a much clearer

characterization of genetic interactions. Figure 1C shows a slice

across the ID heat map for a marker 7.9 that has a redundant

effect with markers 7.8 and 7.11 and a synergetic effect with a

marker 10.14.

We calculated the interaction distance after binning the

phenotype using two different binning strategies, uniform and

optimal (see Methods for more details on statistical tests), and

evaluated the significance of interactions using four permutation

tests with increasing stringency. Table 1 shows the most interesting

pairs. Here we used the uniform binning of the phenotype and the

most stringent statistical Test III, which accounts for possible

marginal effects of markers. In order to explore the data further we

used different binning strategies which reveal more significant

pairs of markers (see Methods and Table S1 for more details).

Note that although the number of strains is not large enough to

allow for consistent detection of subtle interactions (with signifi-

cantly low p-values,) the interaction distance can be used as an

effective filter for identifying the most interesting pairs that can be

subjected for further analysis. We can compare our findings from

Table 1 with a recent paper of Cohen’s group [18], in which ten

additional QTLs with low effects on the sporulation were detected.

This leads us to a set of candidate interactions with a likely effect

on the phenotype. A detailed biological evaluation of these results

is beyond the scope of this paper, but our goal is to demonstrate

that methods based on ID can detect subtle effects that are most

likely to be missed by other methods. These then can deliver

biological hypotheses that are consistent with the most current

biological knowledge. We present our candidate interactions in

Figure 2. Genetic interactions in body weight phenotype of mouse. The first row, panels (A–C), shows results of the genetic analysis of the
body weight for the full cohort of 303 mice (no sex division). Panel (A) shows conditional entropy H Y DXið Þ, (B) shows H Y DXi ,Xj

� �
and (C) shows the

interaction distance. The strongest effect on the phenotype in this case comes from markers located on the Y chromosome present only in males.
This is expected since the weight is strongly correlated with the sex. Rows (D–F) and (G–I) show data for female and male subpopulations
respectively. A comparison of (D) and (G) reveals sex specific QTLs affecting the phenotype. Panels (B), (E) and (H) exhibit the characteristic stripe
pattern, which masks the more subtle synthetic and modifying interactions. Finally, (C), (F) and (I) plot the ID scores for all pairs of markers. The red
spots in panels (C, F, I) and blue/yellow spots in panels (B, E, H) point out potentially interesting pairs, which are a subject of further investigation.
doi:10.1371/journal.pone.0092310.g002
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three groups: QTL interactions, modifier interactions, and

synthetic interactions.

Interactions between QTLs. We first analyze interactions

among the three markers with strong single effects on sporulation

(7.9, 10.14, and 13.6). The top three pairs of Table 1 show the

interaction distance for the corresponding pairs of QTLs. We

found two strong interactions, between markers 7.9 and 10.14 and

between 13.6 and 10.14, that have been previously detected

[17,19]. Note that the second pair illustrates the importance of

different binnings: its p-value in case of uniform binning is

4.561025 as shown in Table 1, while the optimal binning results

in a more stringent p-value of 461027 (see Table 2).

Although at first one might suspect some redundancy between

markers 7.9 and 13.6, due to a negative ID value (20.014), a

careful statistical analysis indicates that this ID value is not

significant (p-value = 0.39) and hence there is no interaction

between 7.9 and 13.6.

Interactions between QTLs and their modifiers. We now

analyze interactions, in which a marker with no single effect on the

phenotype affects one of the three strong QTLs. Pairs 4–8 of

Table 1 are some of the most interesting modifier interactions. For

example, a possible interaction between marker 4.22 and QTL

10.14 (pair 8, Table 1) is particularly interesting because there are

numerous genes related to sporulation efficiency located in the

vicinity of 4.22 (chr. 4 - 1264114, www.yeastgenome.org). There

are other markers that modify QTL 10.14, such as markers 16.2

and 16.7 (pairs 4 and 7, Table 1). Similarly, marker 14.9 interacts

with 7.8, which is located about 55 Kbp from 7.9 corresponding to

the QTL with the strongest effect on sporulation efficiency. It is

unclear whether the interaction (14.9, 7.8) is related to the strong

effect of 7.9 or is an interaction involving a small effect QTL

reported in [18], which is located almost exactly between 7.8 and

7.9 (which are 55 Kbp apart).

Synthetic interactions. Finally, we analyze several interac-

tions between markers that exhibit no marginal effects on

Table 1. Interaction distances and the p-values from Test III for selected pairs of markers.

No. Pair ID P-value

1 7.9, 10.14 0.20 ,1027

2 13.6, 10.14 0.043 4.5*1024

3 13.6, 7.9 20.014 0.39

4 10.14, 16.2 0.048 2.3*1024

5 7.8, 12.13 0.060 0.016

6 7.8, 14.9 0.028 0.0053

7 10.14, 16.7 0.015 0.078

8 4.22, 10.14 0.044 4.9*1025

9 9.7, 14.11 0.063 8*1027

10 2.12, 4.23 0.04 3.5*1024

The pairs were chosen to illustrate different aspects of practical use of interaction distance. Uniform binning of the phenotype was used to generate the table. An
extended version of this is presented in Table S1.
doi:10.1371/journal.pone.0092310.t001

Table 2. Comparison of p-values of example pairs for different tests in the yeast example.

