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Abstract

Pyramidal cells in the rodent hippocampus often exhibit clear spatial tuning in navigation.
Although it has been long suggested that pyramidal cell activity may underlie a topological code
rather than a topographic code, it remains unclear whether an abstract spatial topology can be
encoded in the ensemble spiking activity of hippocampal place cells. Using a statistical approach
developed previously, we investigate this question and related issues in greater details. We
recorded ensembles of hippocampal neurons as rodents freely foraged in one and two-dimensional
spatial environments, and we used a “decode-to-uncover” strategy to examine the temporally
structured patterns embedded in the ensemble spiking activity in the absence of observed spatial
correlates during periods of rodent navigation or awake immobility. Specifically, the spatial
environment was represented by a finite discrete state space. Trajectories across spatial locations
(“states™) were associated with consistent hippocampal ensemble spiking patterns, which were
characterized by a state transition matrix. From this state transition matrix, we inferred a topology
graph that defined the connectivity in the state space. In both one and two-dimensional
environments, the extracted behavior patterns from the rodent hippocampal population codes were
compared against randomly shuffled spike data. In contrast to a topographic code, our results
support the efficiency of topological coding in the presence of sparse sample size and fuzzy space
mapping. This computational approach allows us to quantify the variability of ensemble spiking
activity, to examine hippocampal population codes during off-line states, and to quantify the
topological complexity of the environment.

1 Introduction

Population codes derived from simultaneous recordings of ensembles of neurons have been
studied in the representation of sensory or motor stimuli and in their relationship to behavior
(Georgopoulos et al., 1986; Schwartz, 1994; Nirenberg and Latham, 1998; Sanger, 2003;
Broome et al., 2006). Uncovering the internal representation of such codes remains a
fundamental task in systems neuroscience (Quian Quiroga and Panzeri, 2009). The rodent
hippocampus plays a key role in episodic memory, spatial navigation, and memory
consolidation (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978; Wilson and
McNaughton, 1993; Wilson and McNaughton, 1994; Buzséki, 2006). Pyramidal cells in the
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CA1 area of the rodent hippocampus have localized receptive fields (RFs) that are tuned to
the (measured) animal’s spatial location during navigation in one-dimensional (1D) or two-
dimensional (2D) environments. These cells are referred to as place cells and their RFs are
referred to as place fields (O’Keefe and Dostrovsky, 1971). However, the concept of place
fields was invented by human observers for the purpose of understanding the tuning of place
cells. It remains unclear how neurons downstream of the hippocampus can infer
representations of space from hippocampal activity without place field information a priori.
Two types of maps, topographical and topological, may be used for spatial representation.
A topographical map contains metric information (such as distance and orientation) between
two locations in the map; whereas a topological map contains only relative ordering or
connectivity information between locations and is invariant to orientation (see Appendix for
mathematical definitions). Since topological features are preserved despite deformation,
twisting and stretching of the space, a topological map would be an appealing candidate for
abstract spatial representation. Uncovering the internal spatial representation of rodent
hippocampal ensemble activity will not only help reveal the coding mechanism of the
hippocampus, but will also provide a way to interpret ensemble spike data during off-line
states.

In the literature, it was suggested that an inner physiological space could emerge from the
population spiking activity of hippocampal neurons (O’Keefe and Nadel, 1978). A few
groups have recently examined the issue of topological coding of space in the rat
hippocampus (Curto and Itskov, 2008; Dabaghian et al., 2011; Dabaghian et al., 2012), but
all reported studies were limited to computer simulations or theoretic conceptualization. The
essential question of interest is how the output of rodent hippocampal place cells (without
the explicit construction of place fields) might be used by downstream structures in order to
reconstruct both the animal’s position and the topology of the environment. From a data
analysis point of view, the question is this: How do we transform the temporal patterns of
spiking activity in the form of multiple time series into a spatial pattern of place fields? To
investigate these questions in greater details, here we use a computational and data-driven
approach (Chen et al., 2012) to investigate the neural representation of spatial topology
embedded in rodent hippocampal population codes. The new contributions beyond our
previous work are threefold: First, to our knowledge, this is the first systematic investigation
on this topic. We explore this issue across different species (rat vs. mouse), environments
(1D vs. 2D), and behaviors (locomotion vs. quiet wakefulness). Second, we extract
quantitative statistics (such as the topological complexity) from topological codes and
topological graphs. Third, we systematically investigate the representation efficiency
between topological and topographic codes in a 2D environment. It is our hope that the
investigations and findings presented here, yet still empirical, would add further insight into
well-studied rodent hippocampal population codes.

