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Abstract

Nanoindentation using contact-mode Atomic Force Microscopy (AFM) has emerged as a powerful

tool for effective material characterization of a wide variety of biomaterials across multiple length

scales. However, interpretation of force-indentation experimental data from AFM is subject to

some debate. Uncertainties in AFM data analysis stems from two primary sources: the exact point

of contact between the AFM probe and the biological specimen and the variability in the spring

constant of the AFM probe. While a lot of attention has been directed towards addressing the

contact-point uncertainty, the effect of variability in the probe spring constant has not received

sufficient attention. In this work, we report on an Error-In-Variables (EIV) based Bayesian

Changepoint approach to quantify the elastic modulus of human breast tissue samples after

accounting for variability in both contact point and the probe spring constant. We also discuss the

efficacy of our approach to a wide range of hyperparameter values using a sensitivity analysis.
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I. INTRODUCTION

A lot of research has been directed towards understanding the spatial and temporal changes

in the mechanical properties of biomaterials undergoing morphological transformations due

to increasing malignancy in cells and tissue [1]. Human pancreatic cancer epithelial cells [2]

and human bladder cells [3] were found to exhibit enhanced mechanical deformability

compared to their healthy counterparts. Cancerous human breast epithelial cells were also

shown to display lower stiffness [4], while similar results could be replicated at the scale of

histopathological breast tissue [5].

Amongst various other characterization methods including micropipette aspiration, laser

based tweezers and magnetic probes and other microelectromechanical (MEMS) based

techniques [6], AFM has emerged as a powerful tool to study the biomechanics of cells and

tissues. When used in the contact mode, the AFM is used as a nanoindenter: a sample is

indented by a micro-cantilever probe with an attached particle (often spherical) at its tip, and

the loading force curve is processed to extract the elastic properties of the sample. While

AFM indentation experiments are by itself relatively straightforward, obtaining accurate

quantitative estimates of the elastic properties is somewhat challenging.

To extract reliable material properties of the biological sample being probed by the AFM, it

is vital to identify the precise point in the AFM force curve where the probe makes contact

with the specimen - henceforth called the contact point. On stiff substrates in air, the contact

point, by convention, is considered to be the point at which the first derivative shows

discontinuity [7]; however, this approach is not applicable for compliant specimens like cells

and tissue in liquid, where the force curves displays a smooth transition from the non-

contact to the contact regime. Researchers often use visual cues [8] or derivative [7],[9] and

fit-based [10],[11],[12] deterministic algorithms to estimate the contact point. However,

these methods do not capture the underlying uncertainty due to the smoothness of transition

between the non-contact and the contact regimes.

Another source of uncertainty stems from variability in the spring constant of the AFM

probe used to take measurements on the specimen. Due to potential inaccuracies during

microfabrication, AFM probes are typically calibrated prior to their use. Common

calibration schemes include (amongst many) the Sader Method [13] and the thermal noise

method [14]. However, most calibration schemes report variability between 5-17%[15].

Carrying out calibration experiments in liquid environments adds to further complexity in

accurate determination of the probe’s spring constant. Calibrated spring constants have

shown large variations depending on the viscosity of the liquid medium. Pirzer et al [16]

reported an error of 25% in 4M phosphate solutions and up to 100% in highly viscous

solutions, and it was observed that improving the fitting functions to estimate the spring

constants led to reduced calibration errors. Kiracofe et al [17] reported that the calibrated
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first eigenmodal stiffness of AFM probes in liquid were close to those calibrated in air,

however, these studies do not consider the effect of repeated loading on AFM probes during

indentation experiments. Practical difficulties during actual AFM experiments also include

the possibility of microscale debris attaching to the cantilever during AFM experiments [18],

which could introduce further variability.

A relatively new AFM probe calibration technique is the use of Laser Doppler Vibrometry

(LDV) based interferometric methods [19] to measure the actual vertical displacement of the

probe end, as opposed to the optical detection methods used in commercial AFMs that

measure the angular deflection of the probe end. Gates el at [20] recently reported

calibration errors within 2%; however, LDV-integrated AFMs have yet to be

commercialized.

The aforementioned factors of uncertainty clearly pose a serious hindrance in obtaining

accurate estimates of the material properties of specimens undergoing AFM indentation.

