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ABSTRACT

Motivation: Most existing identity-by-descent (IBD) detection meth-

ods only consider haplotype pairs; less attention has been paid to

considering multiple haplotypes simultaneously, even though IBD is

an equivalence relation on haplotypes that partitions a set of haplo-

types into IBD clusters. Multiple-haplotype IBD clusters may have ad-

vantages over pairwise IBD in some applications, such as IBD

mapping. Existing methods for detecting multiple-haplotype IBD clus-

ters are often computationally expensive and unable to handle large

samples with thousands of haplotypes.

Results: We present a clustering method, efficient multiple-IBD, which

uses pairwise IBD segments to infer multiple-haplotype IBD clusters. It

expands clusters from seed haplotypes by adding qualified neighbors

and extends clusters across sliding windows in the genome. Our

method is an order of magnitude faster than existing methods and

has comparable performance with respect to the quality of clusters

it uncovers. We further investigate the potential application of multiple-

haplotype IBD clusters in association studies by testing for association

between multiple-haplotype IBD clusters and low-density lipoprotein

cholesterol in the Northern Finland Birth Cohort. Using our multiple-

haplotype IBD cluster approach, we found an association with a gen-

omic interval covering the PCSK9 gene in these data that is missed by

standard single-marker association tests. Previously published studies

confirm association of PCSK9 with low-density lipoprotein.

Availability and implementation: Source code is available under the

GNU Public License http://cs.au.dk/~qianyuxx/EMI/.
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1 INTRODUCTION

In a finite population, haplotypes are identity-by-descent (IBD)

if they are identical and inherited from a common ancestor.

Tracts of IBD are broken up by recombination during meiosis.

To be detectable, a pairwise IBD segment must be sufficiently
long and contain a sufficient number of genotyped markers

(Browning and Browning, 2013a; Gusev et al., 2009). Detected

IBD segments have several important applications, for example,

detecting signals of natural selection (Albrechtsen et al., 2010),

inference of population structure (Ralph and Coop, 2013) and

IBD mapping in association studies (Browning and Browning,

2012).
The current resolution of IBD detection in single-nucleotide

polymorphism (SNP) array data is �1–2 cM, corresponding to a
common ancestor within the past 25–50 generations; therefore,

many short segments will be missed in pairwise IBD detection

(Browning and Browning, 2012). The missing information can be
partly retrieved by multiple-haplotype analysis that identifies

clusters of haplotypes that are all identical by descent, which
we refer to as multiple-IBD clusters later in the text. Because

IBD is an equivalence relation on haplotypes, if haplotypes

A and B are IBD and haplotypes A and C are IBD, then haplo-
types B and C are also IBD by definition, even though their

shared segment may be too short to be detected in pairwise
IBD detection. Within a certain region, if we only observe pair-

wise IBD segments of (A, B) and (A, C), but not (B, C), we say

that there is inconsistency in the pairwise IBD segments.
Such inconsistency can be resolved by grouping A, B and C

into a multiple-IBD cluster, where each member in the cluster
is IBD to all the other members.

There have been several previous attempts to detect multiple-
IBD. MCMC IBD finder (Moltke et al., 2011) is a Markov

Chain Monte Carlo approach that considers multiple individuals

simultaneously; however, it is not computationally tractable for
genome-wide analysis with large sample sizes. The DASH

method (Gusev et al., 2011) builds on pairwise IBD segments
and applies an iterative minimum cut algorithm to identify den-

sely connected haplotypes as IBD clusters. The method scans the

genome through sliding windows and output subgraphs of
desired density. The performance of the DASH method in

terms of speed and accuracy has not been investigated previ-
ously. IBD-Groupon (He, 2013) is a recently developed

method that also detects group-wise IBD tracts based on pair-

wise IBD segments. Unlike DASH, which takes the length of
windows and density threshold of subgraphs as input param-

eters, IBD-Groupon is almost parameter-free and it uses a
hidden Markov model (HMM) to determine the cliques and

the length of group-wise IBD tracts automatically. The perform-

ance of IBD-Groupon was evaluated on simulation data of
chromosome 22 with 6159 SNPs, based on a real pedigree in

HapMap, and it shows high power in detecting short IBD
tracts (He, 2013). In comparison with DASH, IBD-Groupon

has a similar execution time with higher accuracy for a sample

size of 90 related individuals; however, the relative performance
of DASH and IBD-Groupon was not evaluated using popula-

tion data, larger samples sizes or multiple parameter settings.*To whom correspondence should be addressed.
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In this study, we evaluate DASH using population samples with
thousands of individuals in a range of different parameters set-
tings. We do not evaluate IBD-Groupon v1.1 because it required

too much memory (412Gb) when analyzing the simulated
datasets in this study.
In this work, we present the efficient multiple-IBD (EMI) al-

gorithm to search for multiple-IBD clusters along sliding win-
dows in the genome. In contrast to DASH, which builds clusters
from a largest connected component and iteratively divides it

into smaller clusters by a minimum cut algorithm, EMI takes
an agglomerative approach. It builds each cluster from initial
seed haplotypes and recursively adds qualifying haplotypes to

expand the cluster. High computational efficiency is ensured by
the use of priority queues. We evaluate our results based on
coalescence simulations. Coalescence simulations allow the inves-

tigation of realistic scenarios while enabling determination of the
true multiple-IBD status. We compare the performance of EMI
and DASH with thousands of samples.