2 Inferring Rodent Hippocampal Population Codes
2.1 Probabilistic Modeling

We used a hidden Markov model (HMM) to model the population spiking activity from
simultaneously recorded C rodent hippocampal neurons. We assumed that the animal’s
spatial location during locomotion, being modeled as a latent state process, followed a first-
order discrete-state Markov chain {S(t)} € {1,...,m} (where mdenotes the size of the
discrete state space). We also assumed that conditional on the hidden state St) at time t, the
spike counts of individual hippocampal neurons followed a Poisson probability with their
own tuning curves. Stated mathematically, we used the following probabilistic mapping
(Chenetal., 2012)
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S (t - 1) - S (t) - Pst_lsta (21)

Ye (1) |S (1) =j = Poisson (ye(t);Ac (7)) (22)

where P = {Pj;} denotes an m-by-mstate transition probability matrix, with the element P;;
representing the transition probability from state i to state j; and y.(t) denotes the number of
spike counts within the t-th temporal bin from the c-th neuron, which has the tuning curve A¢
with respect to the state space. Given the multiple time series of spike counts y = {y(1), ...,
y(T)} (where y(t) = [y1(b), ..., yc ()] is a C-dimensional population vector), our goal is to
infer the mostly likely hidden state sequence S={S1), ..., YT)} and the unknown
parameters &= {x, P, A}, where 7 denotes the initial state probability vector, and A =
{1())} denotes a C-by-mtuning curve matrix that can be interpreted as the virtual place
fields or state fields of all hippocampal neurons. Given the animal’s locomotion behavior as
well as the spatial topology of the environment, the ground truth transition probability
matrix P captures important information related to the spatial environment. The
computational task is to infer the transition probability matrix P from the ensemble spike
data alone (without assuming any knowledge of the animal’s behavior).

In this probabilistic modeling framework, we represented a continuous topographic space S
by a finite discrete alphabet A using a code book: S=f (A). The consistency of this
representation requires a one-to-one mapping between Sand A: First, any element in Sis not
simultaneously represented by Ajand A; (i #=j, Aj € A, A € A); Second, the same A; does
not represent two or more distinct regions in S (except for neighboring regions that can be
merged). Of note, A and A may encode two regions, each with different spatial coverage.

2.2 Bayesian Inference

We applied a variational Bayes (VB) algorithm to estimate the unknown hidden state S and
unknown parameters 8= {m, P, A} (Chen et al., 2012). For Bayesian inference, we imposed
informative conjugate priors for 6, specified by p(m, P, A). Specifically, we used a Dirichlet
prior for the multinomial likelihood (vector and row vectors of P) and used a gamma prior
for {1())}. The goal of VB inference was to maximize the lower bound of the marginal log-
likelihood log p(y), also known as the free energy

q(m,P,A,S)
> [dr [dP [dAY q (7, P, A,S) log REPARGSILPA) - (5 5
s

logp (y) =log[dr [dP[dAYq (m,P,A,S) RELARGST.PA)
S

q(7,P,A,S)
=(logp (y,S,m,P,A)) a,+H, (7,P,A,S) = F(q)

where p(y, S, P, A) defines the complete data likelihood, and g(m, P , A, S) =

a(ma(P )a(A)q(S) represents the factorial variational posterior that approximates the joint
posterior of the hidden state and parameter p(m, P, A, Sy). The term Hg represents the
Shannon entropy of the distribution g. The best approximation in q to the joint posterior
yields the tightest lower bound on log p(y).

We applied an iterative expectation-maximization (EM) type algorithm to optimize the free
energy F until it reached a local maximum. In the VB-E step, we estimated the sufficient
statistics using a standard forward-backward algorithm; in the VB-M step, we estimated the
variational posteriors gg(6) and the posterior mean g statistics. Details of the method are
referred to (Chen et al., 2012). During the testing mode, given the posterior mean statistics
of the estimated parameters and the ensemble spiking activity from the same hippocampal
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neurons, we ran a modified version of the EM algorithm to obtain the maximum a posteriori
(MAP) estimate of the state sequence as well as the free energy score of the tested ensemble
spike data.