This need is further underscored in light of the fact that mechanical characterization results

on biomaterials are quite often followed by statistical hypothesis testing for inference

purposes, for example, t-tests [3]. Pointwise estimation of the mechanical properties without

accounting for the underlying uncertainty can lead to erroneous conclusions, especially

when the computed p-values for the chosen hypothesis test are close to the level of

significance, α. Indeed, hypothesis testing methods that incorporate interval uncertainty [21]

reduce the possibility of inference errors compared to conventional hypothesis testing

techniques which assume that the exact values of the estimates are known. An accurate

inference test, however, has to be preceded by an approach that quantifies the elastic

modulus with its associated interval uncertainty in a robust manner.

In the recent past, there has been considerable interest towards error quantification in AFM

indentation studies. Rudoy et al [22] have recently proposed rigorous statistical methods

using Bayesian analysis to obtain estimates of the elastic modulus due to the contact-point

uncertainty. While these methods successfully extract the material property in soft samples

after accounting for uncertainty due to the contact point, such methods do not take into

consideration probe spring constant variations. Wagner et al [23] have systematically

analyzed error propagation in AFM measurements. However, the contact point has been

deterministically estimated from AFM force curves on stiff substrates where contact

uncertainty is not a major concern.

We propose an Error-In-Variable (EIV) based Bayesian Changepoint framework [24][25]

[26] to generate posterior distributions of the elastic modulus as a function of uncertainties

in both contact point and the probe spring constant. EIV approaches are frequently used in

cases where the independent variables in a regression model are observed with errors. In an

abridged version of this work [27], we used the EIV-Bayesian Changepoint approach to

estimate the elastic modulus of mouse Embryonic Stem Cells (mESC), and we showed that

we could obtain estimates of the elastic modulus with reduced variance compared to a

piecemeal treatment of the individual uncertainties.
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In this paper, we use an explicit force-indentation relationship proposed by Long et al [28]

to estimate the elastic modulus of human breast tissue specimens which are modeled as a

neo-Hookean hyperelastic material. The use of Long’s force-indentation relationship makes

it possible to avoid limitations of the Hertz contact model, as explained later in Section

III.A. We performed a sensitivity analysis to investigate the robustness of our approach to a

wide range of variations in the probe spring constant.

In the subsequent section, we discuss the tissue preparation protocol, the AFM experimental

procedure and the AFM probe spring constant calibration scheme. In Section III, we discuss

the various steps of the Bayesian analysis. Finally, we present our results in Section IV and

conclude with discussions and future work in Section V.

II. MATERIALS AND METHODS

A. Breast tissue sample preparation

We used Tissue Microarray (TMA) technology to prepare the samples for AFM indentation.

Tissue cores of 0.6 mm diameter were extracted from paraffin-embedded normal and breast

cancer tissue blocks and assembled into 4 quadrupled tissue microarray blocks using Auto

Tissue Arrayer (Beecher ATA-27). Two consecutive 4 μm slices of each TMA were cut and

fixed onto glass slides. One of each set of consecutive slides was stained with hematoxylin

and eosin (H&E) and cover-slipped while the other remained unstained. Following the

extraction of tissue cores, Virtual Microscopy (VM) technology was used to generate digital

scans of the tissue segments at 40× equivalent resolution into a tiled TIFF format and

uploaded onto the web server at http://virtualscope.umdnj.edu for subsequent viewing and

annotation. The H&E slides were then inspected by a pathologist to confirm the specimen’s

histological validity and one pair of consecutive slides containing significant amount of

breast parenchyma was selected for the experiments. The pathologist then annotated valid

normal and cancerous regions in epithelial and stromal tissue on the stained slide.

Corresponding annotated regions on the unstained slide were then probed by the AFM in a

raster fashion [29].

B. Indentation tests with AFM

Prior to AFM probing, the unstained slide (adjacent from the annotated one) was de-

paraffinized with xylenes, hydrated with graded alcohols, and then kept in Phosphate

Buffered Saline (PBS).