Although DASH, IBD-Groupon and EMI all use graph-based
clustering methods, there is an important difference in how clus-
ters are identified. IBD-Groupon uses an HMM to find the most

likely maximal cliques within each chunk of genome so as to
resolve inconsistencies. Such a procedure only involves pruning
edges (an edge is a pairwise IBD segment), even though some-

times adding a few edges can not only resolve inconsistencies but
also recover missing pairwise IBD segments in the input. Both
EMI and DASH build clusters that are highly connected and

therefore can prune incorrect edges as well as add missing
edges. Missing edges should not be ignored, especially for short
segments, as the state-of-the-art pairwise IBD detection methods

only achieve high power (e.g. 0.8) for IBD tracts longer than
2 cM in SNP data (Browning and Browning, 2013a).
Detected IBD segments have many applications, one of which

is IBD mapping in association studies (Browning and
Thompson, 2012; Francks et al., 2010; Gusev et al., 2011; Lin
et al., 2013; Purcell et al., 2007). One can code the multiple-IBD

clusters as genetic markers and use them for association testing in
genome-wide association studies (GWAS).
GWAS have identified many common variants associated with

diseases, yet they have explained relatively little of the heritability

of complex diseases. Rare genetic variants, often defined as vari-
ants with minor allele frequency (MAF)51%� 5%, can play

important roles in complex diseases and traits (Schork et al.,
2009). It has been suggested that rare variants may contribute
to disease and thus partly explain the missing heritability (Eichler

et al., 2010). IBD mapping falls into the category of focusing
mainly on signals from rare variants because IBD detection
methods detect long shared segments that correspond to a rela-

tively short time to the common ancestor. Variants arising
shortly before the most recent common ancestor of a group of
IBD haplotypes will be correlated with the IBD group member-

ship; these variants, being recent, are rare. Studies have shown
that IBD mapping may have higher power than association ana-
lysis of SNP data when multiple rare causal variants are clustered

within a gene (Browning and Thompson, 2012).
A multiple-IBD cluster-based association test is essentially a

rare-variant association test. The frequency of each cluster is
determined by the number of haplotypes in that cluster, which

is often small because large IBD groups are rare, especially for

outbred populations. Standard methods used in GWAS evaluate
each variant individually with univariate statistics, such as the

Cochran–Armitage test for trend, and are underpowered for rare
variants unless sample sizes or effect sizes are large (Li and Leal,

2009). Over the past few years, many group-wise association tests
have emerged as to overcome this limitation, including burden
tests (Madsen and Browning, 2009) and variance-component

tests (Wu et al., 2011). Burden tests are typically based on col-
lapsing or summarizing the rare variants within a region by a

single value, which is then tested for association with the trait.
However, a limitation for such methods is that they implicitly

assume that all rare variants influence the phenotype in the same
direction, which might not be true in real applications.

Alternatively, we can cast the problem in the framework of
linear mixed models with random effects and apply a global

score test for the null hypothesis that all the variance components
are 0. This can be conveniently tested with a variance-component

score test in the corresponding mixed model, which is known to
be a locally powerful test (Lin, 1997). Because most of our IBD

clusters to be tested are rare, we chose to use mixed models and
test for random effects of all the variants in a region. We chose to

use the sequence kernel association test (SKAT) (Wu et al., 2011)
for our analysis, as it provides a supervised flexible regression

model to test for association between genetic variants (common
and rare) in a region. SKAT allows for adjustment for covariates

and has been shown to be powerful for most underlying hypoth-
eses concerning the relationship of variants and complex traits

(Ladouceur et al., 2012).

2 MATERIALS AND METHODS

In this section, we first describe the algorithm framework of EMI, and

then we describe the simulation framework for comparing and evaluating

the multiple-IBD clusters found by EMI and DASH. Finally, we describe

the real data to which we will apply IBD mapping.

2.1 Algorithm outline

EMI clusters pairwise IBD segments into multiple-IBD clusters with an

algorithm that is similar to one used in the systems biology domain for

fast clustering of biological networks such as protein–protein interaction

networks (Jiang and Singh, 2010). The predicted clusters can be used to

predict missing links in the network and to search for protein complexes

and functional modules.