2.3 Model Selection and Assessment

We used the Bayesian deviance information criterion (DIC) as a guiding principle for
selecting the state dimensionality m. The DIC is defined as the sum of the expected deviance
and the model complexity measure pp (McGrory and Titterington, 2009):

DIC  =Eygy) [2logp (v|0)] +p,,

0 | 5
~ —2logp (y|5) — 249 (9) log 5 do+2log qu((@ )

(2.9)

~—

where 5 denotes the posterior mean computed with respect to gg(3), and p(y|6z) can be
computed from the forward-backward algorithm (Chen et al., 2012). Unless stated
otherwise, the model with the smallest DIC value would be selected.

In our analysis of spike data during periods of locomotion, we used a state space map to
visualize the accuracy of the estimation. The state space map was used to check the
consistency of the one-to-one mapping between the discrete state ID and the animal’s spatial
position. Visualized as a matrix, the element of the state space map represents the counting
number of mapping between the state and the specific spatial position. Ideally, the state
space map would consist of segmented non-overlapping narrow “stripes”, where the width
of the stripes would reflect the uncertainty of the reconstructed position.

2.4 Visualization of Spatial Topology Graph

Upon the completion of Bayesian inference, we obtained the estimated state trajectory Sas
well as the posterior mean of the parameters 5. To visualize the spatial topology by an
undirected graph, we represented the states with mdistinct nodes. The presence of the edges
between the nodes indicated that two nodes were connected in space, and the strength of the
edge between two nodes (shown in terms of the darkness of the color) was proportional to
the transition probability value between two states. The estimated transition probability
matrix was fed to a custom graph-drawing force-based algorithm to produce a 2D topology
graph (Battista et al., 1998; Chen et al., 2012). To reduce the impact of noise (i.e., estimation
bias), we often thresholded the estimated transition probability matrix with a typical
threshold value varying between 0.1 to 0.2. From the same transition matrix, the exact shape
of the derived topology graphs might appear differently due to randomly initialized
conditions of the force-based algorithm, but the underlying topology spaces were
homeomorphic.

2.5 Hypothesis Testing and Statistical Significance Test

The estimated state transition matrix was inferred from the observed population spike trains
based on our statistical model (Equations 2.1 and 2.2). Due to limited sampling, the estimate
would be subject to statistical bias and variance. To test the statistical significance of the
extracted structure of the population spike data, we created randomly shuffled data and
compared their statistics. The null hypothesis was that the population codes were observed
by chance, and therefore could not be captured by our statistical model due to the lack of
structure. To test against the null hypothesis, we randomly shuffled the population spike
count matrix, in both row (unit identity shuffle) and column (time shuffle). The time shuffle
was done by randomly jittering the temporal bins uniformly between 1 and 5 seconds. In
each Monte Carlo shuffle trial, the row and column shuffles were conducted 1000 times. We
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performed 100 Monte Carlo shuffle trials. We then compared the distributions of the
converged free energy value derived from the raw and shuffled data based on the same
Poisson population firing model. The Monte Carlo P-value was reported using a two-sample
Kolmogorov-Smirnov (KS) test.

2.6 Neural Encoding and Decoding with Topographic Maps

For experimental comparison (section 4), we also implemented a topographic-coding
method. In the encoding phase, we estimated the place fields of hippocampal pyramidal
neurons using a simple nonparametric model based on the Poisson assumption. Specifically,
we discretized the spatial environment and estimated the individual neuronal firing rate
based on the spiking activity during the running epochs. In the decoding phase, we used a
maximum likelihood estimator (or empirical Bayesian estimator with uniform priors)
(zhang et al., 1998). Note that our strategy of using such a simple encoding-decoding
method was for illustrating the topographic code instead of searching for optimal decoding
performance, although improved decoding accuracy would be expected by employing more
sophisticated neural encoding-decoding methods (Brown et al., 1998; Barbieri et al., 2004).

3 Results on Neural Topological Representations

3.1 Experimental Data

The experimental data were collected under several different protocols, in which animals
freely foraged in different spatial environments (Fig. 1). (Barbieri et al., 2004; Yamamoto
and Wilson, 2008; Davidson et al., 2009). All experiments were conducted under the
supervision of the Massachusetts Institute of Technology Committee on Animal Care and
followed the guidelines of the US National Institute of Health. Details of experimental
protocols and recordings are shown in Appendix. In total, data from ten animals (eight rats
and two mice) have been collected and analyzed. Due to limitations of space, only eight data
sets (Table 1) were presented in our experimental data analysis. For each data set, we binned
the spiking activity of rodent hippocampal putative pyramidal neurons with a 250 ms bin
size to obtain the raw spike count statistics for the locomotion period.