Pair ID Test 0 Test I Test II Test III

7.9, 10.14 0.20 (U) ,1027 ,1027 ,1027 ,1027

13.6, 10.14 0.043 (U) 3.9*1025 7.9*1025 2.6*1024 4.5*1024

13.6, 7.9 20.014 (U) ,1026 ,1026 2.4*1024 0.39

10.14, 16.2 0.048 (U) 4*1025 2*1025 2.6*1024 2.3*1024

7.8, 12.13 0.060 (U) 3*1026 8*1025 0.013 0.016

9.7, 14.11 0.063 (U) ,1026 ,1026 ,1026 8*1027

9.6, 14.11 0.044 (U) 6*1025 6.6*1025 7.8*1025 8.3*1025

7.9, 10.14 0.17 (O) ,1027 ,1027 ,1027 ,1027

13.6, 10.14 0.073 (O) ,1026 ,1026 ,1026 1*1026

13.6, 7.9 20.015 (O) ,1026 ,1026 1.8*1024 0.76

7.8, 14.9 0.046 (O) 2.8*1025 3.4*1025 6.8*1025 7.2*1025

1.2, 7.15 0.046 (O) 3.3*1025 7.6*1025 9.5*1025 8.6*1025

10.14, 16.7 0.045 (O) 4.4*1025 5.3*1025 7*1025 7.1*1025

2.12, 4.23 0.044 (O) 4.6*1025 1.2*1024 1.1*1024 1.1*1024

Symbols U and O stand for uniform and optimal binning respectively.
doi:10.1371/journal.pone.0092310.t002
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phenotype. For example, the pair 9.7, 14.11 (pair 9, Table 1) has

the second largest ID value in the current data set (only the

interactions between 10.14 and 7.9 and their neighbors have

higher ID scores.) The pair 2.12, 4.23 (pair 10, Table 1) is

particularly interesting for two reasons: i) we have identified

marker 4.22 as a modifier of a QTL 10.14, and ii) a marker

located between 4.22 and 4.23 has been reported in [18] as a small

effect QTL (the distance between 4.22 and 4.23 is about 98 Kbp

and these markers are correlated). We thus conclude that this

region of chromosome 4 has substantial genetic determinants of

sporulation efficiency. All the dependencies involving 4.22 and

4.23 are especially interesting to us.

So far, we have been discussing pairs with the highest ID values.

Since in this example we suggest to use ID as a filtering tool, we

decided to extend our analysis to the top hundred pairs based on

ID scores. We compared these pairs with findings of [18]. We

found several possible candidates for interactions in this region

(e.g., 4.15 with 15.10, 15.11 and 15.12; 4.16 with 15.1; 4.13 with

13.8). This suggests that this region of chromosome 4 may contain

a cluster of small effect QTLs. This region of chromosome 4

exhibits a number of connections to chromosome 15 which has, to

our knowledge, never been reported in the context of the

sporulation efficiency.

Overall, the comparison with results from [18] shows that the

interaction distance is a useful tool for detecting genetic

interactions and QTLs with small effects on the phenotype, and

can provide new biological hypotheses that may be tested in the

future.

Analysis of data from a mouse cross. We next apply ID to

a more complex biological system – a mouse cross. There are

several sources of increased complexity in the mouse system (as

compared to yeast): i) phenotype data is more subtle and therefore

noisier and harder to bin, ii) data sets are typically smaller (due to a

limited number of progeny), and iii) the genotype data is three-

valued (unlike the two valued haploid yeast genotypes) – QTLs can

be homozygous (AA and BB) or heterozygous (AB). All these

differences can cause a lack of statistical power when searching for

interactions between small effect QTLs.

The data set, kindly provided by Jake Lusis [20,21], consists of

334 mouse progeny of an F2 intercross derived from the inbred

strains B6 and C3H on an apolipoprotein E null background.

Several phenotypes associated with metabolic syndrome of each

strain were characterized. In this example we analyzed the

phenotypes LDL cholesterol level and body weight. Due to the sex

difference effects on weight, we considered male and female

weight separately. Thus four cases were analyzed: LDL, W

(weight), MW (male weight) and FW (female weight). All the

phenotypes were uniformly binned in two bins with the median as

the boundary. Each mouse strain was genotyped at 1285 markers

(SNPs), where each marker is a variable that takes three values

(AA, BB, AB).

As for the yeast analysis, we start with the analysis of the

conditional phenotype entropy H Y DXið Þ to detect dependence of

the phenotype on a single genetic marker for all mice, and separate

groups by sex. Figure 2A,D,G illustrates this entropy applied to

weight. Notice that due to a large sex difference of weight, all the

markers from the sex chromosome Y are detected as ‘‘QTLs’’

when we considered the entire population of mice (Figure 2A). To

analyze the compound influence of two markers on the phenotype

we compute H Y DXi,Xj

� �
: A heat map of H Y DXi,Xj

� �
(Figures 2B,

E, H) shows a structure of stripes corresponding to QTLs with

major effect on the phenotype. Notice that the stripes are not

uniform and the variation in the intensity of the stripe corresponds

to possible modifier interactions with these QTLs. Moreover, the

heat map reveals numerous spots separate from the stripes that

correspond to possible synthetic interactions. Since H Y DXi,Xj

� �
detects a combination of both single gene effects and pair-wise

interactions, we use ID to extract genetic interactions.

We computed ID values for all pairs of markers and selected the

top pairs based on p-values and the missing data threshold (see

Methods for details). Although these criteria are strict, resulting in

selection of a very small subset of candidate pairs, they lead to

interesting observations and frame useful hypotheses. Table 3

shows several interesting interaction candidates for LDL, FW, and

MW (see also Table S2, Table S3 and Table S4 for more details).

Notice that p-values are not as low as in the yeast sporulation

example above. This is likely due to a smaller number of samples

and higher numbers of possible QTL states (the marker density is

substantially higher than in yeast.) Nevertheless, we argue that ID

can be used as an effective filter for finding pairs of markers that

may be interesting for further study. One major difference we

noted between the mouse and yeast examples is that in the mouse

case almost all top scoring pairs are synthetic interactions. The

only interaction between two strong QTLs was detected for the

LDL phenotype. There are also only one or two modifier

interactions in each phenotype (see Table 3).

Researchers from the Lusis lab characterized this mouse cross

for 27 different phenotypes. In particular, they included fat mass

[20] and arterial lesion size [21], and detected numerous QTLs

with strong marginal effects. We compared these QTLs with our

ID results. Note that although we considered different phenotypes,

they are measurements of the same biological system under the

same conditions. Moreover, we observed a very strong correlation

between fat mass and weight. Therefore, it is interesting to note

that some of the same QTLs appear in different phenotype

contexts.

