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ABSTRACT

Motivation: Identification of modules of co-regulated genes is a cru-

cial first step towards dissecting the regulatory circuitry underlying

biological processes. Co-regulated genes are likely to reveal them-

selves by showing tight co-expression, e.g. high correlation of expres-

sion profiles across multiple time series datasets. However, numbers

of up- or downregulated genes are often large, making it difficult to

discriminate between dependent co-expression resulting from co-

regulation and independent co-expression. Furthermore, modules of

co-regulated genes may only show tight co-expression across a

subset of the time series, i.e. show condition-dependent regulation.

Results: Wigwams is a simple and efficient method to identify gene

modules showing evidence for co-regulation in multiple time series of

gene expression data. Wigwams analyzes similarities of gene expres-

sion patterns within each time series (condition) and directly tests the

dependence or independence of these across different conditions. The

expression pattern of each gene in each subset of conditions is tested

statistically as a potential signature of a condition-dependent regulatory

mechanism regulating multiple genes. Wigwams does not require par-

ticular time points and can process datasets that are on different time

scales. Differential expression relative to control conditions can be

taken into account. The output is succinct and non-redundant, enabling

gene network reconstruction to be focused on those gene modules

and combinations of conditions that show evidence for shared regula-

tory mechanisms. Wigwams was run using six Arabidopsis time series

expression datasets, producing a set of biologically significant modules

spanning different combinations of conditions.

Availability and implementation: A Matlab implementation of

Wigwams, complete with graphical user interfaces and documenta-

tion, is available at: warwick.ac.uk/wigwams.
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Supplementary Data: Supplementary data are available at
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1 INTRODUCTION

Elucidating the regulatory mechanisms mediating biological pro-
cesses is a key challenge in many eukaryotic organisms. Much

regulation occurs at the transcriptional level; however, despite

our ability to profile genome-wide gene expression and the avail-

ability of bioinformatics tools to analyze sequence information,
our understanding of gene regulatory networks underlying bio-

logical processes is still relatively basic. Regulatory interactions

are often common, meaning that the ability to understand the
regulation of a response requires a mathematical or computa-

tional network model. Underlying these network models is the

knowledge of regulatory mechanisms. Techniques to identify

regulatory mechanisms, such as genome-wide chromatin immu-
noprecipitation sequencing (Robertson et al., 2007) and matrix-

based yeast one-hybrid (Y1H) (Deplancke et al., 2006), have

improved, but these techniques are not high-throughput.
Therefore, it is crucial to be able to make high-quality predic-

tions of regulatory mechanisms using existing data; these predic-

tions can then be tested in focused experimental and modelling
efforts.

Time series experiments are often used to examine the dy-
namics of gene expression (Belling et al., 2013; Windram et al.,

2012), and with the decreasing cost of profiling techniques, more

datasets covering multiple time series showing how an organism

responds to different conditions are becoming available. Such
data offer the opportunity to study shared regulatory mechan-

isms that are used to regulate genes under more than one con-

dition. Such shared regulatory mechanisms may drive gene
expression in the same way in each time series, or they may be

modified to drive expression on a different time scale or to

change the direction of regulation (activation versus repression).

To facilitate gene network reconstruction, it is important to
develop tools that can map out which gene modules are co-

regulated in what combinations of conditions.
It is a long-standing assumption that co-expression may reflect

co-regulation (Altman and Raychaudhuri, 2001), and using data

from multiple conditions can improve the correlation between
the two (Yeung et al., 2004). However, in noisy biological sys-

tems, co-regulated genes may still show some differences in their

expression, and there may be more than one regulatory mechan-

ism that can drive genes with a particular expression pattern.
Following a perturbation, such as infection or treatment with a

chemical stimulus, many genes change in expression and even

with high-resolution time series, large numbers of genes can

*To whom correspondence should be addressed.
yThe authors wish it to be known that, in their opinion, the first two
authors should be regarded as Joint First Authors.
zPresent address: NIHR Biomedical Research Centre for Mental Health,
South London andMaudsley NHS Foundation Trust, London SE5 8AF,
UK.
§Present address: Department of Infectious Disease Epidemiology,
Imperial College, London W2 1PG, UK.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:k.j.denby@warwick.ac.uk
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt728/-/DC1
,
analyse 
 (ChIP-seq)
-
It is t
 sets
employed
In order t


show a similar expression profile (Weinstock-Guttman et al.,

2003; Windram et al., 2012). As a result, it can be challenging

to distinguish between dependent co-expression indicative of co-

regulation and independent co-expression of genes that achieve a

similar expression pattern in different ways. It is important to

note that both dependent and independent co-expression may

pass statistical tests that are geared towards testing the similarity

of expression patterns and/or the tightness of a gene cluster rela-

tive to other clusters. Therefore, tools that solely aim to detect

clusters of similarly expressed genes may not discriminate

informative dependent co-expression from uninformative inde-

pendent co-expression.
Multiple high-resolution time series of gene expression for a

single organism under different conditions provide a powerful

approach for identifying dependent co-expression of genes

likely to be controlled by a common upstream regulator.