We analyzed the hippocampal population spike data from both rats and mice during periods
of locomotion. In the 1D environment, hippocampal place cell activity depends on both
location and the direction of navigation (Markus et al., 1995), the same spatial location was
represented by two different states depending on navigation direction (inbound vs.
outbound). In contrast, in the 2D open-field environment, hippocampal pyramidal cells
exhibit place-specific firing that is statistically independent of the direction of traversal
through the place field, therefore navigation direction was not incorporated into the open
field analysis.

3.2 Spatial Topology of One-dimensional Tracks during Navigation

In the 1D linear track data sets from rats and mice, we observed qualitatively similar
ensemble spiking patterns on a single lap basis (Fig. 2A) despite the behavioral variability
(e.g, run velocity) and differences in the size of the environment (track length). Provided the
data are binned and viewed in space (rather than in time), each panel in Fig. 2A can be
treated as “single-lap” place fields for all hippocampal units. The similarities among those
ensemble spike patterns can be characterized by a cross-correlation matrix (below Fig. 2A).

Selection of the number of hidden states—Our probabilistic modeling required us to
select a priori the number of hidden states m for the HMM. It is important to select an
appropriate model size for fitting a small data sample. Selecting a model size that is too
small or too large results in underfitting or overfitting of the spike data. In our experimental
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observations, when the selected mwas too small, we often found non-unique mappings
between the state and the animal’s position in the state space map (e.g., one state
representing more than two positions in the space, Fig. 3A), indicating that the state
dimensionality was insufficient. On the other hand, when the selected mwas too large, we
often found redundant states, which meant that some states had not been used for mapping
the space (result not shown; but simulation results was shown in Chen et al., 2012).

To carry out model selection, we used the Bayesian DIC (equation 2.4). Under each selected
model size, we ran a number of Monte Carlo experiments and obtained the mean and SD of
the DIC values (Fig. 3E). In one 1D linear track example (R1 data set), we found that,
among the evaluated models, the optimal model size was around 60. In this case, we
obtained the state space map, the state transition probability matrix, and the spatial topology
map (Fig. 3, A-D). We also recovered the tuning curves for all units in the state space (result
not shown, see an example shown in Chen et al. (2012)). In this example, the spatial
topology had a ring structure, reflecting the linear track topology. There were also a few
light gray color-coded shortcuts inside the ring structure (Fig. 3C), which reflected the
animal turning before the ends of the track (Fig. 1A, three turning points were around 75 cm,
200 cm and 250 cm). However, the edges of these shortcuts had relatively small strengths
because of their infrequency. Provided that we thresholded the state transition probability
matrix by 0.2, these two shortcuts disappeared in the final topology graph (Fig. 3D).

It is noted that the overfitting problem was not an issue in our data analysis. To test the
generalization, we also tried using the first half of the data to estimate the unknown
parameters #and then used that to decode the unknown state sequence from the second half
of the data. In this testing setup, we always succeeded in recovering consistent state
trajectories (result not shown). The inferred spatial topology reflects the internal
representation of hippocampal ensemble spike activity.

Sensitivity to the number of place cells, threshold, and bin size—The outcome
of derived neural representations certainly depend on the number of neurons and the
coverage of their place fields. However, as far as there are sufficient numbers of place cells
with receptive fields that cover the spatial environment, the ensemble representation shall
remain similar (see more discussions in section 5.1). In the above linear track example, we
randomly selected subset of neurons (50%-80%) and observed slightly degraded estimate in
the transition matrix, but the derived topology graph was qualitatively similar (data not
shown).

The exact shape of the derived topology graph also depends on the threshold. Thresholding
is considering as a necessary “denoising” step prior to data visualization. The purpose of
thresholding is to discard the small state transition probability values (rare events) that may
not be essential of the topology. In practice, a heuristic guideline for threshold selection is to
examine the distribution (or histogram) of the state transition probability values. Typically,
that will be a bior multi-modal distribution, and we often discard the long tails with small
probability values. However, in the presence of small or noisy samples (e.g., irregular
animal’s behavior, insufficient place field coverage of the environment), such a heuristic
procedure may not be sufficient. See section 4 for further discussion.