Extending the algorithm to a genome-wide scale, EMI builds a graph

with nodes representing individual haplotypes and edges representing

IBD in the local region. The algorithm moves to the next region through

sliding windows. The term multiple-IBD cluster means a highly connected

subgraph where each haplotype in the graph is estimated to be IBD to all

the other haplotypes in the same subgraph.

Consider a genomic region that is divided into K consecutive windows

of length H. For each window wink, its left and right window boundary is

denoted as wink(L) and wink(R), and we have wink(R)¼wink(L)þH. Given

N haploid copies of genome, the construction of multiple-IBD clusters is

fundamentally dependent on the presence of pairwise IBD segments,

which can be efficiently detected by existing tools such as Beagle

Refined IBD (Browning and Browning, 2013a) and GERMLINE

(Gusev et al., 2009).

Assume a set S of pairwise IBD segments in this dataset, where each

element s 2 S has the form s¼ (i, j, l, r), i, j 2 1, . . . , N and represents a

shared IBD segment between haplotypes i and j in the genomic interval

[l,r]. Note that the order of i and j does not matter, and s can also be
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written as s¼ (j, i, l, r). Within window wink, the corresponding pairwise

IBD collection Sk is the subset of S, containing member s of S that cover

the entire window, that is satisfying l�wink(L) and r�wink(R).

A running example is shown in Figure 1, and the details of the algo-

rithm are described below. User-defined parameters include the minimum

density of a cluster denmin and the sliding window size H.

2.1.1 Single-locus clustering Readers are encouraged to read the

paper by Jiang and Singh (2010) wherein they explain the similar tech-

nical details. Here we only briefly outline the algorithm framework and its

implementation.

Definitions: Within window wink along the genome, we define a weighted

undirected graph Gk
¼ (V,Ek,Wk), V¼ 1 . . .N, with vertices V

representing N haploid individuals, and edges Ek corresponding to IBD

segments in Sk. An edge ea,b 2 Ek, a,b 2 V exists if there is an IBD

segment s¼ (a,b,l,r) in Sk; otherwise, there is no edge between node a

and b. An edge ea,b has a weight wa,b 2 [Wmin, 1] with Wmin40, which

represents a confidence score for IBD segment sharing between a and b.

The weight can be determined by various methods such as the length of

IBD segment or a likelihood ratio for an IBD versus a non-IBD model in

the output of Beagle Refined IBD (Browning and Browning, 2013a).

In our analyses, we first applied 90% winsorization on all the IBD

segment length (i.e. segment lengths below the 5th percentile were set

to the 5th percentile, and segment lengths above the 95th percentile

were set to the 95th percentile), and we then linearly transformed the

resulting length into a weight between [Wmin, 1], where Wmin¼ 0.8.

However, the winsorization might not be necessary, as results without

winsorization are similar.

If previously detected pairwise IBD collections S are error-free, a fully

connected subgraph of Gk would indicate a multiple-IBD cluster. In the

presence of error in pairwise IBD segments, we would see false or missing

edges in the graph; thus, multiple-IBD clusters can be identified by dense

subgraphs that are nearly complete.

We define the following terms that are specific to our implementation:

� dw(a)¼
P

ea, b2E
wa, b, the weighted degree for node a.

� C, a cluster of nodes (haplotypes). Each cluster of nodes determines a

subgraph of Gl

� density (C) ¼
P

Iðea, b 2 CÞ=ð Cj j � ð Cj j � 1Þ=2Þ, the density of cluster

C. I is an indicator function and takes the value of 1 if edge ea,b exists

in cluster C, and 0 otherwise.

� C [a, a 2 V, a temporary new cluster constructed by adding node a

to cluster C.

� support (a, C)¼
P

b2C, ea, b2E
wa, b, the support of node a to cluster C.

Expanding clusters: Given a weighted network, the algorithm outputs

a set of disjoint dense subgraphs, which are the multiple-IBD clusters

in our application.

(i) Seed selection

The vertex a with highest weighted degree in the current network

is selected as the first seed node. Then we divide the neighbor-

ing nodes of a into five bins based on the edge weight, for

example, if Wmin¼ 0.8, then the corresponding five bins are [0.8,

0.84], [0.84, 0.88], [0.88, 0.92], [0.92, 0.96], and [0.96, 1]. We search

from highest weight bin [0.96, 1] to lowest. If the current bin is not

empty, node argmaxb dw(b) in this bin is chosen as the second seed

node.

(ii) Cluster expansion

The current cluster C starts with the two seed nodes and the edge

between them. Then we search for a node b with a maximum value

of support (b, C) in the remaining unclustered nodes. If density

(C[ b) is above a threshold denmin, node b is added to cluster C;

otherwise, output cluster C.

Fig. 1. A running example of EMI in two adjacent sliding windows, with density cutoff denmin¼ 0.8. (A) An edge denotes a pairwise IBD segment that

spans the entire window. Numbers denote the weights of the edges, which are determined from the total length of IBD sharing (as described in Section 2).