The experimental setup consists of the Atomic Force Microscope (MFP-3D-BIO™, Asylum

Research) and an inverted microscope (Model: TE2000U, Nikon, Inc) with an attached CCD

camera (QImaging Inc, Model: Retiga 2000R). At the base of the microscope is a motorized

micromanipulator MP-285 (Sutter Instruments, Inc), to which is attached an end-effector

used to hold the microscope slide. The AFM, inverted microscope and the micromanipulator

are placed on a vibration isolation table to eliminate base vibrations [Fig. 1(a,b)].

We used closed-loop image-guided positioning to align the tissue specimens and the AFM

probe tip. Briefly, a region-of-interest (ROI) corresponding to one of the annotated regions

was selected by the user (called the “Probing ROI”), and an adjacent ROI (called the
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“Tracking ROI”) was used to provide image feedback [Fig. 1(c)]. A gradient-descent based

controller was used to precisely position the probing point underneath the probe tip within

1μm. Following accurate positioning, indentations were performed on the “Probing ROI” in

a raster fashion. Please refer to [29] for further details on the experimental setup.

C. AFM Probe Spring Constant Calibration

We used the thermal method to calibrate the AFM probe spring constant in our experiments

[14]. The thermal method is particularly attractive compared to the Sader method because

this method does not require exact knowledge of the dimensions of the probe [16]. In this

calibration scheme, the probe is assumed to behave as a simple harmonic oscillator (SHO),

vibrating in response to thermal noise in its vicinity. Using the equipartition theorem, we get

[14]:

or

(1)

where kc is the probe spring constant (N/m), m is the equivalent mass of the AFM probe

(kg), T is the ambient temperature (K), kB is the Boltzmann constant (J/K), ⟨p2⟩ is the mean

of the square of the probe deflection, p (m), and ω0 (Hz) is the fundamental frequency of the

probe. When analyzed in the frequency domain, the spring constant is represented as:

(2)

where P is the integral of the Power Spectral Density (PSD), which equals the mean square

of the probe deflections.

Since the probe deflection is optically measured through the photodiode, the calibration

experiment includes estimation of a conversion term, commercially termed as Inverse

Optical Lever Sensitivity (InvOLS), which also includes a correction factor that account for

the approximation of AFM probes as ideal springs [30] and the finite laser spot at the probe

end [31]. The InvOLS is estimated by taking an AFM force curve on a hard surface,

typically a tissue-free location on the microscope slide. The final calibrated spring constant

is given by:

(3)

It is worth mentioning here that henceforth we use the probe compliance, s = 1/kc, instead of

the spring constant. This transformation allows us to integrate the variability observed in the

calibration results into the EIV model, as shown later in Section III.
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Representative results of 20 calibration experiments for two probes in PBS solution prior to

and after the completion of the AFM experiment are displayed in Table I. As seen in Fig.

2(a) (PSD of the probe with nominal compliance = 0.222 m/N), the location of the

fundamental frequency is not sharp, due to low Q-factor in liquid. As a result, fitting the

PSD to a Lorentzian function to compute P is prone to errors and could be one of the

contributing factors behind the variability in the probe’s fundamental frequency shown in

Table I. The overall variability of the calibrated probe compliance is ~ 10%, which is in

good agreement with previously reported uncertainty with the thermal calibration method

[15]. In this work, we use the second probe (probe with nominal compliance = 0.222 m/N)

for the indentation experiments and subsequent data analysis.

III. BAYESIAN ANALYSIS

A. Force-Indentation relationship

The extraction of material parameters typically requires fitting an appropriate contact model

to the experimental AFM data. A widely used analytical formulation for this purpose is the

Hertz contact model [32]. Fundamental assumptions in Hertzian contact theory are that the

sample indented is a homogeneous, isotropic elastic half-space subject to infinitesimal

strains. Additional assumptions include adhesion-free frictionless contact and linear

elasticity in the material.

However, in our studies, many of these assumptions do not apply. The breast tissue

specimens we studied were highly heterogeneous - the sampled tissue includes functional

breast epithelial cells that are enclosed by collagen-rich stromal tissue [29]. Moreover, most

biological specimens, particularly tissue samples, exhibit nonlinear constitutive behavior

[33]. Furthermore, the tissue specimens are of finite thickness (~ 4μm) compared to the

depth of indentation (~ 100 - 600 nm) and the geometry of the spherical particle attached to

the AFM probe (radius = 2.5μm), which invalidates the assumptions of infinitesimal strains

in Hertzian contact theory.