It is also noted that the neural representation of spatial topology is rather robust with respect
to varying temporal bin sizes (between 150 and 300 ms; results not shown). When the bin
size is too small to capture the timescale of the run behavior, the correlation structure
between place cells may be difficult to detect, and therefore the derived neural
representation may be poor.
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Comparison with randomly shuffled spike data—Based on the observed
hippocampal neuronal population spiking activity, we recovered the embedded spatial
topology and underlying state transition matrix that were imposed by both the spatial
environment and the animal’s behavior. This showed that our probabilistic model was
capable of capturing the underlying structure of population codes. Presumably, if the
structure of the population spiking activity was destroyed, either temporally or spatially or
both, the consistent temporal firing patterns would be lost and the inferred spatial topology
would be misidentified.

To pursue the hypothesis testing, we randomly shuffled the population spike data and re-ran
the analysis previously applied to the recorded spike data. Because different random
initializations led to quantitatively and qualitatively different results, we repeated the
procedure 100 times with independent Monte Carlo simulations. In the end, we obtained the
empirical statistics from all Monte Carlo trials for both raw and shuffled spike data. We
compared the results by examining their empirical free energy distributions (Fig. 3F). The
distributions of free energy derived from the raw and shuffled data were significantly
different (two-sample KS test, P < 0.001), and the median free energy value derived from
the raw spike data was significantly greater than the one derived from the shuffled spike data
(Mann-Whitney test, P < 0.001). Therefore, our model-based computational analysis
paradigm provided an effective approach to assess the significance of the embedded data
structure.

[llustration on the mouse data—For the 1D linear track experiment, we extended the
same analysis to the population spiking activity recorded from mice. Generally, place fields
from the mouse hippocampus were more variable and non-localized (i.e. non-sparse)
compared with those from the rat hippocampus (Fig. 2A). In other words, the mouse
hippocampal neuronal activity was less sparse on the track. Even with a large number of
recorded mouse hippocampal units (R2 data set), we found that the reconstructed state space
map was more ambiguous, and had a sigmoidal shape at the ends of the track (Fig. 4AL).
Increasing or decreasing the model size did not improve the result. This phenomenon was
consistently observed in other mouse data sets (data not shown). Consequently, the inferred
state transition matrix contained more errors in off-diagonal Pj; (where [i - j| > 2) entries
(Fig. 4A2). After properly thresholding small P;; values (“denoising”), the inferred topology
graph reflected the topological nature of the 1D linear track: a ring structure with two
shortcut loops (Fig. 4A3).

Quantifying the variability of hippocampal population codes in single-lap
analysis—The variability of animal foraging behavior would be expected to lead to
variability in the ensemble spiking activity on a lap-by-lap basis. Therefore, it is important
to quantify the variability of population codes with single-lap analyses. We applied our
approach to compute the free energy score of the ensemble spike data from each single lap
given the learned statistical model. To account for behavioral variability, we normalized the
free energy score by the total number of temporal bins. As an illustration using the ensemble
spike data from the linear track (Fig. 2A), from Laps 2—7, we computed the normalized free
energy scores based on 50 independent Monte Carlo trials and computed the box plots and
Monte Carlo median statistics (Fig. 2B). We then used the standard deviation (SD) statistic
of the Monte Carlo median scores at single laps to evaluate the variability of the population
codes. In the rat’s case, the SD of the median normalized free energy scores from 6 laps was
3.52 (m=60); whereas in the mouse’s case, the SD of the median normalized free energy
scores from 6 laps was 7.20 (m = 40). In both rat and mouse data analyzed here, there was a
statistically significant increase (paired Mann-Whitney test, P < 0.01) in the median
normalized free energy scores from the first three laps (Laps 2—4) to the consecutive three
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laps (Laps 5-7), suggesting that there might be a non-spatial component (such as the
velocity, acceleration, and novelty factor) in population codes. Of note, in the rat’s behavior,
the average running velocities during the 6 laps were 42.8, 40.7, 38.8, 42.8, 42.0 and 44.3
cm#s, respectively; in the mouse’s behavior, the average running velocities during the 6 laps
were 22.2, 27.9, 31.6, 33.3, 30.8 and 36.4 cm#s, respectively.