However, while an increasing number of time series would help

to improve the specificity of co-expression (i.e. co-expression

across more time series is more likely to be dependent co-

expression), it is unlikely that a single group of genes will be

co-expressed across all the datasets. For example, it is known

that there is significant cross-talk between signalling networks for

different plant hormones in Arabidopsis, but not all of the com-

ponents are playing a role in the response to every hormone

(Robert-Seilaniantz et al., 2011). Furthermore, some of the

detected co-expression across multiple datasets may still be inde-

pendent co-expression due to the abundance of particular expres-

sion profiles rather than due to a shared regulatory mechanism.

Hence, there is a need for an algorithm that can identify modules

of genes dependently co-expressed across subsets of time series

data, combining the increased specificity of multiple time series

datasets with biological reality.

A myriad of clustering algorithms have been developed to

assign genes into clusters based on the similarity of their expres-

sion profiles across a single time series or multiple static (i.e.

single or few time points) datasets (Madeira et al., 2010; Maere

et al., 2008; Meng et al., 2009; Reiss et al., 2006). A few algo-

rithms have also been developed to specifically cluster genes

using two or more time series datasets, such as BHC (Savage

et al., 2009) and SplineCluster (Heard et al., 2005). However,

these algorithms partition genes into clusters and do not enable

identification of genes co-expressed across subsets of the data.

A few methods are capable of identifying co-expression across

subsets of the data, but these come with their own drawbacks.

Tensor methods (Li et al., 2012; Zhang et al., 2012) require the

timescale of the experiments to be uniform throughout. EDISA

(Supper et al., 2007) does not require the same timescale across

all of the datasets, but it is non-deterministic. None of these

methods is able to incorporate differential expression relative

to control time series into the analysis, and crucially, none stat-

istically evaluates dependent co-expression versus independent

co-expression. ENIGMA (Maere et al., 2008) can account for

genes’ differential expression, but the method was designed for a

series of static expression data. CCC-Biclustering (Madeira et al.,

2010) tests biclusters for statistical significance against a null

hypothesis of independent expression profile evolution, but the

method is only capable of analyzing a single time course

experiment.

Wigwams (Wigwams identifies genes working across multiple

situations) is a simple, deterministic and efficient method capable

of identifying groups of dependently co-expressed genes, termed

gene modules, spanning subsets of the available time series

datasets. Wigwams is a comprehensive method; all potential

dataset combinations are scanned for gene modules by rigorously

testing putative gene modules around each gene differentially

expressed in a dataset. Wigwams evaluates each putative

module for statistical significance and provides a non-redundant

output of gene modules showing significant co-expression across

varying combinations of the time series data. Each gene may be

assigned to one or more gene modules or to no module at all.

Wigwams requires little user input (further aided by easy-to-use

graphical user interfaces) and is computationally inexpensive

and relatively fast, making it a useful method to analyze mul-

tiple time series experiments for evidence of co-regulation. We

demonstrate that gene modules identified by Wigwams are

often enriched for Gene Ontology (GO) terms (Ashburner

et al., 2000) and known transcription factor (TF) binding

motifs indicating biological relevance. We also provide experi-

mental evidence of potential co-regulation. Wigwams is a power-

ful tool to utilize the resolution of time series expression data in a

statistically rigorous approach for identification of co-regulated

gene modules. It can make a direct contribution to gene regula-

tory network analysis and computational prediction of regula-

tory mechanisms.

2 MATERIALS AND METHODS

Here we outline the Wigwams algorithm indicating the various steps and

decisions to be taken in applying this method to multiple time series

expression datasets. A Matlab implementation is provided at warwick.-

ac.uk/wigwams along with relevant documentation.

2.1 Input

The input to Wigwams is a matrix of gene expression values for all

the time series data to be analyzed with unique gene identifiers and

annotation of each time series sample. Two additional matrices can be

provided to improve the biological relevance and ease of interpretation

of resulting modules: one indicating which genes are differentially ex-

pressed (DE) in each time series dataset (previously determined rela-

tive to a control time series) in a binary manner (0 for non-DE, 1 for

DE), and the second providing annotation information for each unique

gene identifier. If data on DE genes are not provided, then all genes are

treated equally. A graphical user interface has been created to aid in the

construction of data formats for use in Wigwams based on raw input

files. A second graphical user interface facilitates running the individual

steps of the Wigwams method described in Sections 2.2, 2.3 and 2.4

below.