ID detects locus 388 interacting with loci 454 in LDL and 281

in MW (see Table 3). Although neither of these three markers have

single gene effects on MW or LDL level, marker 281 has been

recognized as a QTL strongly affecting fat mass [20]. We conclude

that locus 388 is a strong candidate for further investigation

relevant to LDL level, body weight and fat mass. Other results of

potential interest include marker 269 that interacts with 791 in

MW and 691 in LDL level, and marker 57, a QTL affecting LDL

level, that interacts with markers 135 and 148 in MW. These loci

have not been noted in previous work [20,21] and such double

interaction signals in various phenotypes are highly suggestive.

Prior results show that locus 361 is recognized as a QTL

strongly affecting the arterial plaque lesion size [20,21]. Using ID

we detected an interaction between loci 362 and 746 in MW (there

is also a weaker interaction between 361 and 746). Moreover,

marker 363 has a clear effect on male weight. This suggests that

region [361–363] of chromosome 4 (the distance between markers

361 and 363 is about 5 Mbp) is important in the context of

phenotypes of our interest. Interactions of 746 with markers from

this region make it potentially interesting for further study, which

can shed some light on the genetic effects caused by these regions

of the genome. Several similar ID results include interactions in

FW between markers 773 and 68–69 (two highly correlated

markers that are about 1.5 Mbp apart) corresponding to the

strongest QTL of the fat mass [20], and an interaction in LDL

between markers 96 and 934, which is the QTL with the strongest

marginal effect on the MW phenotype. For more examples see

Tables S2–S4.

Markers detected in the previous work appear prominently in

the set of interactions for weight and LDL detected using ID. In

other words, our ID-based analysis provides evidence that strong

effect QTLs in one phenotype can have significant effects on other
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phenotypes by participating in additional interactions. Moreover,

these examples demonstrate that results provided by the analysis

based on the information theory measure ID can lead to biological

hypotheses for further investigation.

Analysis of simulated human data. We increase further

the complexity of the system considered now and apply ID analysis

to human data. Our aim here is to carefully consider different

challenging properties of human data and explore the modifica-

tions required for ID to handle them. The primary challenges are

the variations in allele frequency, and the high levels of diversity

encountered. To have close control of the data parameters, we use

simulated data obtained from several well-established models

representing pairwise interactions. For comparison, we simulta-

neously apply interaction information (II), a non-normalized

measure previously used for genetic data filtering [9,10]. To

enable the reader to reproduce these results and apply presented

tools to their data we added Matlab scripts as a supporting

material file (Code S1).

Most human genetic studies are medically motivated. It is

increasingly evident that most disease phenotypes involve complex

genetic interactions [1,22], despite the predominance of GWAS,

limited to single-gene effects and additive pair-wise interactions.

The relatively small size of these data sets and difficult sampling

issues (case-control ratios, population structures) render most

approaches to identify multi-gene effects, extremely difficult.

Moreover, as opposed to genotypes from intercrosses of model

organisms, human genetic data, mostly from populations of

unrelated individuals, consists of SNPs with non-uniform, and

highly heterogeneous allele frequencies. It is well known that many

disease-related genetic variants have low minor allele frequencies

(MAFs): the range varies between 0.5% and 50% (see [23–25] and

Table 1 from [22]). For example, MAFs of three causal variants of

Crohn’s disease detected by GWAS are below 5% (4.1% 1.9% and

1.5%), and MAFs of variants related to sick sinus syndrome and

those related to ovarian cancer are reportedly below 1%. In the

analysis of genetic interactions, or QTLs, in human populations,

SNPs with divergent and often times low MAFs are problematic,

since they make detection and comparison of signals from SNPs

challenging. Note also that the MAF is calculated from the original

population. However, when we construct a case–control data set,

where the number of cases is usually about 50%, the actual allele

frequency may be considerably different.

To illustrate and benchmark the use of ID and II, we use several

well-established models for pairwise genetic interactions [9,26].

Specifically, we focus on disease models M15, M78, and M84 [26]

and their modifications (Figure 3 and Figure 4). These models

represent various ways the allele combinations of two subject SNPs

can affect the phenotype. The two SNPs were assumed to be in

linkage equilibrium. M15 models a modifying interaction where

only one marker alone has a marginal effect on the phenotype.

Models M84 and M85 illustrate that even if both markers have

marginal effects, detecting an interaction between them may be

difficult. The penetrance functions in the matrices in Figures 3 and

4 (most of which are binary) represent the probability of a disease

phenotype occurring for a given combination of alleles. In the case

of the models M15, M78, and M84, the probabilities are zero or

one, reflecting zero or full penetrance. In the modified models we

reduced the probability values corresponding to more variable

penetrance effects. We consider effect of different penetrance

values in more detail below. Figure 3 presents a detailed analysis of

the expected values of II and ID, and other auxiliary measures

such as phenotype entropy, for a population sampled from model

M15 with equal number of cases and controls (see Methods),

which is typical for cohorts used in GWAS. For a more detailed

analysis, we simulated the genetic scenarios by generating cohorts

with 500 cases and 500 controls using fixed values of one MAF,

P(B) in our case, and varying P(A). Results for other models are

summarized in Figure 4. In contrast to the mouse and yeast

applications shown in the previous sections, here our goal is to see

if the measures, ID and II, are able to detect specific input

relationships with different parameters.

Table 3. Interaction distances and p-values from Test III for selected pairs of markers for mouse phenotypes.