As a result, we use a contact model developed by Long et al [28] which accounts for

geometric and material nonlinearities during spherical indentation. The contact force, F, is

related to the indentation, Δ, in an incompressible neo-Hookean material by:

(4)

where

(5a)

(5b)
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(5c)

E is the elastic modulus, R is the radius of the spherical bead and h is the thickness of the

tissue sample. Long’s force-indentation relationship is valid in the regime Δ/h ≤ min(0.6,

R/h) and 0.3 ≤ R/h ≤ 12.7 [28]. The expressions in Eqns. 5(a) and 5(b) assume frictionless

contact, which is a reasonable assumption since the tissue specimens are hydrated in PBS

solution during the AFM experiments.

B. Transformation of raw data

The AFM probe deflection (d) and z-position (z) values are processed offline to estimate the

elastic properties of the specimen being studied. A typical AFM curve is shown in Fig. 2(b).

Given n data points, the tip touches the sample at position (zk, dk), where k ∈ (1, n) is the

unknown index in the dataset which indicates the transition from non-contact to the contact

regime.

In the contact regime, the net indentation in the sample is given by Δ = (zn − zk) − (dn − dk) =

δn − δk [34], using the relation: δi = zi − di. Assuming that the probe behaves as a linear

spring for low deflection ranges, the force of indentation is given as F = kcd where kc is the

probe spring constant. Using the probe compliance, s = 1/kc, instead of the probe spring

constant, and the contact model described in section III.A, Eqn. 4 can be written as:

(6)

where

(7)

where k + 1 ≤ i ≤ n and Δ is replaced by the transformed variable δ.

Using the probe compliance, s, in Eqn. 6 allows us to relate the deflection, d, to the

transformed variable δ, and to incorporate the probe compliance into the EIV model, as

shown later in Section III.C.

In the non-contact regime, the deflection can be modeled as a linear function of z [35], i.e. d

= az + b. Using the transformed variable, δ, we may rewrite the non-contact region as d =

aδ/(1−a)+b/(1−a), thus preserving the linear nature of the non-contact regime.

Therefore, the two-regime regression model can be written as:

(8)
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where ∊j ~ N(0, σj
2)j = 1, 2. are independent and identically distributed (i.i.d) normal

random variables and fi is given by Eqn. 7. In general, , since  results from the

viscous interactions between the probe and the PBS solution, while  depends primarily on

the probe-tissue frictional forces [22].  ; j = 1, 2 are the regression

coefficients in the non-contact and contact regime respectively.

C. EIV-based Bayesian Changepoint Model

1) Classical EIV Model—We use the notation as given in [26] to represent the EIV

model. In the linear EIV model in classical form, the unobservable variables ξ and η are

related by [26]:

(9)

Instead of observing (ξi, ηi), the pair (xi, yi), i = 1, 2, …, n is observed with errors (νi, ∊i),

which are assumed normal. The response variable yi’s are given by:

(10)

The observed covariates xi’s are given by:

(11)

We use ν instead of δ to specify the errors in Eqn. 11 as used in [26], to maintain

conformity with the previously described transformed variable δ. We use standard (i.i.d)

assumptions [26]:

(12a)

(12b)

(12c)

(12d)

The data likelihood is given as the joint distribution of the pair (xi, yi), i = 1, 2, …, n, and is

stated as follows [26]:

(13)
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2) EIV-based Changepoint Modeling—In the non-contact regime (Eqn. 8, i ≤ k), the

covariates ξ’s are given by ξi = δi, i = 1, 2, …, k, which are fixed and observed. In the

contact regime (Eqn. 8, k + 1 ≤ i ≤ n), we can write:

(14)

The covariates ξk+1, …, ξn in Eqn. 14 are multiples of the probe compliance s. When s is

observed without errors, the estimation approach proposed in this work reduces to the

regular Bayesian Changepoint model [22],[36], since ξ1, …, ξn are fixed and observed.

However, variations in the probe calibration results as evidenced by the results in Table I

indicate that incorporation of some notion of randomness on the nature of s is necessary.

We model s as an unobserved variable which needs to be estimated. Instead of observing s,

we observe sd with an additive Gaussian error , which is given by:

(15)

Using the observed probe compliance sd, we can write:

(16)

where xk+1, …, xn are the observed covariates analogous to the observed xi’s in Eqn. 11.