H3 is selected as the first node because it has the highest weighted degree of 3.79. H1 has the largest edge weight among all the outgoing edges of H3 and

is selected as the second seed node. The cluster expansion starts with {H3, H1}, then H2 is added, as it has the largest support for the existing cluster,

which is 1.85 (0.9þ 0.95). The cluster continues to expand and we get {H3, H1, H2, H5, H4}. However, density is below the cutoff after adding H4, so we

remove H4 and output the clusters (of minimum size 3) to (A’). (B) When we move the next window, an edge is removed from the current cluster {H3,

H1, H2, H5}, The new density is below the cutoff, so we remove the edge and check whether H5 should be removed. After removing H5, we start with

the remaining nodes. {H3, H1, H2} stays and is considered as a single node. We then start the expansion again. We end up with two clusters {H3, H1,

H2, H4} and {H5, H6, H7}, shown in (B’)

917

Efficient clustering of IBD

:
L
.
 are explained
,
B. L. 
winsorisation 
,
winsorisation 
winsorisation 
very 
,
.
1
5
5 
(
(
(
(
(
2.
IG(IG)
;


(iii) Repeating

The above procedure of seed selection and cluster expanding is

repeated for the remaining unclustered nodes until all nodes are

clustered or there is no edge left among the un-clustered nodes.

(iv) Implementation

The implementation uses priority queues. The first priority queue is

used to pick the seed haplotype with the highest weighted degree.

Once a haplotype has been used in a cluster, it is removed from the

queue and the weighted degrees of all its neighbors are decreased

accordingly. The second priority queue is used for expanding clus-

ters. Each haplotype b adjacent to one of the haplotypes in cluster C

being built is included in the queue and is prioritized based on sup-

port (b, C). It is implemented in the Fibonacci heap and supports

insertion and key decrease, with a theoretical complexity of O (jVj

log(jVj)þ jEj) (Fredman and Tarjan, 1987)

2.1.2 Multilocus clustering In application to genome-wide data,

EMI slides the local window along the genome and extends the single-

locus clustering to multilocus clustering.

The first window win0 is analyzed with the single-locus algorithm,

and we get an initial set of multiple-IBD clusters �0. When we move to

a new window winkþ1 from the previous window wink, we use a modified

version of single-locus clustering that includes three steps.

(i) Dissolving of old clusters

For each pairwise IBD segment s¼ (i, j, l, r) that belongs to IBD

collection Sk but not Skþ1, if its edge ei, j connects two nodes in a

cluster C, remove this edge and check the density of the updated

cluster C. Dissolve cluster C if the density is below a threshold.

(ii) Expanding and merging existing clusters.

For each unclustered node a, add it to an existing cluster C 2 �k
if support (a, C) using IBD segments in Skþ1 is above a thresh-

old. If an IBD segment that belongs to Skþ1 but not Sk, connects

two existing clusters Cm and Cn (Cm, Cn 2 �k), merge these two

clusters if the density of combined cluster is above the threshold.

(iii) Single-locus clustering

For the remaining nodes that are not included in any cluster,

create new clusters in window winkþ1 with the single-locus

clustering.

2.1.3 Software implementation The above algorithm is implemented

in Cþþ and is freely available at http://cs.au.dk/*qianyuxx/EMI/

2.2 Evaluation of clusters

2.2.1 Data simulation The coalescent model with recombination de-

scribes genealogies of underlying chromosomes from unrelated individ-

uals (McVean and Cardin, 2005). We used the program MaCS (version

0.4f) (Chen et al., 2009) to simulate sequence data under the coalescent

model with recombination. Ten datasets were simulated; each consists of

4000 haplotypes spanning a 10Mb region. The simulated recent effective

population size is 3000 individuals, whereas the ancient (before 5000 gen-

erations ago) population size is 24 000 individuals. The mutation rate is

1.38� 10�8, and the recombination rates follow the HapMap recombin-

ation map for chromosome 20 (Frazer et al., 2007). The parameters for

MaCS were ‘4000 10000000 T -t 0.0001656 -r 0.00012 -h 1000 -R

chr20map -G 0.0 -eN 0.4167 8.0’. The simulation is designed to mimic

an isolated population such as that for the Northern Finland Birth

Cohort (NFBC) data, on which we conducted IBD mapping.

We then generated simulated SNP array data by thinning the sequence

data. All variants with MAF52% were removed; �3000 markers were

selected among the remaining variants in each 10Mb region, with MAF

uniformly distributed between 2 and 50%. The number of variants

corresponds to a SNP density of 1 million SNPs genome wide.

The multiple-IBD clustering requires pairwise IBD as input, which we

generated using two different approaches. The first one uses the thinned

SNP array data and applies to the standard GWAS settings, where SNP

data are often available. We use Beagle version 4 Refined IBD (r1058) for

haplotype phasing and pairwise IBD detection. All the parameters were

left at their default values, i.e. ibdcm¼ 1.0 (the minimum length in

centiMorgans of reported IBD) and ibdlod¼ 3 (the minimum LOD

score for reported IBD).