Phenotype Pair ID P-value

LDL 454, 388 0.0398 1.2*1024

LDL 646, 591 0.0402 1.5*1025

LDL 691, 269 0.047 1*1025

LDL 891, 542 0.044 1.5*1025

LDL 934(M), 96 0.0451 4*1025

LDL 966, 878 0.0412 7*1025

Weight, fem. 773, 68 0.082 5.1*1024

Weight, male 135, 57(L) 0.083 1*1024

Weight, male 148, 57(L) 0.097 1.2*1025

Weight, male 746, 362 0.081 2.4*1024

Weight, male 876(L), 566 0.088 1.4*1024

Weight, male 890(L), 367 0.087 5.6*1025

Weight, male 388, 281 0.083 2.1*1024

Weight, male 791, 269 0.084 4.3*1024

Weight, male 1021, 84(F) 0.081 3*1024

The underlined markers are QTLs with significant effect on a corresponding phenotype: the bold markers are the strongest QTLs (p-value,,0.0001), while the other
underlined markers are QTLs with smaller effects (p-value ,0.001 in simple permutation test). The indicators (M), (F), or (L) next to some markers mean that the marker
has an effect on the male, or female weight, or LDL respectively.
doi:10.1371/journal.pone.0092310.t003
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Figure 3. Detection of SNP interactions in a human disease model. Each main panel shows interaction distance (red) and interaction
information (grey) computed on simulated data from a human disease model M15 of the interaction between SNPs A and B defined in the table. Solid
lines describe analytical expectation values, dots show average values obtained from simulations and shadowed bands describe corresponding
standard deviations (see Methods for more details). The upper sub-panels show the conditional entropy of phenotype given SNP A (blue) and B
(cyan), respectively. The entropy illustrates strength of marginal effect of a given SNP Minor allele frequencies of SNP B were fixed to P(B) = 1% in
panel (A) and 2.5% in panel (B) Lower sub-panels show the effect of changing the value of P(B). More precisely, the lower sub-panel on the left shows
expected values of the interaction distance, and on the right – of the interaction information as functions of different values of P(A) and P(B).
doi:10.1371/journal.pone.0092310.g003

Figure 4. Detection of SNP interactions in further disease models. Additional simulations showing performance of the ID (red) and II (grey)
for various models. To mimic a scenario in which the disease can be caused by other factors (e.g., other mutations, environmental factors) we added
noise to some of the models, which take form of non-binary penetrance tables.
doi:10.1371/journal.pone.0092310.g004
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For all examples shown, the interaction distance has higher values

than interaction information (the standard deviation bars indicate

significance information). This difference, however, can be attrib-

uted to the re-scaling due to the normalization (see Methods section

for a detailed discussion of the effect of normalization). More

interesting is the fact that although the interaction information is

either negative or close to zero when P(A) is low (low MAF) for

M15, M84 and M85 models, the interaction distance is positive.

This suggests that ID is able to detect interactions where II fails,

especially for small MAFs. To understand this behavior, let us look

at the composition of the case/control data set.

For example, consider model M15 with MAFs of A and B equal

to 0.5% and 2.5% respectively. In this case the average values of

I X1; X2DYð Þ and I X1; X2ð Þ are 0.36 and 0.43 respectively, and

consequently the interaction information is {0:76, which

indicates that X1 and X2 are redundant and have no interaction.

Note however that variables X1 and X2 are supposed to be

independent and the unconditional mutual information is

expected to be zero. This would be the case if the data set

reflected the actual population but the presence of sampling bias

towards affected individuals creates a false correlation among the

causal variables. The interaction distance is more robust in this

situation. Indeed, the normalized mutual information values are

0.58 and 0.32 for the conditional and unconditional cases

respectively, resulting in ID value of about 0.26, which correctly

indicates a presence of interaction between X1 and X2:
Recall from Equation 1 that II is a difference between

conditional and unconditional mutual information. Mutual

information is a measure that depends on the entropies of the

two variables and it is never higher than the minimum of the two

entropies. Therefore, taking the difference between unnormalized

mutual information values for variables with very different

entropies can lead to negative values of II where positive values

are expected as shown in Figures 3 and 4. On the other hand, ID

has a normalization formula that boosts the value of the

conditional mutual information and suppresses the unconditional

one, providing a corrective effect.

When the values of P Að Þ increase, both measures tend to zero,

which is expected since the number of causal variants A

outnumbers the causal variants B. In consequence, the effect of

A masks the effect of B.

Figure 3 and Figure 4 illustrates that both methods are

potentially suitable for detecting interactions of SNPs with low

MAF values. However, the interaction distance is often a more

preferable choice over the interaction information especially in the

extreme cases of human SNP data.

To examine the effect of different levels of penetrance on

interaction detection we add an extra tunable parameter to a

disease model: all the values of the ‘‘risk’’ genotypes (all the 19s) in

the disease penetrance table are replaced with this parameter, thus

controlling how often the risk genotypes result in a disease. We

studied the behavior of ID for various values of the penetrance

parameter across all the models and found no significant effect of

the penetrance on ID. Indeed, since all the risk genotypes have the

same penetrance, the genetic composition of all the cases in the

case-control data set stays the same when we change the

penetrance parameter from 1 to a lower value. Similarly, the

genetic composition of all the controls also stays the same (or

almost the same) when we change the penetrance. Note that with

the penetrance parameter less than 1, a number of individuals with

the risk genotype will not have a disease and will be added to the

set of controls. However the number of such individuals is very

small due to low MAFs of the risk genotypes.

One should be aware that the majority of pairs of SNPs has no

effect on the phenotype, and thus, they can contribute to noise that

will have an impact on the results provided by ID (or by any other

measure). Let us now briefly consider the effect of this background

noise. We investigate this by generating background distributions (see

Methods section for more details) for various allele frequencies where

both SNPs are independent and have no marginal or pairwise effect

on the phenotype. We generated 20 million pairs of SNPs with

various MAFs ranging from one to fifty percent, one million for fixed

frequencies. The maximal observed value of the ID score was 0.019,

the average was about 0.002. This seems to be significantly different

from the ID scores observed in many cases illustrated in Figures 3 and

4, where the values of ID are often above 0.1. One must realize,

however, that presence of various types of noise, like genotyping or

measurement noise for example, plus an enormously large number of

pairs may lead to difficulty in obtaining significant results. Therefore,

we argue that the best way to using ID (and other measures based on

information theory) is as a filtration tool. We demonstrated this

approach in the mouse example, where we provided lists of candidate

pairs of interacting markers and compared them to previous findings

which led to formulation of new hypotheses.