The expression profiles are standardized on a per-gene basis in each

dataset, and a matrix containing the expression profiles of all genes dif-

ferentially expressed in at least one of the conditions is created. The ex-

pression profiles of non-DE genes within each condition are randomly

shuffled across non-DE genes. This prevents non-DE genes from contri-

buting to gene modules, as it unlinks dependencies of expression profiles

across conditions for those genes (see Section 2.2 below). Any non-DE

gene making a (coincidental) contribution to a gene module is removed

from the module (see below). Therefore, although the randomization step

eases the data processing, it has no effect on the eventual output of

Wigwams, leaving the Wigwams output deterministic.
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2.2 Identifying modules spanning multiple datasets

This stage of Wigwams is outlined in Supplementary Figure S1, with an

example shown in Figure 1. The aim of these steps is to detect all evidence of

co-regulation (in the form of dependent co-expression) across the multiple

time series datasets, regardless of the redundancy of resultingmodules. Each

gene that is DE in two or more conditions is deemed a ‘seed’ gene and is

tested sequentially. For each condition in which the seed gene is DE, the

other genes in the expressionmatrix are ranked on the basis of howwell their

expression profile in that time series is correlated with the expression profile

of the seed gene.Genes are rankedwith themost correlated gene at the topof

the list. In the work presented in this article, the Pearson correlation

coefficient was used as the similarity measure. Alternative metrics could

be substituted without a need to change the Wigwams method itself.

For each combination of conditions in which the seed gene is DE, the

size of the overlap between the top-ranked co-expressed genes in each

dataset is tested statistically (Fig. 1 shows an example). This evaluates

whether the similarities of gene expression observed within each time

series are dependent across datasets. A significant P-value suggests that

a regulatory mechanism is at work that (i) targets a significantly similar

set of genes in each condition considered and (ii) induces expression pro-

file similarity in each condition. However, no restriction is made regard-

ing the similarity of gene expression profiles across different conditions.

Therefore, a regulatory mechanism that targets a similar set of genes

under different conditions, but with a different effect on expression

(e.g. activating in one condition but repressing in another) can still be

detected by this statistical test.

All possible combinations of conditions are tested (i.e. sets of two or

more time series up to the number of independent time series used), using

the top n most correlated genes in each dataset, where the user specifies a

range of values for n. In our work, we have used n¼ 50, 100, 150, 200 and

250 to be able to detect regulatory mechanisms targeting510 to4100

genes. Wigwams processes the detection of modules (described in this

Section) independently for each n and pools the results.

To determine whether the observed overlap is statistically significant,

the hypergeometric test is used. For the purposes of the Matlab imple-

mentation of Wigwams, the hypergeometric test function by Meng et al.

(2009) was used. This was modified to enable the significance of overlaps

between more than two time series to be assessed. Given a universe of size

U and two sets of size N2 ¼ ½n1, n2�, the probability of observing an

overlap of at least size x by chance equals

H2 N2, x,Uð Þ ¼
XminðN2Þ

i¼x

n1
i

� �
U� n1
n2 � i

� �� �
U
n2

� ��

One can expand this for k sets of size Nk ¼ ½n1, n2, :::, nk�1, nk� by assum-

ing the probability of observing an overlap of at least size x between the

k sets to be equal to the sum of the products of the probability of obser-

ving an overlap of exactly size i between k� 1 sets of size

Nk�1 ¼ ½n1, n2, :::, nk�2, nk�1� and the probability of observing an overlap

at least of size x between two sets of size ½i, nk�, for x � i � minðNk�1Þ.

Owing to the nature of the hypergeometric test, the probability of obser-

ving an overlap of exactly size i between k� 1 sets is equal to the differ-

ence of the probability of observing an overlap at least of size i and the

probability of observing an overlap of at least size iþ 1 for

i5minðNk�1Þ, and to Hk�1ðNk�1, minðNk�1Þ,UÞ for i ¼ minðNk�1Þ.

Combining that into a formula yields

Hk Nk,x,Uð Þ ¼ Hk�1 Nk�1, min Nk�1ð Þ,Uð Þ �H2 min Nk�1ð Þ, nk½ �,x,Uð Þ

þ
Xmin Nk�1ð Þ�1

i¼x

Hk�1 Nk�1, i,Uð Þ �Hk�1 Nk�1, iþ 1,Uð Þð Þ �H2 i, nk½ �,x,Uð Þ½ �

This modification makes it possible to evaluate the statistical signifi-

cance of overlaps between three and more time series datasets.

The Bonferroni correction (Bland and Altman, 1995) is applied to the

P-values from the hypergeometric test. Given a desired significance

threshold � (0.05 was used for this study), the Bonferroni correction

proposes an adjusted �

�corr ¼ �

�XN

i¼1
2ni � ni � 1ð Þ

where ni is the number of datasets inwhich gene i is differentially expressed.