One-dimensional environment with junctions—We also examined the experimental
data recorded from the rat hippocampus while animals navigated in a 1D environment that
consisted of one or more junctions in the track, such as the T-maze and H-maze. The higher
behavioral diversity of navigation in such mazes would be expected to increase connectivity
in their spatial topology graphs. In the context of topological space coding, the junctions
play a similar role to spatial singularities or marked points (Dabaghian et al., 2011).
Consequently, at the state that represents the junction point, the row of the state transition
probability matrix would have two dominant P;; values (Fig. 4B1, assuming roughly equal
behavioral sampling of choices at the junction point). As expected, the task of recovering the
spatial topology of such environments became more challenging. This was reflected by an
increase in the number of local maxima (of the optimized free energy defined in equation
2.3), in the frequency of non-unique state-space mapping, and in the difficulty with graph
interpretation.

In the case of the T-maze data (R5 data set), among a few evaluated models we determined
the optimal model size as m = 60 based on the Bayesian DIC. In one illustrative example,
the state space map between the decoded state and the linearized binned T-maze position (86
bins, see Fig. 1B) showed five disjoint line stripes (states 1-8 for bins 63-74, states 9-30 for
bins 1-31, states 31-43 for bins 43-62, states 44-51 for bins 75-86, and states 52—60 for
bins 32-42; the darkness of the color was linearly proportional to the count statistic) (Fig.
4B3). Note that there was also error or inconsistency in state-space mapping (overlapping
mapping for discrete bins 1-20). The estimated state transition probability matrix (Fig. 4B4)
had a few dominant off-diagonal P;j; elements that reflected the presence of one junction and
the rat’s behavior, specifically turns in the middle of the track. Consequently, the inferred
topology map exhibited a ring-like structure with several shortcut edges (Fig. 4B5), bearing
a resemblance to the ground truth topology map estimated from the animal’s true behavior
(Fig. 4B2).

In the case of the H-maze data (R6 data set), we first linearized the H-maze track (Fig. 5A),
and then determined the optimal model size as m = 85 based on the Bayesian DIC. In one
illustrative estimation result, the state space map between the decoded state and the
linearized and binned H-maze position showed several disjoint line stripes (Fig. 5B). Notice
that some parts of the track were less frequently navigated and the corresponding state-space
mapping for those regions was more ambiguous. There was also partial overlapping
mapping between the state and position. The estimated state transition probability matrix
had slightly more high-valued offdiagonal Pj; elements (Fig. 5C, as compared to Fig. 5D)
that reflected the presence of the two junctions as well as the rat turning in the middle of the
track. By thresh-olding the small values of Pj; , the inferred topology map appeared to have
a multiple loop structure (Fig. 5D). Lowering the threshold would make the topology graph
appear more messy and thereby difficult to interpret. Therefore, thresholding was used as a
necessary step to “denoise” the transition matrix and “unfold” the basic structure of the
topology graph.

Thus far, we have succeeded in extracting the basic topological structure of several 1D
environments, either without or with junctions. We found that the topology map of a linear
track corresponded to a single ring (Fig. 3D), the topology map of a Tmaze corresponded to
a double ring (Fig. 4B5), and the topology map of a H-maze corresponded to a triple ring
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(Fig. 5D). These results were qualitatively consistent with the cartoon illustration shown in
Figure 1 of our previous work (Chen et al., 2012).

3.3 Spatial Topology in Two-dimensional Open Field Navigation

We further analyzed the ensemble spike data of rat hippocampal neurons while the animals
navigated in a 2D open-field environment. Within ~24 minutes, the freely foraging rat
nearly occupied the whole environment (Fig. 1D), yet with non-equal spatial occupancy
within the arena (Fig. 6A).

In the 2D environment, there were multiple ways to bin the space, either evenly or non-
evenly. The bin size determines the number of states for representing the 2D environment.
We used equal spatial bin size varying between 5 cm to 20 cm, which resulted in different
numbers of position bins. Doubling the spatial resolution would increase the number of
spatial bins by 4. In order to seek a good tradeoff between the spatial resolution, model
complexity, and available data sample size, we also conducted a model selection analysis
based on the Bayesian DIC (Fig. 6G). In the case of the R7 data set, although the Bayesian
DIC favored the smallest model size (20 cm bin size), we chose the bin size of 15 cm and
the model size of m=8 x 9 = 72 in order to have a reasonably sized state space. To illustrate
the typical estimation result, we plotted the state space map (Fig. 6C, which showed the
median value of the spatial position that each state represented), the (sorted) state occupancy
curve (Fig. 6D), as well as the estimated animal’s spatial trajectories (Fig. 6, E and F). Note
that the state space map and state occupancy curve were constructed only for the purpose of
result assessment. In the illustrated example, the mean (median) of the estimation errors
across the complete run trajectory in the x and y-axes were 11.70 (9.02) cm and 11.71 (8.85)
cm, respectively; which were both smaller than the actual spatial bin size of 15 cm. This
result suggested that the decoding performance accuracy was quite reasonable, considering
the fact that the decoder only used a pure hippocampal ensemble topological code in the
complete absence of spatial information of the environment.