In the current paper we do not provide any analysis of a false

positive rate or ratio of false to true positives. This follows from our

philosophy of how ID (or II) should be applied in practice, which

is, as stated above, a filtration approach. We have to remember

that in order to analyze false positive rate, one has to make a final

decision whether a pair of markers interacts or not. While a

filtration approach is based on ID threshold, which is not too

stringent, a final decision should be based on a permutation test.

But this is strongly dependent on the context of available data. For

instance, if we have only 200 markers which results in 20 000 pairs

an ID score with p-value as high as 10{5 would be considered as

indicating an interaction. Even pairs with p-values of 10{4 can be

considered as significant, especially, if we detect high number of

those. For example, if we see 20 such pairs we can hypothesize that

at least some of them are actual interactions. On the other hand,

in human case-control studies with 500 000 SNPs a p-value of

10{5 cannot be considered as significant. Here, filtration seems to

be a more suitable approach.

So far we have been assuming independence of alleles from

different loci. Let us now briefly discuss a case when two SNPs are not

independent and are in so called Linkage Disequilibrium (LD). In

other words this means that alleles of two different loci are correlated.

LD between markers makes proper permutation testing of interaction

between these markers challenging. Although both markers in LD

have marginal effects on the phenotype, Test III is not applicable,

since both markers are correlated and the randomization performed

during the testing procedure affects that correlation. Hence, formally

speaking, we cannot make any statement about potential interaction

between such markers based on this test.

We analyzed the same models as depicted in Figures 3 and 4

with different values of LD (see Methods for more technical

details). The general observation is that presence of LD lowers

values of both analyzed measures, ID and II. We also observed

that II scores were lower than ID scores in all analyzed examples.

We also analyzed models in which only one marker has a causal

effect on the phenotype, and the other is just correlated with the

previous one. In such a case, values of ID and II are either zero or

below zero in cases of stronger LD. In fact, this is an expected

behavior since in such a case the two markers contain redundant

information about the phenotype. Thus, negative values of ID and

II. We can observe such a situation in Figure 1C where we see a

negative peak of ID values for a marker with strong effect on the

sporulation an its neighbors.
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We conclude that although in many cases LD makes detection

of potential interactions more difficult, it does not lead to false

positives since non-interacting markers that are linked result in low

ID scores and are not selected for further investigation during the

filtration step. The main scope of this paper is to examine

interactions where at least one marker has no marginal effect,

which does not happen in case of markers in LD. A detailed

analysis of the influence of LD on detection of interactions

between markers with marginal effects will be a topic of our future

work. The problem of constructing a permutation test seems to be

especially interesting.

The model analysis shown in Figures 3 and 4 allows us to

analyze the effect of the ratio of cases-to-controls in a clinical data

set for each of the models and the different MAFs. We observe

that, given a particular model, both ID and II are significantly

dependent on the model parameters, and that there are optimal

values of the case-to-control ratios (see Figure 5). This suggests that

if the MAF or other parameters can be estimated as in validation

studies, the choice of this ratio can be optimized.

Discussion

Information theory approaches to data analysis can be used to

good effect in addressing genetics problem of several kinds. The

information measure called interaction information has been

recently used for finding associations between two SNPs in human

data [9,10]. These results are promising, but we demonstrate here

that this measure can be improved upon for specific types of data,

such as human population data with wide range of minor allele

frequencies. When allele frequencies are highly skewed (very low

MAFs) the entropies at these sites can be very low. This is especially

true for the conditional entropies. As a result, the unnormalized

interaction information is close to zero which, particularly in the

presence of noise, can prevent the detection of interactions. We have

shown here that the information theoretic measure, interaction

distance, a normalized measure defined by analogy to information

distance and interaction information by a recursion relation, can be

a very sensitive and useful measure. On the other hand, it should be

said that SNPs with very low MAFs may also be problematic

because of limitations of current genotyping technologies. Methods

like ID cannot help if such problems occur.

We have applied our measure to both yeast and mouse cross

data sets, with equal allele frequencies across the genome, which

works reasonably well. It is particularly useful, however, in

application to human data. We show that for several models the

normalized measure, ID, can be particularly useful for low MAF

cases by providing a compensatory effect for large differences in

the entropies of the marker variables. The yeast and mouse

examples demonstrate a powerful use of the interaction distance as

a tool for choosing pairs and markers for further investigation.

Even though we developed strict methodology for statistical testing

of the ID and II scores, the number of strains/samples available

may often be insufficient to provide p-values in a useful range. We

argue, therefore, that the results provided by the ID analysis

should be compared with results related to similar or related

phenotypes. In both, yeast and mouse, cases we were able to

identify QTLs that are very likely to be involved in several of the

phenotypes analyzed. We observed that very often a QTL having

strong effect on one phenotype may have a small effect on another,

related phenotype, often due to interactions. This kind of analysis

can result in biological hypotheses and potentially better under-

standing of the architecture of genotype–phenotype relationships,

and is an important and promising direction.

We will be applying ID analysis to more sophisticated models

and to real data sets. Since, the genetic data typically consists of

hundreds of thousands SNPs, the problem is computationally

challenging but our test cases demonstrate that it is tractable. The

analysis is completely parallelizable and with proper parallelization

we can perform all computations on a million SNPs data set within

a relatively short time on multi-core desktop machines. Of course,

this refers to calculations of the ID only. The permutation tests are

computationally expensive and can usually be performed only for

selected sets of pairs.