N is the number of genes. Overlaps with a P-value below the adjusted

significance threshold were deemed to have statistically significant depend-

ent co-expression. Such overlap gene lists are considered genemodules and

always include the seed gene bydesign. If any non-DEgenes are included in

these overlaps, these are removed from the putative gene modules before

evaluating the statistical significance. Therefore, the output is a list of gene

modules showing statistically significant dependent co-expression across

two or more time series datasets. However, at this stage multiple modules

may contain similar genes as if seed genes have similar expression profiles,

similar gene modules will be created around these.

2.3 Merging similar modules spanning the same time

series subset

This process in Wigwams is outlined in Supplementary Figure S2, with an

example shown in Figure 2. It is important that the output of Wigwams is

in a useful format for biologists to use, and hence at this stage of the

algorithm, gene modules with a sizeable overlap of gene membership are

Fig. 1. Strong evidence for dependent co-expression is detected during

the module identification stage. (A) and (B) are two lists of 50 genes that

are most correlated to the seed gene’s expression profile in B.cinerea in-

fection and senescence, respectively (seed gene shown in red). (C) The

overlap between the two lists (genes shown in green) is determined, and

the expression profiles of the identified genes are shown in (D). To evalu-

ate whether the observed overlap is likely to have occurred by chance a

hypergeometric test is performed (yielding a P-value below 1 e-17 in this

example). Overlaps deemed statistically significant are likely to discrim-

inate dependently co-expressed genes from independently co-expressed

genes. Such overlaps are therefore termed ‘modules’. In this example,

the module is ‘spanning’ B.cinerea infection and senescence. Hpi, hours

post inoculation; das, days after sowing, h, hours
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merged. However, this stage only reduces redundancy among modules

that are spanning the same combination of conditions.

Owing to the way modules are formed in Wigwams, modules with

large overlap will also have similar expression profiles. In this study,

modules with an overlap430% of the smaller module’s gene membership

are merged. This simplifies the output because one module, containing

genes co-expressed with similar profiles, is formed rather than two. The

choice of overlap threshold was based on the distribution of overlap size

(as a proportion of the smaller module) as seen in Supplementary Figure

S1. The distribution of overlap size can be plotted within Wigwams

providing a tool for the user to set this threshold. Genes from the smaller

module are added to the larger module provided that their expression

profile is sufficiently correlated with the mean expression profile of the

larger module. We used a correlation threshold of 0.8, which needed to be

fulfilled for each of the datasets the modules span. In addition, two mod-

ules whose mean expression profiles across relevant time series datasets

are highly correlated (Pearson correlation coefficient of at least 0.9 for

each of the datasets) are also merged, regardless of the overlap in

gene membership. The merging stage produces a set of modules with

greatly reduced redundancy but without loss of essential information

(see Table 1). Broader regulatory phenomena are reconstructed using

previously identified statistically significant modules. The user can

adjust the thresholds to shift the trade-off between the ability to see

subtle differences between similar modules and the ability to get a suc-

cinct overview of key signals in the data.

2.4 Sweeping redundant modules spanning different

dataset subsets

This stage of Wigwams is outlined in Supplementary Figure S3, with an

example shown in Figure 3. Sweeping addresses a second kind of redun-

dancy. For example, in the case of a module containing genes signifi-

cantly co-expressed across three conditions, significant dependent co-

expression is likely to be picked up for each pair of these time series as

well, yielding another three modules. The gene membership of the module

spanning more conditions is compared with that of modules spanning

subsets of these time series. If the overlap is comparable with the size of

the module spanning fewer conditions, then this module is discarded on

the basis of it not contributing significant new information. In this study,

the module spanning fewer conditions was discarded if the overlap fea-

tured at least 50% of its gene members.

The output at this final stage of Wigwams is a list of modules gener-

ated from genes showing statistically significant dependent co-expression,

processed to optimize the number of different expression patterns con-

tained in these modules and reduce redundancy between module gene

membership.

2.5 GO term and TF binding motif enrichment testing

GO term (Ashburner et al., 2000) enrichment was tested with the

Cytoscape plugin BiNGO (Maere et al., 2005) using the GO_Full ontol-

ogy with the hypergeometric test and the Benjamini–Hochberg correction

to control the false discovery rate (Benjamini and Hochberg, 1995). The

whole genome Arabidopsis annotation was used as a reference set.