At this point, it would seem natural to define a joint distribution of the data (xi, di) similar to

Eqn. 13. However, from Eqn. 16, it is clear that xk+1, …, xn are not independent; instead,

they are multiples of sd. Moreover, it is important to note that the independence condition

from Eqn. 12(c) is violated, since:

(17)

As a result, the covariate distribution can simply be expressed in sd and s, instead of the

covariates xk+1, …, xn and ξk+1, …, ξn respectively. The EIV model in the contact regime

therefore reduces to the scalar equation represented by Eqn. 15.

3) Data Likelihood and Posterior—The two regime regression model from Eqn. 8 can

be compactly written as:

(18)

Roy et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Based on the preceding discussion, the data likelihood can be expressed using the pair (sd,

d), and is given as:

(19)

For a given candidate contact point k, we can rewrite the deflection data in a compact vector

form, as,  and  and

. The right hand side of Eqn. 8 can be written as:

(20)

Using the notations in Eqn. 20, the data likelihood can be re-written as:

(21)

We use conjugate priors (Table II) to ensure that the posterior distribution is separable

(please refer to Fig. 3 for schematic) [36]. The posterior distribution, expressed as posterior

distribution ∝ data likelihood × prior distribution, can be written as:

(22)

where π(.) indicates the prior distribution of the variable in parenthesis. Combining the

distribution of the data with the priors, we get the posterior as:
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(23)

4) Gibbs Sampling—The marginal posterior distribution for each parameter in Eqn. 23 is

obtained using Gibbs Sampling [37]. Each marginal posterior is derived by separating out

the terms in the posterior distribution of Eqn. 23 corresponding to the given parameter and

conditional on the rest. After some algebraic manipulations [38], we get the following

sampled parameters for each step i of the Gibbs Sampler:

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

where the parameters of the marginal posterior densities are:
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(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

(25g)

where m = 1, 2 for the non-contact and the contact regimes respectively.

IV. RESULTS

A. Implementation of the Gibbs Sampler

Excepting the contact point index k, all the other marginal posteriors can be directly sampled

from their respective family of parametric probability distributions due to the use of

conjugate priors. We used rejection sampling [39] to sample for k [Eqn. 24(f)] to complete

the Gibbs Sampling step.

We reject the initial 3000 iteration results of the Gibbs Sampler which constitutes the burn-

in period. Sampling is terminated when increasing the number of iterations do not alter the

nature of the marginal distributions. Typically, we sample for 200,000 iterations. With

respect to the probe compliance, we set sd to a pre-experiment calibration value (= 0.339

m/N). We set the hyperparameter values of the probe compliance to those obtained in Table

I, i.e. μsp = 0.328 m/N, . Using such an informative prior based on

Table I allows us to incorporate prior knowledge of multiple probe calibrations. We also

assume that the prior and data variances of the probe compliance are the same i.e. .
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This allows us to give equal weightage to the prior and data values. With respect to the other

parameters, no useful information is available beforehand, consequently, uninformative

priors are assigned to them. The contact point k is assigned a uniform distribution, U(1, n),

while, β1, β2,  and  are assigned dispersed prior distributions. The hyperparameter

values used during sampling are given in Table III.

B. AFM Indentation Studies

During AFM experiments, the probe deflection was fixed at 50 nm, leading to

approximately 100 - 600 nm indentations in the sample. The loading velocity was kept

constant at 1.98μm/sec.

Fig. 4 summarizes the results of our EIV-Changepoint analysis applied on AFM indentation

data on tissue specimens. The AFM deflection data with the posterior mean of the contact

point ( ), and the marginal posterior distribution of k are shown in Fig. 4(a) and 4(b)

respectively. It is evident from Fig. 4(a) that Long’s contact model appropriately describes

the force curve shown in this figure (R2 = 0.9997).

The marginal posterior in s is shown in Fig. 4(c). The marginal posterior in β22 [Fig. 4(d)] is

easily transformed into the elastic modulus, E, due to the linear relationship between them

(Eqn. 6). The posterior mean of the elastic modulus is computed to be .