Finally, it is important to point out that the extension of genetic

analysis here to the three-variable case, while at the edge of

current capability is just the first step. We have developed a

general, multi-variable formulation based on information theory,

to be published elsewhere, that will allow us to perform analyses of

the interaction of a larger number of markers, and of more

complex interactions.

Methods

Different Normalizations
Let us briefly discuss the normalization issues. The information

distance (Equation 2) is normalized by the higher of the two

entropies. This is done to guarantee the metric properties. Another

possibility is to normalize by the minimum entropy [27], since the

Figure 5. Relationship between the case-to-control ratio and ID. Among other factors, optimal detection of synergistic effects depends on
the case-to-control ratio f of the study. Panels (A,B) show the dependency of ID values on allele frequencies and ratio f for models M15 (A) and M84
(B).
doi:10.1371/journal.pone.0092310.g005
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mutual information is bounded by the smaller value of the two

entropies. There is a practical difference between these two

normalizations, however.

Since

I X1; X2ð Þ~H X1ð Þ{H X1jX2ð Þƒ min H X1ð Þ,H X2ð Þf g,

let us assume that H X1ð Þ is the smaller of the two entropies. Let

us suppose now that the mutual information normalized by H X1ð Þ
equals one, which means that the conditional entropy H X1DX2ð Þ is

zero. Thus, there must be a functional relationship, , meaning that

if we know X2 then we also know X1: On the other hand, it does

not mean that the knowledge of X1 gives us full knowledge of X2,
since X2 could be a multi-valued function of X1, for example.

When the mutual information is normalized by H X2ð Þ, the

higher entropy, implies existence of a two-way functional

relationship, X1~f2 X2ð Þ and X2~f1 X1ð Þ: We choose this

normalization in the construction of the normalized information

distance (see Equation 2) to guarantee that the distance is zero if

and only if the two variables are equivalent. If we normalize by the

minimum, it may happen that the distance is zero but one of the

variables (with the higher entropy) carries more information.

It is unclear at this stage which type of normalization would be

preferable in our biological applications. We observed that

normalization plays a marginal role in case of mouse and yeast

data: II and ID produce almost equal results because of the

homogeneity of the variables (50% MAFs). The variables

representing genetic markers in these types of experiments have

similar entropies, thus, the effect of normalization is negligible.

The statistical significance of the observed results is also the same.

On the other hand, there is a significant difference in performance

between II and ID in case of the human models where the MAFs

are not uniform.

Properties of the Interaction Distance
In [15] a theorem describing the most important properties of

the interaction information was proved. It states that.

Theorem 1. If X1,X2 and Y are finite random variables, then:

1. { minfH X1ð Þ,H(X2), H Yð ÞgƒI X1; X2; Yð Þƒ min
i,j
fH Xijð

XjÞ, H Y jXið Þ,H(XijY )g:
2. I X1; X2; Yð Þ~H(Xi DY ) if and only if X1,X2 are independent

and Xi~fj Xj ,Y
� �

where i,j~1,2:

3. I X1; X2; Yð Þ~{H Yð Þ if and only if Xi~fj Xj

� �
~gi Yð Þ

where i,j~1,2:

The first property shows the range of II scores. The next two

properties suggest the interpretation of the II values: positive II

scores suggest synergistic effects while negative scores indicate

redundancy. The functional relation in the second property means

that the knowledge about the states of two variables results in the

knowledge about the state of the third one, on one hand. On the

other hand, any two variables are independent. The relation

presented in the third point represents a situation when X1 and X2

contain redundant information about Y : Moreover, in such a case

Y determines the other two variables, and by knowing state of X1

we can extrapolate to the state of X2. Of course, these two

relationships are extreme cases of functional relations between

variables, and in practice we observe probabilistic versions of these

cases. The randomness observed in real data may be either a result

of noise (e.g., experimental, environmental) or a result of the

fundamentally probabilistic nature of the process described by the

model.

We now present the counterpart of these results that establish

the basic properties of the interaction distance. Large parts of the

proof remain the same as for II. Remember that we consider only

finite random variables, i.e., maps defined on a probability space

with finite state space.

Theorem 2. The interaction distance has the following three

properties:

1. {1ƒd X1; X2.Yð Þƒ1:

2. d X1; X2.Yð Þ~1 if and only if X1,X2 are independent and

Xi~fj Xj ,Y
� �

where i,j~1,2:

3. If a sequence f(X1,n,X2,n,Yn)g converges in law to X1,X2,Yð Þ
such that lim

n??
d X1,n; X2,n:Ynð Þ~{1, then Xi~fj Xj

� �
~gi Yð Þ

where i,j~1,2: We need to assume, moreover, that all the

variables X1,n,X2,n,X1,X2 are defined over the same alphabet

(the set of possible states which the variables can take with a

non-zero probability).

Proof. 1. By definition, the ID is a difference between two

measures normalized to the interval ½0,1�:
2. Suppose d X1; X2.Yð Þ~1: This implies d X1; X2ð Þ~1 and

d X1; X2DYð Þ~0: The first equality implies that X1 and X2 are

independent. From the second equality, it follows that

I X1; X2DYð Þ~H Xi DYð Þ, which leads to H Xi DY ,Xj

� �
~0: This

implies Xi~fj Xj ,Y
� �

,i,j~1,2:

The proof of the converse statement is trivial. Note that

Xi~fj Xj ,Y
� �

does not contradict the independence of X1 and

X2: This is the case when, for example, Y is the sum of X1 and X2:
In such an example both functional relationships occur:

Y~XizXj and Xi~Y{Xj .

3. The convergence of interaction distances implies that (a) the

unconditional distance converges to zero and (b) the conditional

distance converges to one.

a) Since the unconditional distance converges to zero,

d X1,n; X2,nð Þ ?
n??

0, we have

lim
n??

I X1,n; X2,nð Þ~ lim
n??

max H X1,nð Þ,H X2,nð Þf gv?:

This implies that lim
n??