Analysis of overrepresented TF binding motifs in module promoter se-

quences was carried out exactly as in Breeze et al. (2011), using informa-

tion from the PLACE (Higo et al., 1999) and TRANSFAC (Matys et al.,

Fig. 2. Merging. The modules shown in (A and B) span the same com-

bination of conditions (depicted in blue; other time series shown in black),

and feature a sizeable overlap in gene membership. Merging joins the two

modules into a combined module shown in (C). The mean expression

profiles of the larger module A are used to determine whether the five

genes unique to module B are expressed with sufficient similarity to be

included in the joint module, preserving the extra information that is

contributed by module B. In this example, all genes of module B are

accepted. Hpi, hours post-inoculation; das, days after sowing, h, hours

Table 1. Gene module information during Wigwams analysis

Wigwams stage Raw After

merging

After

sweeping

After

thresholding

Modules 4434 161 128 78

Overlaps 38964 4 3 3

Max overlap 50 19 19 19

Two conditions 3465 44 39 39

Three conditions 787 70 50 26

Four conditions 173 40 33 12

Five conditions 8 6 5 1

Six conditions 1 1 1 0

Mean module size 22 56 63 100

Total size 97313 9030 8050 7827

Unique genes 4444 4239 4197 4194

Note: The table shows the number of modules, number of pairs of modules that

span the same condition combination with at least 10 genes in common (overlaps),

maximum number of genes shared by a pair of modules spanning the same condi-

tions (maximum overlap), number of modules spanning two to six conditions, mean

module size, total size of the identified modules and number of unique genes they

feature (Unique genes) for the initial module list (raw) and at different stages of

Wigwams analysis.
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2006) databases. P-values were adjusted using the Benjamini–Hochberg

correction. For each gene, 500bp of DNA upstream of the transcriptional

start site was tested. As a control for GO term and TF binding motif

analysis, 78 groups of genes were randomly generated from the 16686

genes forming the Wigwams input. These 78 random modules were the

same size as the 78 final modules identified by Wigwams.

2.6 Yeast one-hybrid technique

The yeast one-hybrid TF library screen was performed as described in

Hickman et al. (2013) using three overlapping promoter fragments

of �400bp spanning �1kb upstream of the transcription start site of

each gene.

3 RESULTS

We applied Wigwams to analyze a set of six time series datasets

of gene expression responses to environmental stress in the

model plant Arabidopsis thaliana. Two of the datasets were

high-resolution time series, one obtained from leaves following

infection with the fungus Botrytis cinerea (Windram et al., 2012),

the other from leaves developing from maturity to senescence

(ageing) (Breeze et al., 2011). The other four datasets had

fewer time points, and captured responses to abiotic stresses

[shoot and roots after cold stress, roots during drought and

shoots after ultraviolet (UV) light exposure]. These were ob-

tained from AtGenExpress (Kilian et al., 2007). The two

groups of experiments were performed with different microarray

platforms (Redman et al., 2004; Sclep et al., 2007), and the

datasets were found to have 19 886 genes in common.

For the B.cinerea infection and senescence time series, the

curated lists of DE genes were used (Breeze et al., 2011;

Windram et al., 2012). For the AtGenExpress datasets, differen-

tial gene expression was determined using the GPTwoSample test

(Stegle et al., 2010), with a score threshold of four. In all, 16 686

genes were DE over time in at least one condition

(Supplementary Dataset S1), with 12447 genes DE in at least

two conditions and hence eligible for inclusion into Wigwams

modules.

3.1 Wigwams systematically scans the data for

evidence of co-regulation

The module identification procedure uses one gene at a time

(‘seed gene’) and each combination of conditions in turn and

tests whether the expression pattern of the seed gene across

these time series may be driven by a regulatory mechanism

acting on a number of genes under more than one condition.

This is illustrated in Figure 1 for the case of a set of two condi-

tions. For each time series, gene expression similarity to the seed

gene is evaluated and the list of genes that are most strongly

correlated with the seed gene assembled. Genes in each list

show co-expression (across multiple conditions), which could

be dependent co-expression driven by a common mechanism,

or independent co-expression where multiple mechanisms

induce similar expression patterns. If the expression similarity

observed in each time series is the result of a common regulatory

mechanism, then it is likely that this mechanism will target a

similar set of genes in each condition. Wigwams tests this hy-

pothesis. In the example of Figure 1, of 50 genes in each list, 11

genes (plus the seed gene) are in common between the two lists.

By the hypergeometric test, the likelihood of making this obser-

vation by chance is below 1e-17. This provides strong evidence

that the co-expression observed is not independent co-expression,

but dependent co-expression driven by a shared regulatory mech-

anism. Hence, the 11 genes in the overlap (plus the seed gene) are

likely to be under a common regulatory influence and are con-

sidered a module.

The module identification procedure was run for all DE genes

and all dataset combinations. This stage of the analysis took 2h

53min on a Dell Precision M4700 computer (2.8GHz Intel Core

i7-3840QM processor, 16 GB DDR3 SDRAM at 1600MHz,

64-bit Windows 7 Professional, Matlab R2012b), producing a

list of 4434 statistically significant gene modules likely to be

showing dependent co-expression spanning two to six conditions

(Table 1). Of the 12447 DE genes in two or more conditions,

4444 were placed in at least one module.