Across 20 datasets [Fig. 4(e)], the elastic modulus is found to vary between 100-1000 kPa,

which compares favorably with our previously reported values on human breast tissue [29].

It is should be noted here that in Fig. 4, we have implemented our algorithm only on those

AFM datasets which had a good fit (with overall R2 > 0.99) with Long’s contact model. As

observed previously in [40], biological tissue samples are spatially heterogeneous

specimens, not only in the magnitude of its elastic modulus as shown in Fig. 4(e), but also

the type of constitutive material model that accurately describes it. Indeed, there were

populations of AFM force curves that did not follow neo-Hookean material behavior and we

have not included those datasets in this work. At this point of our research, we are not

looking to establish the most appropriate contact model for any given AFM force curve, and

we intend to investigate this in the future.

C. Sensitivity Tests

The dispersed nature of the marginal posterior in E of Fig. 4(d) raises an interesting question

- what are the individual contributions of the contact point uncertainty and the probe

compliance variability to the marginal posterior distribution in E ? More importantly, does

the marginal posterior in E reflect changes in the hyperparameter values of the probe

compliance, given that an informative prior was used for it?

In Fig. 5, we illustrate the effect of using hypothetical values of σsp in the posterior

distribution. The dispersion in the marginal posterior in E increases with σsp, as shown in

Fig. 5(a). This is expected, since larger variations in the calibrated probe compliance would

lead to greater uncertainty in the elastic modulus of the probed regions. The individual

Roy et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



contribution of contact point uncertainty on the marginal posterior in E is given in the first

boxplot of Fig. 5(a) (corresponding to σsp = 0.000).

Likewise, increase in σsp leads to greater dispersion in the marginal posteriors in s [Fig.

5(b)]. It is worth noting that changes in σsp does not cause any substantial change to the

posterior means of E or s.

The boxplots of Fig. 5(c) shows the effect of σsp on the marginal posterior in k. Changes in

σsp has no significant effect on the posterior in k: the 95% confidence interval of k ranges

between the 428th and 435th datapoints for all the boxplots. This is an important observation,

since uncertainties in the probe compliance and the contact point are physically unrelated -

probe compliance variations are the result of calibration errors, while contact point

uncertainty occurs because of the soft nature of biological tissues and the absence of a

perceptible attractive region in the AFM force curve in liquid.

Next, we show the effect of varying the hyperparameter μsp on the marginal posteriors in E

[Fig. 6(a)] and s [Fig. 6(b)]. We retain the previous values of sd(= 0.339) m/N and σsd (=

0.032) m/N and the assumption that . The first boxplot shows the marginal

posteriors when μsp is set to 0.222 m/N, the probe manufacturer’s nominal compliance. This

is often useful when the AFM user performs a single probe calibration experiment, and

wishes to see the result of using the nominal compliance instead of repeating the calibration

experiments. The second boxplot uses μsp = 0.328 m/N, obtained from Table I.

Reducing the hyperparameter μsp from 0.328 m/N to 0.222 m/N leads to an increasing trend

in the marginal posterior in E [Fig. 6(a)] and a corresponding decreasing trend in the

marginal posterior in s [Fig. 6(b)]. This is understandable, given the inverse relationship

between s and E (see Eqn. 6). This inverse relationship is also responsible for the increased

dispersion in the first boxplot of Fig. 6(a) compared to the second; in contrast, both boxplots

in Fig. 6(b) show largely similar dispersed behavior.

It is also evident from Fig. 6(b) that the probe compliance posterior means (ŝ) lie

approximately midway between the compliance data sd and the hyperparameter μsp (ŝ =

0.283 m/N for μsp = 0.222 m/N and ŝ = 0.333 m/N for μsp = 0.328 m/N). This is a direct

consequence of using equal weightage to the data and prior variances of the probe

compliance, i.e. ( ).

V. DISCUSSION

In this work, we have presented an integrated probabilistic approach to quantify the elastic

properties of biomaterials undergoing AFM indentation after accounting for contact point

uncertainty and AFM probe spring constant variations. Using a EIV-Bayesian Changepoint

framework, we have generated posterior distributions of the contact point and the elastic

modulus of regions in breast tissue specimens that follow a neo-Hookean hyperelastic

relationship. A sensitivity analysis on the parameters of the posterior distribution showed

that our model responded satisfactorily to a wide range of hyperparameter values.
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It is also worthwhile noting that our algorithm is independent of the choice of the contact

model, so long as the force-indentation relationship is linear in the elastic modulus E.

