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ABSTRACT

Summary: We developed PSAR-Align, a multiple sequence realign-

ment tool that can refine a given multiple sequence alignment based

on suboptimal alignments generated by probabilistic sampling. Our

evaluation demonstrated that PSAR-Align is able to improve the re-

sults from various multiple sequence alignment tools.

Availability and implementation: The PSAR-Align source code

(implemented mainly in Cþþ) is freely available for download at

http://bioen-compbio.bioen.illinois.edu/PSAR-Align.
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1 INTRODUCTION

Multiple sequence alignment (MSA) is one of the most important

foundations for cross-species comparative genomic analysis

(Kumar and Filipski, 2007; Notredame, 2007). Although many

algorithms for MSA have been developed (Kemena and

Notredame, 2009), MSA is still error-prone. For example, it

was estimated that at least 10% of the human-mouse whole-

genome alignment is misaligned at the UCSC Genome

Browser and the number increases for other species (Prakash

and Tompa, 2007).
We previously developed a novel measure, called PSAR (Kim

and Ma, 2011), which can assess the reliability of an MSA based

on its agreement with probabilistically sampled suboptimal align-

ments (SAs). SAs provide additional information that cannot be

obtained by the optimal alignment alone, especially when the

optimal alignment is not far superior to the SAs.

In this article, we introduce a new realignment method, PSAR-

Align, which refines a given MSA based on a probabilistic frame-

work that takes advantage of the SAs of the given MSA. Briefly,

PSAR-Align (i) samples SAs from the given MSA, (ii) estimates

posterior probabilities of aligning two residues from two differ-

ent sequences and (iii) generates a revised MSA using an ex-

pected accuracy-based alignment algorithm (Bradley et al.,

2009; Do et al., 2005; Paten et al., 2009; Roshan and Livesay,

2006).

2 METHODS

1.1 PSAR-Align algorithm

Given an input MSA, PSAR-Align first generates SAs by probabilistic

sampling (Fig. 1A and B). Specifically, for each pair of one sequence and

a remaining sub-alignment, PSAR-Align compares them based on a spe-

cial pair hidden Markov model (pair-HMM) that emits columns of an

MSA, which can be represented by dynamic programming matrix. To

generate the SAs, PSAR-Align traces back through the dynamic

programming matrix based on a probabilistic choice at each step that

can take into account the relative score of a current path in comparison

with neighboring paths (Kim and Ma, 2011). Then, for each pair of two

residues xi and yj from two different sequences X and Y in the input

MSA, their alignment in the sampled SAs are counted and converted

to the posterior probability P(xi� yjjX,Y) (Fig. 1C and D), which is

defined as follows:

Pðxi � yjjX,YÞ �

P
k 1fxi � yj 2 Skg

jSj
ð1Þ

where S is the set of the SAs, jSj is the total number of alignments in S

and 1{xi� yj2Sk} is an indicator function that returns 1 only when xi and

yj are aligned in an SA Sk.

PSAR-Align uses these probabilities to generate the revised alignment

by maximizing an expected accuracy of an MSA A [acc(A)] against the

(unknown) true alignment. The expected accuracy is the sum of the pos-

terior probabilities of aligned pairs of residues and unaligned (aligned

with a gap) residues in a given MSA (Bradley et al., 2009), which is

defined as follows:
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where AXY is a pairwise alignment between two sequences X and Y,

P(xi� yjjX,Y) is the posterior probability of pairwise alignment men-

tioned earlier in the text and P(xi�� jX,Y) and P(�� yjjX,Y) are the

posterior probabilities of aligning each residue with a gap that can be

computed as follows:

Pðxi � �jX,YÞ ¼ 1�
X
i

Pðxi � yjjX,YÞ ð3Þ

Pð� � yjjX,YÞ ¼ 1�
X
i

Pðxi � yjjX,YÞ ð4Þ

For the maximization of the expected accuracy, we used the sequence

annealing algorithm in the FSA program (Bradley et al., 2009).

The current version of PSAR-Align was implemented mainly in

Cþþ with additional Perl scripts, and the expected accuracy*To whom correspondence should be addressed.
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maximization step was implemented on top of the source code of FSA

(Bradley et al., 2009).

2.2 Evaluation

We assessed the performance of PSAR-Align by using a simulated bench-

mark generated by Dawg (Cartwright, 2005). The benchmark mimics

non-coding DNA sequences of five mammalian species (human, mouse,

rat, dog and cow), whose phylogenetic tree was obtained from the UCSC

Genome Browser (Meyer et al., 2013). The benchmark consists of 1000

replicates of �1kb-long sequences, and ClustalW (Thompson et al.,

2002), MAFFT (Katoh et al., 2005), MAVID (Bray and Pachter,

2004), MUSCLE (Edgar, 2004) and Pecan (Paten et al., 2008) were

used to generate the input MSA. Two evaluation measures were used:

(i) alignment sensitivity, which is the fraction of aligned and unaligned

(aligned with a gap) residues in the true alignment that agree with the

predicted alignment and (ii) alignment specificity, which is the fraction of

aligned and unaligned (aligned with a gap) residues in the predicted align-

ment that agree with the true alignment.

2.3 Computational complexity

The time and memory complexites of alignment sampling are O(L2NS)

andO(LN), respectively, where L is the alignment length,N is the number

of sequences and S is the number of sampling trials (Kim and Ma, 2011).

The pairwise posterior probability computation requiresO(N2L) time and

memory complexity, and the maximization of the expected accuracy was

done efficiently by FSA (Bradley et al., 2009). In the evaluation, a single

run of PSAR-Align for each input MSA took �3min in an Intel (R)

Xeon 2.67GHz machine with 64GB memory.

3 RESULTS

We evaluated PSAR-Align by using simulated sequences of five

mammalian species (see Section 2). By using ClustalW, MAFFT,
MAVID, MUSCLE and Pecan, input MSAs were generated

and fed into PSAR-Align, which resulted in a refined MSA.

The original (by the aforementioned five programs) and revised

(by PSAR-Align) MSAs were compared with true MSAs, which

were known from the simulation. We used two evaluation meas-

ures: alignment sensitivity and specificity (see Section 2). As

shown in Table 1, the alignment specificity of the original

MSA by all five programs increased in the PSAR-Align MSA.

The amount of increases ranges from 0.662 (Pecan) to 2.591

(ClustalW). Similar differences were also observed for alignment

sensitivity, which showed an increase ranging from 0.554

(MAVID) to 2.602 (ClustalW). In the case of Pecan, alignment

specificity of the revised alignment by PSAR-Align was slightly

higher than the original, but the opposite pattern was observed

from alignment sensitivity. Our evaluation results indicate that (i)

PSAR-Align can be used to improve MSAs from different types

of MSA programs and (ii) Pecan is a high-quality MSA program

based on our evaluation datasets.

4 CONCLUSION

We have developed a new alignment refinement tool, PSAR-

Align, which is a realignment algorithm based on probabilistic-

ally sampled SAs. The performance of PSAR-Align was evalu-

ated by simulation-based benchmarks. This tool will be useful for

comparative genomics studies using MSA.
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Table 1. Benchmark results of PSAR-Align

Input MSA Sensitivityc Specificityc

Originala PSAR-Alignb Originala PSAR-Alignb
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Note: Better scores between original and PSAR-Align are shown in bold.
aInput MSA to PSAR-Align.
bRevised MSA of the original by PSAR-Align.
cAverage across 1000 replicates with 95% confidence interval in parentheses.
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