To test against the null hypothesis (HO0) that the spike data were random and non-structured,
we shuffled the population spike count data (row and column shuffling as before) and
repeated the random shuffling procedure 100 times, each based on independent initial
conditions. We compared the Monte Carlo distributions of the free energy values derived
from the raw and shuffled spike data. In addition, we tested against another alternative
hypothesis (H1) that the raw spike data were observed in a 1D navigation environment (as
opposed to a 2D navigation environment). As shown in Fig. 6H, nonparametric statistical
testing indicated that the median free energy obtained from fitting the raw spike data under
the 2D-environment hypothesis (H2) was significantly greater than those obtained from the
HO and H1 hypotheses (Mann-Whitney test, P < 0.001). In addition, the H2-hypothesis free
energy distribution was significantly different from both HO and H1-hypothesis free energy
distributions (two-sample KS test, P < 0.001).

Given a spatially-binned open field environment, we could compute the ground truth state
transition matrix directly from the animal’s behavior (Fig. 7A), from which the ground truth
spatial topology graph was inferred (Fig. 7C). Based on the hippocampal neuronal ensemble
spiking activity alone, we also inferred the state transition matrix (Fig. 7B) and the
associated topology graph (Fig. 7D). Note that the diagonal elements of the transition matrix
were first zeroed out before feeding the transition matrix to infer the topology graph (since
the self-transition did not reveal any connectivity information). In comparing the ground
truth (Fig. 7, Aand C) with the estimated results (Fig. 7, B and D), we observed a close
qualitative similarity. Basically, the ground truth topology graph reflected the view point of
an ideal “external observer”, which consisted of an evenly spaced grid. Notably, the
topology graph inferred from the animal’s hippocampal activity (“internal observer”)
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appeared somewhat different in that the grid was non-evenly spaced and there were a few
relatively large “holes” within the graph. This discrepancy might be ascribed to two
plausible explanations: First, the externally observed behavior was not necessarily the same
as what the animal perceived and represented in its neuronal activity. For example, it is well
known that hippocampal neurons encode spatial as well as non-spatial features (Wiener et
al., 1989; Hampson et al., 1999; Lenck-Santini et al., 2005). Second, because we temporally
binned the spiking activity into 250-ms bins, the spike count statistic could vary because of
run velocity variability at different spatial locations (Fig. 6B). Generally, the firing rates of
hippocampal place cells are positively correlated to the run velocity of the animal (Zhang et
al., 1998; Lu and Bilkey, 2012). In the open field environment, rats typically ran faster along
the edges of the arena, and ran slower across the central area of the arena. It is therefore
plausible that, in the rat’s brain, the 2D environment might not be equally mapped or
represented in Euclidean metric. For two running trajectories of equal distance, two spatial
locations more quickly navigated would be represented as closer than two spatial locations
more slowly navigated. To verify our conjecture, we did two additional tests. First, we
increased or decreased the spatial bin size and repeated the analysis, but found that changing
the spatial bin size did not affect this observation qualitatively. Second, we simulated a 20-
min 2D random walk trajectory (with equal velocity at each step) along with population
spike data (based on the real place fields estimated from the R7 data set) and repeated the
analysis, and in this case we found that the “holes” disappeared (data not shown). This
suggests that differences in run velocity may underlie inhomogeneous grid spacing
represented by the ensemble spike data.

