
Vol. 30 no. 7 2014, pages 1008–1009
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btt737

Genome analysis Advance Access publication December 19, 2013

WiggleTools: parallel processing of large collections of

genome-wide datasets for visualization and statistical analysis
Daniel R. Zerbino*, Nathan Johnson, Thomas Juettemann, Steven P. Wilder and Paul Flicek*
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome
Campus, Hinxton, Cambridge CB10 1SD, UK

Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: Using high-throughput sequencing, researchers are

now generating hundreds of whole-genome assays to measure vari-

ous features such as transcription factor binding, histone marks, DNA

methylation or RNA transcription. Displaying so much data generally

leads to a confusing accumulation of plots. We describe here a multi-

threaded library that computes statistics on large numbers of datasets

(Wiggle, BigWig, Bed, BigBed and BAM), generating statistical sum-

maries within minutes with limited memory requirements, whether on

the whole genome or on selected regions.

Availability and Implementation: The code is freely available under

Apache 2.0 license at www.github.com/Ensembl/Wiggletools

Contact: zerbino@ebi.ac.uk or flicek@ebi.ac.uk

Received and revised on November 26, 2013; accepted on

December 13, 2013

1 INTRODUCTION

With the advent of high-throughput sequencing, research teams
and consortia are generating large numbers of datasets that are

projected onto the same reference genome (Adams et al., 2012;

Bernstein et al., 2010; The ENCODE Project Consortium, 2012).

In particular, epigenomic assays quantify many continuous vari-
ables across the genome, e.g. transcription factor binding, his-

tone marks, DNA methylation, chromatin structure or RNA

transcription.
Although they differ in their protocols, all the above assays

include a sequencing step that generates a huge number of

sequencing reads. These reads, or tags, are then aligned against

the human genome. This placement information is normally

stored in the BAM file format (Li et al., 2009). Because the
BAM files are generally large and information rich, they are

often summarized into BigWig files that describe a numerical

variable such as read depth across the genome (Kent et al.,

2010). These BAM and BigWig files can then readily be dis-
played on most genome browsers (Flicek et al., 2013; Meyer

et al., 2013).

In the current context, where researchers are testing many
measurements across many samples, displaying all these data

creates confusing graphics: either the plots are placed side-

by-side and an observer is forced to continually shift their atten-

tion from one plot to another, or the plots are superimposed,

blurring the information content.

Instead, one could summarize all these datasets for each pos-

ition in the genome. Similarly, one could display the difference

between case and control datasets. Fundamentally, all of these

datasets are simply vectors of numbers, and statistics, such as

mean, variance, median, etc., can be generated from any such

collection, producing a meaningful summary of the data.

Common statistical tools such as R (R Core Team, 2013) do

not scale well to such large datasets, especially with respect to

memory requirements. Therefore, we developed a tool that can

perform rigorous statistical tests across the whole genome and

detect regions of interest without practical memory constraints.
We drew inspiration from the popular BEDTools package

(Quinlan and Hall, 2010), which computes overlaps and derived

statistics between sets of regions. Converting numerical measure-

ments into genomic regions (generally referred to as peak calling

or segmentation, depending on the context) is a convenient and

common approach to handling genome-wide data. However, it

does imply an inevitable loss of information, as continuous vari-

ables are discretized and often binarized. Therefore, we wanted a

tool that natively reads the numerical data contained in genomic

files and computes statistics on it.

2 FEATURES AND METHODS

2.1 Composable iterators

WiggleTools is centered on the use of iterators. This approach

ensures scalability and reduces memory requirements: instead of

loading entire files in memory, an iterator simply stores local

information, allowing a program to simultaneously process

dozens, even hundreds of files. This simultaneous handling of

multiple files is particularly useful to compute statistics such as

medians, which require storing all possible values before evalu-

ation. The only exceptions to the use of iterators are the input/

output operations, which are run on separate threads that

read/write, compress/decompress and parse/print data files

independently.
The basic iterators simply read the data from files, whether

BAM, Wiggle, BigWig, Bed, BigBed or BedGraph. A range of

iterators can be built on top of those. There are basic unary

operators (multiplication by a constant scalar, absolute value,

logarithm, exponential, exponentiation and filter), binary oper-

ators (sum, product, ratio and difference), statistics on sets

(mean, median, standard deviation, variance, minimum, max-

imum) and statistics on pairs of sets (Welch’s t test, Mann–

Whitney U). In turn, all these iterators can be combined or*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

www.github.com/Ensembl/Wiggletools
mailto:zerbino@ebi.ac.uk
mailto:flicek@ebi.ac.uk
.
; Berstein etal., 2010; Adams etal., 2012
,
quite 
this 
,
very 
We t
,
,
We t
,
,
,
,
,
-
-


composed to create more complex operators. Iterators can either
traverse the entire genome or a slice of the genome.