The second approach uses sequencing data and evaluates the optimal

performance of multiple-IBD clustering when we have nearly perfect

power for pairwise IBD detection, even for IBD tracts as short as

0.2 cM. Two haplotypes are identical-by-state (IBS) if they are identical

within a region, and we treat all the pairwise IBS segments longer than

0.2 cM as pairwise IBD segments after removing variants with MAF

50.25%. This frequency filtering removes variants that arise from muta-

tion events since the most recent common ancestor. Using IBS to

approximate IBD tracts is, however, not applicable in real data due to

sequencing error and haplotype phasing error.

2.2.2 True IBD clusters The coalescent tree traces the ancestry of

sample chromosomes back in time until there is a single common ances-

tor. When recombination is involved, the ancestral relationship among

chromosomes is complicated. At any single position along the genome,

there is still a tree, but the trees at nearby positions may differ.

Multiple-IBD essentially means multiple haplotypes share a common

ancestor. In our simulated data, we define the true multiple-IBD cluster

as a cluster of haplotypes that share the same common ancestor across a

region of length Htrue. We choose to use Htrue¼ 200kb (approximately

equivalent to 0.2 cM) in the evaluation framework, which is also the

window size we used for IBD mapping. More specifically, within a

region T of size Htrue, a multiple-IBD cluster CTi is defined as any sub-

tree of the true coalescent trees, which contains all descendants of the root

of the sub-tree and spans this region without topology changes. Shorter

Htrue results in decreased performance for EMI and DASH, due to the

limitations of pairwise IBD resolution, while longer Htrue leads to too few

true multiple-IBD clusters, as recombination breaks down the IBD

signals.

2.2.3 Performance metrics The power and accuracy of resulting clus-

ters are measured by how well different methods recover the true under-

lying genealogy. The number of true IBD clusters CTi in region T depends

on the local recombination rate as well as on the length of region T. As

any sub-tree (a true IBD cluster) of the coalescent tree also forms a true

IBD cluster, there is a hierarchy structure in the true multiple-IBD clus-

ters, and therefore evaluating how well the clustering algorithm works is

challenging.

2.2.4 Overlap measure Two overlap measurements, the Jaccard

measure (Jaccard) and the Precision-Recall (PR) measure, are widely

used in systems biology (Kelley and Ideker, 2005; Song and Singh,

2009) when there is a hierarchy structure in functional modules.

Jaccard: given two sets, the Jaccard similarity coefficient is defined as

the size of the intersection over the size of the union. For each output

cluster C, its Jaccard value with a true IBD cluster CTi is defined as
jC\CTi

j

jC[CTi
j
. The Jaccard measure for cluster C is the maximum Jaccard

value over all true IBD clusters in region T.

PR: Similarly, for each cluster C and true IBD cluster CTi, the PR

score is defined as
jC\CTi

j

jCj

jC\CTi
j

jCTi
j
. The PR measure for cluster C is the

maximum of PR scores over all true IBD clusters CTi in region T.

2.2.5 Coverage measure Recall Rate (RR) is used to quantify how

many individuals are assigned to a correct cluster, with the following
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definitions: (i) True Positive (TP) node: a node is called TP node if it

belongs to a cluster C, and there exists a true IBD cluster CTi in region T,

such that
jC\CTi

j

jC[CTi
j
� 0:8. (ii) True node: any node in a true IBD cluster CTi

is called a true node. The RR is defined as the number of TP nodes

divided by number of true nodes. Note that the number of true nodes

is the union of nodes in all CTi, and this can be less than the number of

haplotypes.

2.3 IBD mapping

2.3.1 Data set We ran EMI for multiple-IBD clustering in the NFBC

1966 GWAS data, downloaded from dbGaP (accession number

phs000276.v1.p1), and subsequently tested for association with low-

density lipoprotein (LDL) cholesterol, which has shown a high level of

heritability in previous studies (Browning and Browning, 2013b). The

5402 individuals included in NFBC are drawn from genetically isolated

Finnish regions and thus have relatively more IBD than other popula-

tions. A standard GWAS analysis has been published, and multiple

genome-wide significant common variants were found (Sabatti et al.,

2009).

Pairwise IBD detection was done as reported previously (Browning

and Browning, 2013b). On chromosome 1, IBD detection took 83h

with a minimum IBD length parameter of 1.0 cM. Close relatives and

outlying individuals based on the value of the first 20 eigenvectors were

removed. For LDL, we also excluded individuals who were pregnant, had

diabetes or were not fasting at the time of measurement. After data fil-

tering, we were left with 4406 individuals.