Indeed, setting γ = 0 (for the case h → ∞) reduces Eqn. 4 to the Hertz contact model [32].

Another appealing aspect of our approach is that it makes it possible to automate data

analysis of AFM force curves. Typically, AFM indentation studies on tissue specimens for

histopathological inference necessitates very large scale AFM indentation data acquisition

and processing. A robust and computationally efficient approach can significantly improve

throughput of AFM based characterization of biomaterials.

We would like to emphasize that the purpose of this study is not to develop constitutive

material models for soft biological specimens undergoing AFM indentation, rather to

develop a fairly detailed statistical framework to quantify uncertainties occuring in AFM

indentation experiments on soft biomaterials. As mentioned previously in Section IV.B, a

single contact model does not adequately describe all force curves acquired from raster

indentation experiments on tissue samples due to the underlying material heterogeneity in

the specimens. One possible estimation approach that could account for material

heterogeneity in tissue specimens is to use inverse finite-element based methods that utilize

various hyperelastic constitutive laws to model the post-contact AFM force curve. The

contact point and the material properties can then be estimated reliably after a suitable

hyperelastic model has been selected to describe the force curve in question.

Another possible extension of our work is to investigate the use of interval uncertainty-

integrated hypothesis testing methods [21] for inference studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
(a) and (b) AFM Experimental Setup with the MP-285 micromanipulator, (c) brightfield image of AFM indentation process.
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Fig. 2.
(a) Thermal spectrum of the probe oscillating in PBS, with overlaid Lorentzian fit in red. (b) Representative AFM force curve

on breast tissue. Note that the d vs. δ curve is displaced 10 nm on the deflection axis for ease of visualization.

Roy et al. Page 22

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
Schematic of the EIV-Bayesian Changepoint algorithm.
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Fig. 4.
Results of Gibbs Sampling on the posterior distribution. (a) Representative AFM deflection curve on a tissue sample (n = 781)

data points, (b) marginal posterior in the contact point k, (c) marginal posterior of the probe compliance s, (d) marginal posterior

of elastic modulus E (linearly related to β22), and (e) mean and 95% confidence intervals on multiple datasets. Note: Only those

force curves with R2 > 0.99 have been shown in Fig. 4(e).
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Fig. 5.
Boxplots indicating the effect of varying σsp on the marginal posteriors (a) in E, (b) in s and (c) in k, Please note that the σsd has

been assumed to be equal to σsp. The fourth boxplot (σsp = 0.032 m/N) corresponds to the experimental probe compliance

variance as obtained in Table I.
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Fig. 6.
Boxplots indicating the effect of varying μsp on the marginal posteriors (a) in E and (b) in s. The first boxplot with μsp = 0.222

m/N corresponds to the case where the probe manufacturer’s nominal compliance is used as the hyperparameter.
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TABLE I

AFM probe calibration results

Nominal Probe
Compliance (m/N)

InvOLS
†

(nm/V)

Fundamental

Freq.
†
(kHz)

Calibrated Probe

Compliance
†
(m/N)

16.667 87.72 ± 3.66 3.774 ± 0.125 16.382 ± 1.634

0.222 178.36 ± 1.88 62.675 ± 2.745 0.328 ± 0.032

†
Results shown as mean ± standard deviation.
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TABLE II

Conjugate Prior Distributions

Model
Parameter

Distribution
Family

Hyperparameters

k Uniform ~ U (1, n)

β1, β2 Normal

~N (β‒1, Λ
‒

1

−1), ~N (β‒2, Λ
‒

2

−1)
σ1

2, σ2
2 Inverse Gamma ~ IG(a0 ,b0) , ~ IG(a0 ,b0)

s Normal ~N (μsp
, σsp

2 )

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 February 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Roy et al. Page 29

TABLE III

Hyperparameter Values

Hyperparameters Values

β
‒

1, β
‒

2 0 0 T

Λ
‒

1, Λ
‒

2
10−15 0

0 10−15

(a0, b0) (1, 0.002)

(μsp
, σsp

2 ) (0.328, 0.0322)
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