2.2 Functionalities

The primary intent of the library is to compute statistics across a
large number of datasets, so that the users need only display one
curve on their genome browser instead of a multitude. For ex-

ample, they can compress a collection of datasets into a median,
as well as compare datasets (e.g. cases versus controls) and gen-
erate a track that denotes the differences between the two sets.

In addition, the WiggleTools library can compute statistics
across genomic positions for a single iterator (area under the
curve, variance) or a pair of iterators (Pearson correlation).

These statistics can be computed across the entire genome or
on regions of interest. For example, it can compute the read
coverage at known promoter regions. Similarly, WiggleTools
can be used to compute a scaled summary profile of the data

on a set of regions.
The WiggleTools library can be used as a C library but also as

a standalone command-line tool. The user has complete access to

the richness of the framework using a simple Polish Notation
language. For example, to generate the sum of a collection of
BigWig files and write the result into a new Wiggle file, the com-

mand would look like:

wiggletools write sum.wig sum data/*.bw

2.3 Performance

The WiggleTools library has been specifically designed to handle

many files simultaneously, allowing complex statistics to be com-
puted as directly as possible, with low memory requirements. The
limiting factor of this approach is the I/O access to the files,

meaning that it requires the input files to be in the local network
of the computation CPUs. However, because of the efficient

indexing of BigWig files, the output can be directly displayed
on a remote server, such as a genome browser.
It is trivial to accelerate computations by slicing the genome

into regions and assigning each region to a different CPU.
A wrapper script is available to do this automatically.

However, one obstacle to this approach is merging the final
files, as the tools provided in the original Kent library quickly

become a performance bottleneck. Therefore, we developed
modified functions that parallelize the computation of summary
tables (which are crucial to accelerate display at large scales),

which we contributed to the Kent library.
To evaluate the performance of our tool, we downloaded all

the DNAseI hypersensitivity wiggle tracks contained on the
ENCODE January 2011 data freeze (The ENCODE Project

Consortium, 2012) and computed the sum of all these signals
through three pipelines. We first ran the WiggleTools library in

parallel on 116 sections of the genome (up to 30-Mbp long),
producing as many output BigWig files that were merged with
our new bigWigCat utility. Second, we ran WiggleTools but

merged the output files with the default bigWigMerge utility
(Kent et al., 2010). Finally, we used bigWigMerge to directly

sum the 126 BigWig files. The bigWigMerge tool only creates
flat files; therefore, a compression and indexing stage, performed

by the wigToBigWig tool, must also be done. The results in
Table 1 clearly show that the first pipeline, which took 1090s

to run, is �12 and 19 times faster than the other approaches,
while requiring a fraction of the memory.

ACKNOWLEDGEMENTS

The authors thank Jim Kent, Petr Danecek and John Marshall
for their advice on using their respective libraries.

Funding: The Wellcome Trust (WT095908) and EMBL. The re-
search leading to these results has received funding from the

European Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement n� 282510-BLUEPRINT.

Conflict of Interest: none declared.

REFERENCES

Adams,D. et al. (2012) BLUEPRINT to decode the epigenetic signature written in

blood. Nat. Biotech., 30, 224–226.

Bernstein,B.E. et al. (2010) The NIH roadmap epigenomics mapping consortium.

Nat. Biotech., 28, 1045–1048.

Flicek,P. et al. (2013) Ensembl 2013. Nucleic Acids Res., 41, D48–D55.

Kent,W.J. et al. (2010) BigWig and BigBed: enabling browsing of large distributed

datasets. Bioinformatics, 26, 2204–2207.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Meyer,L.R. et al. (2013) The UCSC genome browser database: extensions and

updates 2013. Nucleic Acids Res., 41, D64–D69.

Quinlan,A. and Hall,I. (2010) BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics, 26, 841–842.

R Core Team. (2013) R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria.

The ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA

elements in the human genome. Nature, 489, 54–74.

Table 1. Benchmarking CPU and memory requirements to compute the

sum of 126 BigWig files (121 GB of data in total)

Pipeline Stage CPUs Time/CPU (s) RAM/CPU (GB)

1 wiggletools 116 351 mean 0.22 mean

739 maximum 0.32 maximum

bigWigCat 1 378 5.23

Overall 116 1090 5.23

2 wiggletools 116 351 mean 0.22 mean

739 maximum 0.32 maximum

bigWigMerge 1 3441 6.93

wigToBigWig 1 8887 68.85

Overall 116 13067 68.85

3 bigWigMerge 1 11036 43.73

wigToBigWig 1 9423 75.12

Overall 1 20459 75.12

Note: Several pipelines are compared; hence some components appear multiple

times.

1009

WiggleTools

.
They can f
vs.
,
It can f
,
.
thanks to
,
O
however 
We t
,
which
either 
,
, 
roughly 