2.3.2 Linear mixed model We ran EMI in this dataset with the best

parameters tuned in our simulation, including the cluster density cutoff

denmin and the sliding window size H. Each multiple-IBD cluster is con-

sidered as a variant, and the cluster frequency is therefore defined as the

cluster size (number of haplotypes in this cluster) divided by the total

number of haplotypes, which is 8812 for 4406 individuals.

Because most of the multiple-IBD clusters are rare (with fre-

quency50.01) and may have small effects on the trait, the standard

single variant test will be underpowered.

In contrast to the concept behind the single SNP test, we fit the effects

of all clusters as a random effect in a linear mixed model. Consider the

linear model

yi ¼ �0 þ a0Xi þ b0Gi þ �i

yi denotes the phenotype for the ith subject, a is a vector of fixed effects

and b is a vector of random effects with mean 0. Xi ¼ ðXi1,Xi2, . . . ,Xi12Þ

denotes the 15 covariates of sex, oral contraceptive use and the first 10

eigenvectors. Gi ¼ ðGi1,Gi2, . . . ,GipÞ, with Gij¼ 0, 1, 2 represents the

number of haplotypes in cluster j for the ith subject for the p clusters

within the region. �i is an error term with mean 0 and variance of �2.

Testing association of p clusters with the trait corresponds to testing the

null hypothesis H0: VarðbÞ ¼ 0, which can be tested with a variance-com-

ponent score test. Such a test of non-zero variance in a linear mixed

model is implemented using the software SKAT (version 0.82) (Wu

et al., 2011) and was used in our analysis.

3 RESULTS

3.1 Performance of clustering in simulated data

In this section, we evaluate the performance of clustering with
different parameters, and we compare EMI and DASH, with

respect to the running time and accuracy of multiple-IBD clus-
ters. All the computation times in this study are from runs on a
single processor of a 2.4GHz computer. The clusters are evalu-

ated in terms of RR and PR (or Jaccard measure). RR measures

the proportion of haplotypes that are assigned to a correct clus-

ter, and it is similar to the definition of power in a hypothesis

test. PR or the Jaccard measure measures the accuracy of clus-

ters, which is an analog to 1 minus the type 1 error rate. Often a

higher power is preferred while keeping the type 1 error rate

under control in association tests. Similarly, in our application,

we prefer a higher RR while keeping the PR or Jaccard measure

above a certain level.

3.1.1 Grid search of parameters DASH has two versions ac-
cording to the documentation on the Web site (http://www.cs.

columbia.edu/*gusev/dash/). One version is DASH_cc, which is

parameter-free and does not apply dense-subgraph searching.

DASH_cc iteratively searches for all clusters without enforcing

a minimum density, e.g. denmin¼ 0, and thus it generates a few

large clusters that do not accurately approximate the true mul-

tiple-IBD clusters. The other version is DASH_adv, for which

the goal of finding dense subgraphs is similar and comparable

with EMI. In our experiments, DASH_adv also runs faster than

DASH_cc, so we used DASH_adv in the analysis. For simplicity,

we drop the subscript adv and refer to it as DASH in the

following.

Both DASH and EMI take two input parameters, denmin

(minimum density) and H (window length), but no previous

studies have shown which parameters should be recommended.

Using simulation data, we performed a grid search in the 2D

parameter space with denmin taking values of [0.4, 0.5, 0.6, 0.7,

0.8] and H taking values of [100, 200 and 400kb]. We generated

10 datasets as described in Section 2.2.1. From each dataset, 10

windows,200 kb in length, were chosen at random. Within each

window, we evaluated the quality of clusters by comparing them

with the true multiple clusters. The average results from all

100 windows are shown in Table 1. One can see that with dif-

ferent combinations of denmin and H, both DASH and EMI

have similar performance. However, a lower density cutoff,

such as 0.5, gives better results for both EMI and DASH. We

decided to use denmin¼ 0.5 and H¼ 200kb for further analysis,

where EMI reaches the highest RR and a high PR that is not

different from the highest average PR.

3.1.2 Comparison with DASH Two types of pairwise IBD seg-
ments are generated as input for EMI and DASH, as described

in Section 2.2.1, which we refer to as SNP data and IBS data,

respectively.

SNP data: Given thinned SNP data, we used Beagle Refined

IBD to generate pairwise IBD segments, which are used as input

for multiple-IBD clustering afterward. The time and perform-

ance in 10 simulated datasets are shown in Table 2. Compared

with DASH, EMI has slightly lower accuracy in terms of the

Jaccard measure and PR, and slightly higher power in terms of

how many haplotypes are assigned to the correct cluster.
IBS data: It has been shown that most existing pairwise IBD

detection methods have lower power for short IBD segments

(e.g. shorter than 2 cM) given SNP data. Therefore, the perform-

ance of multiple-IBD clustering might be limited by the input of

pairwise IBD segments. To explore the optimal performance a

clustering method can achieve, we also generated pairwise IBS

segments from the sequencing data and used them as input for

the clustering. The results are shown in Table 2. As expected, the
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performance increased significantly compared with the results
with thinned SNP data. However, neither EMI nor DASH

achieved 100% power or accuracy because both methods use
heuristics, and the input IBS segments differ somewhat from

true IBD segments.
The IBS data have more pairwise IBD segments than the

thinned SNP data, and the number of edges (jEj) increases

within each window; hence the running time also increases signifi-
cantly. Within each window, the average value of jEj is 45 325 for

SNP data and 158 951 for IBS data. We can see that the comput-
ing time for EMI scales better than DASH as jEj increases.