H Xi,nDXj,n

� �
~0 (this follows directly from

the representation of mutual information as a difference between

conditional and unconditional entropies). Since we consider finite

random variables defined over the same alphabet, this implies that

H Xi DXj

� �
~0: Equivalently, Xi~fj Xj

� �
:

b) Since the conditional distance converges to 1, the ratio

I X1,n; X2,njYnð Þ=max H X1,nð Þ,H X2,nð Þf g converges to zero

as well. Given that the denominator is bounded, the

conditional mutual information converges to zero which

leads to the statement of property 3 of Theorem 2 as

presented in the proof of Theorem 1 in [26].

According to property 1 of Theorem 2, ID is normalized to the

range from 21 to 1, as opposed to II that ranges between H Xið Þ
and H Xi DYð Þ from the original (II) version. This gives ID an

advantage over non-normalized II: when the values of entropy are

low, even highly deterministic interactions have the interaction

information values close to zero. As a consequence, such
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interactions could become indistinguishable from the noise. This is

problematic in data sets composed of variables with various

entropies. For example, while both II and ID give similar result on

the yeast and mouse data, where entropies of all the variables are

very similar, ID outperforms II on the set of simulated human

SNPs interactions, where entropy of corresponding variables takes

on a wide range of possible values.

This can be further illustrated by an example where both X1

and X2 are independent binary variables and Y is a modulo 2 sum

of X1 and X2: Property 2 of both theorems applies in this case.

When, H Xið Þ~1, i.e., P(xi)~1=2, both II and ID equal one.

However, if we change the prior distributions of Xi, and decrease

the entropy, then the value of II also decreases while the value of

ID remains equal to one.

According to property 3 of Theorem 2, ID values close to 21

indicate that the value of Y determines values of both X1 and X2,

or in other words, Y has a causal effect on X1 and X2: Following

the proof of the theorem, for ID to be close to 21, the

unconditional distance d X1; X2ð Þ must be close to zero, indicating

a functional relationship between X1 and X2, and the conditional

distance must be close to one, indicating that X1 and X2 become

conditionally independent given Y : Note, that in this paper we

focus only on the positive values of II and ID, and the difference

between these measures when they are negative is a direction for

future research.

Permutation Tests and Computation of p-values
The current section presents detailed description of the

permutation tests used for calculating the p-values of the

interaction distance between two markers. We can make a rough

estimate of p-values by generating 1 million pairs of random

markers with no missing alleles and the same allele frequency as in

the original data. Computing ID for these 1 million pairs and the

phenotype, which remains untouched, generates a background

distribution used to test the significance of the original ID values.

We refer to this statistical testing as Test 0. Note that Test 0 gives

only a rough estimate of p-values since it does not account for

missing data. Moreover, the Test 0 background distribution is

generated under the null hypothesis that i) both markers have no

effect on the phenotype and ii) there is no interaction between the

markers. Therefore, formally speaking, a rejection of such a

hypothesis does not imply the presence of an interaction between

markers. For example, the null hypothesis may be rejected if one

of the markers has an effect on the phenotype. To increase the

accuracy of the significance testing we propose three permutation

tests (Test I-III) with different null hypotheses.

The tests are performed for each pair of markers separately. Let

us suppose that ~XX1 and are vectors of alleles representing the

markers of our interest, and ~YY is a vector representing the

phenotype binned into k classes. The length of all these vectors is

n, where n is the number of samples, e.g., yeast strains, mice,

patients. Formally speaking, the data can be written in a form of

3|n matrix:

~XX 1
~XX 2
~YY

2
4

3
5.

The background distribution is obtained by generating vectors
~XX1 and ~XX2 randomly from a prior probability distribution P(xi).
In some biological applications these distributions are known. For

example, in yeast we have two equally distributed alleles and in

mice we have three combinations of alleles distributed with

probabilities 0.5, 0.25 and 0.25. On the other hand, we are not

able to provide a universal background distribution for the human

analysis, since the MAFs vary from 0.5% up to 50%.

Test I is performed by randomizing ~XX1 and ~XX2. From here on

we say that a vector is randomized if its values are randomly

permuted. Obviously, this procedure preserves the number of

missing values and the proportion of different alleles while

randomizing the effect on the phenotype and the interaction

between markers. Therefore, the null hypotheses of Test I and

Test 0 are the same, however Test I accounts for the missing data.

From a formal point of view, this should be used for testing

significance of interactions between markers with no individual

effects on the phenotype. In the case when one of the markers in a

pair has an effect on the phenotype and the other does not, we

should use Test II that randomizes only the vector corresponding

to the marker with no effect and preserves the other two vectors

(the phenotype and the other marker). The null hypothesis of Test

II is that i) X2 has no effect on the phenotype, ii)X1 has an effect

(that can be measured by a reduction of H Yð Þ to H Y DX1ð Þ ) and

iii) there is no interaction between X1 and X2.

The most difficult is the case of two markers having marginal

effects. Test III is designed to preserve the effects of the markers

but randomize a possible interaction between them, so the null

hypothesis is that two markers with effects H Y DX1ð Þ and H Y DX2ð Þ
do not interact. To test such a hypothesis we have to randomize

markers in such a way that the conditional entropies are not

changed. Without loss of generality, let us suppose that vector ~YY is

ordered in the following way: , where ~YY0 is a zero vector, ~YY1 is a

vector of ones, and so on. We also assume that ~XX1 and are ordered

accordingly. Consequently, the matrix

~XX 1
~XX 2
~YY

2
4

3
5 can be rewritten as

~XX1

~XX2

~YY

2
64

3
75~

~XX1,0,~XX1,1, . . . ,~XX1,k

~XX2,0,~XX2,1, . . . ,~XX2,k

~YY0,~YY1, . . . ,~YYk

2
64

3
75:

During Test III, we randomize each sub-vector ~XXi,j separately,

which does not change values of the conditional entropies.