Fig. 3. Sweeping. Sweeping evaluates those pairs of modules where one

spans only a subset of conditions compared with the other. The module

spanning fewer conditions is removed if it does not contribute enough

new information. In this example, module A spans four conditions (sen-

escence, root response to cold, shoot response to cold, shoot response to

UV, shown in blue), while module B only spans three of these and con-

tains only five genes that are not already members of module A. Module

B is discarded. hpi, hours post-inoculation; das, days after sowing, h,

hours
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3.2 Wigwams effectively removes redundancy among

modules

As Wigwams considers every DE gene as a seed gene during the

module identification stage, the method is comprehensive, but
the output after the first stage is likely to have a high degree of
redundancy. The merging algorithm merges modules with similar

gene membership and/or highly similar expression profiles
(exemplified in Fig. 2). The sweeping algorithm removes modules
that have a large overlap with another module, but only show

dependent co-expression across a smaller subset of conditions
(exemplified in Fig. 3). In both cases, the essential information

characterizing the expression phenomenon observed is main-
tained, while redundant information is removed.
After the merging stage, the initial 4434 modules were con-

densed into 161 modules (Table 1), while the number of unique
genes assigned to at least one module only decreased from 4444
to 4239. The genes lost during merging had expression profiles

not sufficiently similar to the mean expression profile of the
larger module to be included. The average size of modules

increased from 22 to 56 genes, while overlaps among modules
were strongly reduced. Redundancy within the remaining 161
modules was further reduced by the sweeping stage. This reduced

the list to 128 modules with an average size of 63, while the
number of unique genes included in modules decreased only

slightly from 4239 to 4197.
We decided to exclude small modules from further analyses, as

(i) we wanted to get an overview of expression signatures driven

by major regulatory mechanisms and (ii) although the excluded
modules did pass rigorous statistical testing, the evidence base
for these modules is not as wide as for the larger ones. We

required a minimum of 10 genes for modules spanning two or
three conditions, a minimum of 8 if spanning four, and a

minimum of 5 genes if spanning five or six time series. These
thresholds were simply chosen on the basis that fewer genes will
be co-expressed across a larger number of datasets and small

modules will provide little functional information. Our thresh-
olding resulted in a final list featuring 78 modules spanning two
to five conditions and covering 4194 unique genes (Table 1 and

Supplementary Dataset S2).The mean module size is 100 genes.

3.3 Wigwams reveals expression signatures of regulatory

mechanisms

Four modules from the set of 78 are shown in Figure 4 (expres-
sion profiles for all modules are in Supplementary Dataset S3).

Strong evidence for dependent co-expression has been detected
for time series coloured in blue. The evidence for co-regulation of

genes in these modules does not merely stem from the tightness
of expression patterns, but is further supported by the depend-
ence of expression similarities across time series. Although some

expression profiles appear correlated in conditions not part of
the module (e.g. shoot cold in Fig. 4D), we have not found evi-

dence for dependence of co-expression in these time series.
Expression similarity arises from a large number of genes sharing
a similar profile in that condition.

Interestingly, module A shows regulation in different direc-
tions depending on conditions. During B.cinerea infection,
senescence and root response to cold genes in the module are

upregulated, while they are downregulated during root response

to drought and shoot response to UV, consistent with the idea

that the mechanism regulating these genes operates in a different

mode under different conditions.

The full set of 78 modules contains modules dependently co-

expressed across different combinations of conditions (Fig. 5 and

Table 1). The modules detected by Wigwams can be considered

the result of regulatory networks active during different stress

responses. By analyzing the distribution and function of modules

across different combinations of conditions, hypotheses can be

made about the function and complexity of the networks under-

lying these, and network reconstruction attempts can be directed

towards suitable time series combinations. For example, a re-

searcher interested in unravelling shared regulatory networks be-

tween the biotic stress of B.cinerea infection and abiotic stress

can see from Figure 5 that only one module spans B.cinerea

infection, root response to drought and shoot response to cold.

As such, attempts to reconstruct a common regulatory network

spanning these three stress responses do not appear to be well

supported by the available data, as we see little evidence for a

complex shared network. In contrast, there are nine modules

spanning B.cinerea infection, root response to cold and shoot

response to UV light, making this combination of stresses

much more promising for elucidating a common regulatory net-

work. Wigwams allows the researcher to rigorously examine

available data for evidence of a regulatory network before em-

barking on modelling or experimental efforts.

3.4 Biological validation of detected modules

The enrichment of genes involved in the same biological process

is often used as an indication of co-regulation of a gene module.