3.2 IBD mapping in NFBC data

3.2.1 Multiple-IBD clustering We use cluster density cutoff
denmin¼ 0.5 and sliding window size H¼ 0.2 cM as input param-
eters for EMI, which is close to the optimal parameters in our

simulation. Runs with slightly different parameters do not
change the results significantly (data not shown). Running on

a single processor, EMI takes �50min to analyze the 22 auto-
somes in the NFBC data with 5402 individuals. EMI outputs

all the clusters with a minimum size 3. The cluster frequency
distribution is shown in Figure 2. As we expected, most of the

clusters have small sizes. Approximately 98% of them have a
frequency50.01.

3.2.2 Association mapping with linear mixed models After
removing close relatives and individuals with missing covariates,

we were left with 4406 individuals in the NFBC data for the

association test with LDL. We ran SKAT on sliding windows
of size 0.2 cM, which is also the window size we used for EMI.

Across the 22 autosomes, there were 22 630 sliding windows
wherein multiple-IBD clusters were found.

For each window, all the clusters spanning the entire window
are considered and contribute to the random effects in the mixed

model, and a P-value is calculated against the null hypothesis of 0
variance of random effects. The P-values along the sliding win-

dows are shown in Supplementary Figure S1 and the Quantile–
Quantile (QQ) plot is shown in Supplementary Figure S2.
To correct for multiple testing, we performed 1000 permuta-

tions of the trait values, keeping the covariates unchanged, and

Table 1. The average performance for grid search in the parameter space

Method denmin 0.5 0.6 0.7 0.8

H (kb) 100 200 400 100 200 400 100 200 400 100 200 400

EMI RR 0.830 0.834 0.832 0.823 0.826 0.825 0.809 0.811 0.811 0.797 0.801 0.799

J 0.744 0.753 0.767 0.731 0.742 0.756 0.735 0.744 0.760 0.726 0.734 0.750

DASH RR 0.729 0.736 0.743 0.734 0.742 0.748 0.730 0.736 0.740 0.738 0.746 0.745

J 0.776 0.776 0.779 0.752 0.759 0.766 0.742 0.747 0.752 0.710 0.717 0.727

Note: Each cell shows the mean value of the performance metrics in 100 random windows, with Htrue¼ 200 kb as the benchmark for calculation. J denotes Jaccard measure

and RR denotes Recall Rate.

Table 2. Average performance of the clustering in simulation

Data Method J PR RR Time (seconds)

SNP DASH 0.775 (0.003) 0.767 (0.003) 0.736 (0.007) 6.016

EMI 0.753 (0.003) 0.744 (0.003) 0.835 (0.008) 0.712

IBS DASH 0.884 (0.001) 0.882 (0.001) 0.910 (0.002) 252.267

EMI 0.864 (0.001) 0.863 (0.001) 0.938 (0.002) 13.542

Note: In each of the 10 datasets, 10 random windows of size Htrue¼ 200kb are chosen to calculate the performance metrics. The columns of J (Jaccard measure), PR

(PR measure) and RR (Recall Rate) show the mean (standard error) values in overall 100 windows. The Time column shows mean over 10 datasets. Parameters for

DASH and EMI are H¼ 200kb and denmin¼ 0.5. The corresponding short terms are J (Jaccard measure), PR (Precision-Recall measure) and RR (Recall Rate) as defined in

the main text.

Fig. 2. The distribution of sizes of multiple-IBD clusters in NFBC data
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ran SKAT for each permutation. We obtained the experiment-

wide distribution of minimal P-values over all loci from the per-

mutation replicates. The empirical P is defined as the proportion

of minimal P values from permutations that are smaller than the

P-value on the original data in this region. The QQ plot shows

that the variance-component score test is anti-conservative. By

using empirical P-values, we not only adjust for multiple testing

but also correct for the anti-conservative nature of the original

P-values.
The empirical experiment-wide P-value 0.05 corresponds to

a SKAT P-value of 1.13� 10�5 in this analysis. As shown in

Table 3, we found two loci, the APO cluster and the PCSK9

gene, that have an empirical P-value50.05.
Sabatti et al. (2009) conducted standard GWAS analysis on

this dataset and reported six loci associated with LDL traits. The

APO cluster (MIM107730) was found with both standard

GWAS analysis (P-value 4.96e-8) and with our multiple-IBD

approach (P-value 4.52e-7). The signals around the APO cluster

span several windows.
The second strongest signal found in our study is located near