Therefore, the null hypothesis of Test III is that there is no

interaction between X1 andX2. The advantage of Test III is that

this null hypothesis fits to all three cases: no marginal effects on the

phenotype, a marginal effect of only one marker, and marginal

effects of both markers.

Details of the Analysis of Yeast Data
Since the approximation of information theory measures, such

as mutual information, for continuous variables may be difficult

and requires large number of samples, we binned the phenotype

into four bins. In the current work we use two binning strategies: i)

a uniform binning with 0.25, 0.5 and 0.75 quantiles as thresholds

and ii) a so-called optimal binning proposed in [28]. The optimal

binning strategy uses hierarchical clustering and determines the

coarseness (the number of clusters) that maximizes the interaction

information for pairs of markers and the binned phenotype. The

number of bins determined by the optimal strategy is four and the

number of data points in each bin is 120, 89, 95 and 70. Note that

the use of interaction information for binning motivated us to

further investigate this subject and led to the concept of ID.

Although the difference between these two binning strategies is not

very large, it still results in some differences between the pairs with

the highest ID scores. Table 2 shows the pairs of markers with the

highest ID values calculated with both binning strategies.
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Moreover, Table 2 provides p-values estimated using four different

significance testing, i.e., Tests 0-III.

We are aware that binning, discretization of continuous

variables, leads to loss of information. Nevertheless, the informa-

tion content of the binned variables is sufficient to detect the signal

of interacting pairs of markers. In practice, we suggest exploring

various binning strategies with different number of bins. In the

presented yeast example, the number of bins (four) was ‘‘optimal’’

both in terms of statistical power and number of discovered

candidate pairs. Since we are mainly interested in applications to

human data where phenotypes are often discreet (case-control

studies), we do not analyze approaches based on approximating

mutual information and entropy from continuous data such as

kernel based approximations.

Details of the Analysis of Mouse Data
We applied ID to two mouse phenotypes: the LDL cholesterol

level and weight. We observed that male weight is considerably

more different than female weight (see histograms in Figure 6).

Consequently, we considered the mouse weight for both males and

females together and for each gender separately, whereas LDL

cholesterol level was considered only for both genders together. In

all four studies, a phenotype was binned uniformly into two

integers according to the phenotype’s median. This is probably the

simplest binning strategy but the number of mice was too small to

consider any more sophisticated approaches.

Note that sex difference of the weight affects the binning and

consequently the downstream interaction analysis. Indeed the ID

analysis performed on the entire population identifies only sex

specific markers. Therefore, we conduct a separate analysis for

male and female weight.

We performed the ID analysis for all the pairs of markers for

LDL (both genders) and for weight (males and females individ-

ually) and then estimated their Test 0 p-values. Tables S2–S4 show

pairs with p-values below10{5. We also removed the pairs with

more than 10 missing values. Significance of the selected pairs was

also tested using Test I-III.

Note that whenever we observed blocks of consecutive markers

interacting with each other, we selected the pair with the highest

interaction distance as a representative of similar interactions. For

example, the pair (691, 269) in LDL represents a group of

interactions between markers 691–693 (distance between 691 and

693 is about 3 Mb, and the mutual information between them

about 0.83) and 267–273 (distance between 267 and 273 is about

11 Mb, and the mutual information is about 0.84), since (691, 269)

has the highest ID score among all of these pairs. Note that

although the distance between markers within a block can be large

(up to 11 Mbp), these markers are strongly correlated. We might

mix two or more biological interactions together, however we are

not able to distinguish these interactions in a block of such highly

correlated markers.

Computing ID and II for Clinical Data Sets
In order to simulate a clinical cohort data with the same number

of cases and controls, we generate independently two versions of

each SNP according to the probabilities P Að Þ and P Bð Þ. This

gives us a genotype of an individual, who is then classified into

either a case or a control according to a penetrance function. This

procedure is repeated until we obtain a desired number of cases

and controls. Figure 3 shows the results averaged over 100 such

cohorts. If SNPs are in LD, then probabilities of observing

particular combinations of alleles are modified by normalized

deviation from equilibrium, D’, defined as in [29].

In order to estimate the expected values of II and ID we

calculate the expected frequencies of each genotype within a

healthy and affected population (i.e., within cases and controls).

For example, the probability of observing genotype AABB given

an affected individual can be written as:

P AABBDdð Þ~ P d,AABBð Þ
P dð Þ ~

P AABBð Þ � Pt AABBð Þ
P dð Þ ,

where P dð Þ is a frequency of cases in the data set, which usually

equals to 0.5 in the case-control type of study, and Pt AABBð Þ
stands for a value of the penetrance function for the input AABB.

Finally, if the alleles are inherited independently (no LD), we have:

P(AABB)~P2(A)P2(B):

If the two SNPs are in LD, then the above formula needs to be

written as:

P(AABB)~½P(A)P(B)zD’�2:

In case of allele configuration AaBB the probability P(AaBB)
would be equal to ½P(A)P(B)zD’�½P(a)P(B){D’�.

Obviously, with the growing number of samples, the observed

frequencies are getting closer to the conditional probabilities

calculated as presented above. Therefore, given the allele

frequencies, we use these theoretical values to approximate the

Figure 6. Distribution of mice phenotype. Distribution of mice weight exhibits clear sex dependence. Male mice (blue) are significantly heavier
than female (red). The merged unisexual distribution (magenta) exhibits larger variation.
doi:10.1371/journal.pone.0092310.g006

Discovering Pair-Wise Genetic Interactions

PLOS ONE | www.plosone.org 13 March 2014 | Volume 9 | Issue 3 | e92310



expected values of ID and II for the case-control data models.

Figure 3, illustrating the interaction analysis results computed on

500 cases and 500 controls, shows that the measured and

predicted expectation values of ID and II are practically the

same. All simulations were performed in Matlab; the source code

can be found in a supporting material file (Code S1).
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