Therefore, we tested Wigwams modules using BiNGO (Maere

et al., 2005) and found that 71 of the 78 gene modules were

overrepresented for GO terms (Ashburner et al., 2000) relating

to biological processes vis-à-vis 24 of the 78 random modules.

This further supports the case for co-regulation of genes in each

Wigwams module. Two examples of such modules, along with

the identified overrepresented GO terms, are shown in Figure 6

(overrepresented GO terms for all modules are given in

Supplementary Dataset S4).
The module shown in Figure 6A features 29 genes spanning

four datasets and is enriched in GO terms ‘response to abscisic

acid (ABA)’ and ‘response to cold’. This suggests a wider role of

genes responding to cold and a role of ABA, a plant hormone, in

mediating the link between the four conditions. The module

shown in Figure 6B contains 269 genes dependently co-expressed

across shoot response to cold and UV light, and is enriched in

GO terms corresponding to the CUL4 RING ubiquitin ligase

complex and non-coding RNA processing. The enrichment of

genes with a shared function (members of the same complex)

suggests that a specific mechanism acts to co-ordinate expression

of the genes in this module.
Transcriptional gene regulation occurs by the binding of TFs

to specific DNA sequences in promoters of genes. The same or

similar TF binding motifs are often present in the promoters of

co-regulated genes. We tested the Wigwams modules for enrich-

ment of known TF binding motifs and found that 51 of the 78

modules had at least one overrepresented motif (Supplementary

Dataset S5), suggesting that the module members were

967

Identification of co-regulated gene modules

characterising 
,
fell
,
,
fell
,
,
 very
a
b
ten
eight
five
 sets
very 
,
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt728/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt728/-/DC1
,
up-
down-
analysing 
We t
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt728/-/DC1
 sets
``
''
``
''
indeed 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt728/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt728/-/DC1


co-regulated. In comparison, 6 of the 78 random modules were

overrepresented for a motif. The promoters of genes in the

module shown in Figure 6A were overrepresented for the W

box (de Pater et al., 1996), suggesting that the dependent co-

expression is driven by binding of TFs from the WRKY TF

family (Eulgem et al., 2000), known to play a key role in regulat-

ing plant stress responses (Chen et al., 2012; Eulgem and

Somssich, 2007). The module shown in Figure 6B was strongly

enriched in a motif bound by the TCP TF family (Cubas et al.,

1999; Welchen and Gonzalez, 2006), again suggesting a mechan-

ism for shared regulation.

Finally, we tested the validity of the Wigwams modules using

the Y1H technique to test for direct binding of the same TF(s) to

multiple genes within a module. As we are interested in gene

regulatory networks, we targeted TF gene promoters from

Wigwams modules. The promoters of two genes (At3g15210

and At5g05410) from a 26-gene module spanning B.cinerea in-

fection and root and shoot responses to cold (Supplementary

Fig. S4a) were screened against a TF library to identify TFs

able to bind these DNA sequences. Both of these promoters

were bound by TCP3 (At1g53230) and TCP1 (At1g67260), two

members of the TCP TF family (Martı́n-Trillo and Cubas, 2010).

In a 38-gene module spanning senescence and the root response

to drought (Supplementary Fig. S4b), the promoters of three

genes (At1g19180, At1g80840 and At3g23250) were screened

and were bound by WRKY41, a member of the WRKY TF

Fig. 4. Four examples of modules showing different regulatory phenomena detected by Wigwams. Each module is represented by the gene expression

profiles of its members across the six conditions. Shown in blue are conditions for which there is evidence for dependent co-expression. (A) is the smallest

module, which has seven genes and appears to be dependently co-expressed in every condition except for shoot response to cold. The genes are activated

in three conditions and repressed in two. (B) is a 131-gene module spanning B.cinerea infection, senescence and shoot response to UV. (C) is the largest

module with 1238 genes, including all 131 genes from module (B), but only spans two conditions. (D) features 13 genes with unusual expression profiles

in root response to cold and shoot response to UV. hpi, hours post inoculation; das, days after sowing; h, hours

Fig. 5. The number of modules identified for each combination of con-

ditions. Three conditions are represented by large circles; the other three

by small circles. Evidence for dependent co-expression was found across a

range of combinations of conditions, ranging from two time series up to

five time series. By analyzing the number of modules detected for differ-

ent combinations of conditions, network reconstruction efforts can be

focused on time series combinations showing evidence for shared regula-

tory mechanisms. The nine modules featuring B.cinerea infection, root

response to cold and shoot response to UV light are shaded light grey.

The single module spanning B.cinerea infection, root response to drought

and shoot response to cold is shaded dark grey
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family (Eulgem et al., 2000). Direct binding of these TFs to mul-

tiple gene promoters from the same module is a strong indication

that the Wigwams algorithm is detecting dependent co-expres-

sion reflecting co-regulation.