the PCSK9 (MIM 607786) gene, which is known to be involved

in regulation of LDL cholesterol. Previous studies suggested that

mutations in PCSK9 have a strong effect on LDL cholesterol

(Cohen et al., 2006). This association was first reported in a

GWAS-based analysis for a variant of MAF 1% in a sample

of 8816 individuals (Kathiresan et al., 2008). In the NFBC data-

set, there are no SNPs in strong LD with the reported SNP, and

therefore the standard methods failed to report it. The associ-

ation with PCSK9 was also reported later by one of the largest

lipid meta-analyses to date with a sample size of4100 000 indi-

viduals of European descent (Teslovich et al., 2010) and a recent

GWAS of African Americans and Hispanic Americans (Coram

et al., 2013), which indicates that the signal we found is real.
It is worth mentioning that the third strongest signal we found

is chromosome 19 [11145302, 11225495bp] (hg18), �40kb

downstream of the LDLR gene (MIM 606945). Although this

signal (P-value 8.22e�5) failed to show significance after the mul-

tiple-testing correction, it was one of the loci reported by Sabatti

et al. (2009) and has been validated by many other GWAS with

larger sample sizes (Coram et al., 2013; Teslovich et al., 2010).

4 DISCUSSION

IBD haplotype sharing is useful for many applications, such as

imputation, improved accuracy in haplotype phasing, IBD

mapping and population genetic inference. Most existing meth-

ods for IBD detection only consider pairwise IBD, yet the

implementation and applications of multiple-IBD have not

been fully explored.
In this study, we developed EMI to detect IBD segments that

are shared by multiple individuals. Unlike the existing method

DASH, which searches for a highly connected graph by dividing

the big graph iteratively with a minimum cut algorithm, EMI is

implemented in an agglomerative manner and uses a heuristic

approach to greedily build clusters. Using efficient data struc-

tures, EMI runs faster than DASH in application to genome-

wide data, with comparable performance. The theoretical time

complexity is hard to obtain because both DASH and EMI use

methods to reduce computational effort when moving across

sliding windows along the genome. However, our simulations

show that the difference in running time between EMI and

DASH becomes larger in a region with increased pairwise IBD

sharing, such as data from isolated populations.
The accuracy of inferred multiple-IBD clusters has not previ-

ously been evaluated. We used coalescent simulations to evaluate

the accuracy of resulting multiple-IBD clusters and found the op-

timal parameters for subsequent analysis. Althoughmultiple-IBD

clusters are supposed to be highly connected, a density cutoff as

low as 0.5 has a fairly good performance. The best density cutoff

may depend on the pairwise IBD detection program, which has to

make a trade-off between power and type 1 error. For example, we

used Beagle Refined IBD for pairwise IBD detection, which has a

low type 1 error rate but also low power for short IBD segments.

Therefore, with Beagle Refined IBD, we use a low-density cutoff

so that we favor adding missing edges over cutting existing edges

from the pairwise IBD input. If we use GERMLINE, which has

weaker control of type 1 error to detect pairwise IBD segments,

a higher density cutoff may work better.

The speedup EMI achieves might seem to be insignificant in

the context of GWAS, where a lot more time is spent on the

upstream analysis. We have shown in our study that the simple

heuristic performs fairly well, but the results are not optimal and

can be further improved. For example, one can combine the

information of clusters of all windows into a global probabilistic

framework, similar to the idea behind IBD-Groupon. When it

requires many iterations to train an HMM, computational speed

matters. Therefore, our method is suitable for use in more

complicated models.

The concept of IBDmapping is not new, yet the approach used

here is different from the approaches used previously. Previous

Table 3. Loci reaching the significance threshold in the analysis of LDL

Chromosome Window start Window end SKAT P Empirical P Gene

1 55230403 55258652 7.44� 10�6 0.013

1 55258652 55293452 9.37� 10�6 0.015 PCSK9

19 50016356 50069307 1.51� 10�6 0.002

19 50069307 50140305 4.52� 10�7 0.001 APO cluster

Note: Window start and window end are the boundaries of sliding windows. SKAT P is the P-value reported by SKAT, showing the significance of random effects in the

mixed model. Empirical P is obtained based on minimal P values from 1000 permutations, as detailed in the text, to adjust for multiple testing across the autosomes.
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IBD analyses have either used pairwise IBD and looked for dif-
ferences in IBD frequency between pairs of cases and pairs of
controls (Browning and Thompson, 2012; Purcell et al., 2007)
or have tested each multiple-IBD cluster individually (Gusev

et al., 2011). Here we use a variance components approach to
jointly test the multiple-IBD clusters in a region. The multiple-
IBD cluster approach is expected to be more powerful when

multiple low-frequency causal variants contribute to a trait.
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