4 DISCUSSION

Wigwams is a simple deterministic method capable of identifying

groups of genes exhibiting statistically significant dependent co-

expression across subsets of time series datasets, and using that

information to construct larger non-redundant modules captur-

ing broader transcriptional phenomena. Its comprehensive

nature minimizes the odds of missing evidence of co-regulation,

and the redundancy removal procedures provide the researcher

with a succinct biologically informative output. In some cases,

when examining the expression plots of gene modules, the

module appears to exhibit co-expression in conditions that are

not deemed significant. This demonstrates the power of

Wigwams to select modules with statistically significant depend-

ent co-expression. In these non-significant conditions, the given

expression profile may have been abundant and/or the module

members are not DE in that time series (i.e. expression profile in

the control samples was similar).
When comparing Wigwams with other methods capable of

identifying groups of genes co-expressed across different subsets

of time series data, its main advantages are flexibility, statistical

significance testing and relevance of the provided output.

Additionally, Wigwams is able to account for differential expres-

sion of genes in each of the time series, and ensure that gene

profiles are only tested for statistically significant dependent

co-expression in relevant conditions. The value of testing the
statistical significance of detected co-expression can be seen
when comparing Wigwams with the EDISA algorithm (Supper

et al., 2007). When run on a permuted dataset, EDISA identified
several co-expressed gene modules, whereas Wigwams did not
identify any. Furthermore, we have shown the value of the com-

prehensive nature of Wigwams; it is capable of detecting depend-
ent co-expression that EDISA misses (see Supplementary
Material for details on this analysis). To our knowledge,

Wigwams is the only algorithm capable of mining multiple
time series (on varying time scales) for dependent co-expression
across subsets of the time series.

The modules produced by Wigwams were demonstrated to be
biologically relevant due to enrichment of GO terms (Ashburner
et al., 2000) and known TF binding sites, suggesting shared func-

tion and regulation between module members. We also provide
experimental evidence for co-regulation showing that in yeast, a
set of similar TFs bind to the promoters of multiple genes from a

single Wigwams module. Although Y1H does not indicate the
conditions under which these TFs bind to the gene promoters, or
whether they bind in planta, it does indicate the potential for co-

regulation.
The Wigwams tool is easy to use, with intuitive graphical user

interfaces, comprehensive documentation and output provided

in a clear manner that can be readily analyzed by tools such as
BiNGO (Maere et al., 2005) and MEME-LaB (Brown et al.,
2013). The algorithm is flexible, and intuitive parameters can

be used to tailor the output as desired. Additionally, the
module lists are saved as Matlab cell structures, enabling
access to intermediate stages of Wigwams analysis, e.g. to iden-

tify the most statistically significant original smaller gene
modules.
A more computationally tractable version of the modified

hypergeometric test could enable modification of the Wigwams
method. To obtain the P-values for an overlap spanning k sets,
all the P-values for 2,3, . . . ,k-1 sets need to be generated. If the

tests were more efficient, the algorithm could be modified to use
correlation thresholds instead of pre-defined set sizes when eval-
uating overlaps, and non-DE genes could be excluded from any

analysis without large adverse effects on run time due to varying
universe size between dataset combinations.
Owing to the time and cost of experimental approaches to

genome-wide network elucidation, computational inference of
regulatory networks from time series expression data is a
useful approach. However, despite the multitude of inference

methods available, these methods are still only capable of infer-
ring ‘moderately large dynamic networks’ (Kim et al., 2013).
Wigwams provides output that can be used to extend network

models built with a subset of genes (e.g. using TFs only).
Integrating Wigwams modules with a transcriptional network
model can also provide condition-dependent information, such

as indicating network neighbourhoods active during particular
conditions. Wigwams modules can be viewed as the footprint of
flux through regulatory networks under different conditions, and

examining the abundance and functionality of modules for vari-
ous combinations of conditions can provide insight into the com-
monality between the responses to different conditions at a more

nuanced level than simple differential expression. Identification
of modules showing contradictory expression under different

Fig. 6. Wigwams modules are enriched in GO-terms and TF binding

motifs. Shown above is an excerpt of the biological information obtained

for two modules, showing dependent co-expression (in blue) and over-

representation of GO terms and TF motifs in the promoters for genes in

each module. (A) A 29-gene module spanning four conditions suggests a

role for abscisic acid in linking the transcriptional responses to these four

conditions. (B) A 269-gene module spanning shoot response to cold and

UV light shows highly significant overrepresentation for the TCP binding

motif, suggesting this motif may be underlying the dependent co-expres-

sion driving ubiquitination and non-coding RNA processing. hpi, hours

post-inoculation; das, days after sowing, h, hours
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conditions (e.g. upregulated in one dataset and downregulated in
another) also suggests points of cross-talk within the regulatory
network.
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