3.4 Quantification Derived from Topology Graphs

Given the inferred state transition matrix and topology graph, we can quantify animal’s
behavior in time even in the absence of spatial correlate. With the inferred state trajectory,
we may construct a directed graph that consists of a number of nodes linked together by
arrows known as edges. Arrows indicate the direction of the relationship between two nodes.
The number of arrows ending at a specific node is called the in-degree of the node and the
number of arrows leading from it is called the out-degree. In time, we can characterize the
activeness of the animal’s run behavior by counting the number of uniquely visited nodes
(normalized by the total number of the nodes). Other quantitative measures, such as the
visited frequency of the nodes and the occurrence frequency of state-sequences, are also
informative to characterize animal’s behavior (e.g., effects of experience or anxiety) or
intended behavior (e.g., during the immobile or sleep state) in the absence of spatial
correlate. See Fig. 7E-H for illustrations of such quantifications on two open-field
experimental data sets (R7 and R8).

Topological complexity—We further investigate the question that given a derived
topology graph, is there any quantitative measure for topological complexity that is
independent of the shape and size of the graph as well as the between-node distance? In
other words, the topological complexity shall reveal key information about the mapping
between spatial locations and the states (or nodes). Given the inferred state space map, we
can assess the state density for every spatial location in the environment; and we define the
topological complexity Ty by the mean state density across all spatial locations. Specifically,
the state density measures the degree of ambiguity about the number of unique states
required to represent a specific spatial location. The state density is also independent of the
spatial sampling and behavioral occupancy. For instance, a topographic map representation
would imply T4 = 1 since there is only one-to-one mapping between the spatial locations and
states. In theory, a linear track would have Ty = 2 due to the direction ambiguity (i.e., two
states are required to represent the same spatial location). For the similar reason, the junction
points of the T-maze or H-maze would have a higher state density due to many-to-one state-
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space mapping. As expected, the 2D open field environment would have a higher mean state
density than the 1D environments.

To confirm our conjecture, we computed the heat maps of state density for four
topologically-different environments from previous examples (Fig. 8). As expected, the
topological complexity Ty is increased from the linear track (R1, m= 60), to T-maze (R5, m
= 60), to H-maze (R6, m= 85) and to open field (R7, m= 72), with increasing estimated
mean state density (or Tg) of 2.02, 2.35, 2.40 and 4.15, respectively. The computation of
state density also took into account of the size of mby properly adjusting the distance
metric. In all heat maps, the spatial bin size is 5 cm, therefore the state density unit is
5cm~1 (1D environment) or 25cm=2 (2D environment). Interestingly, the respective median
state density estimates are 2, 2, 2, and 4, revealing the true difference in topological
complexity between 1D and 2D environments.

3.5 Hippocampal Neuronal Representation during Quiet Wakefulness

Next, we examined the ensemble spiking activity from the rat hippocampus in a linear track
environment when the animal was awake and stationary (i.e., non-locomotion, velocity
threshold: < 2 cm/s), which we refer to as the off-line awake state. During the quiet
wakefulness, ripple activity (150-250 Hz) was frequently observed in the hippocampal local
field potential (LFP), which was associated with brief multi-unit activity (MUA) bursts. We
used a previously established criterion (Davidson et al., 2009) to detect these MUA bursts
and examined the associated hippocampal ensemble spiking activity. Many groups have
reported the compressed reactivation of spatial sequences (replay events) in this state, in
association with sharp wave ripples (SPW-R) (Foster and Wilson, 2006; Diba and Buzsaki,
2007; Davidson et al., 2009; Karlsson and Frank, 2008; Carr et al., 2011; Jadhav et al.,
2012).

We adapted our method to detect such replay events in the off-line awake state. We first
binned the ensemble spiking activity with a 250 ms bin size during periods of locomotion
(velocity threshold >15 cm/s). We then binned the ensemble spiking activity with a 25 ms
bin size (compression factor of 10) during periods of hippocampal SPW-R-associated MUA
bursts. In the learning mode, we estimated the state transition matrix based on the ensemble
spike data from the locomotion period (R4 data set, m=42). In the testing mode, we fed in
the ensemble spike data during quiet wakefulness using the previously estimated state
transition matrix. Specifically, we computed the free energy score of the data and the
posterior probability trace of the state trajectory. An illustrative example is shown in Fig. 9.
In Fig. 9, Aand B, the animal’s position and run velocity on the track are displayed as a
function of time. Figure 9C shows the hippocampal MUA aggregated across all seven
tetrodes, and Fig. 9D shows the state space map inferred from the data during RUN epochs.
The state-space mapping had some ambiguity mainly due to very short recording of RUN
epochs (2.5 min and 9.5 full laps). Within the period of hippocampal SPW-R-associated
MUA bursts (Fig. 9E), we applied the decoding analysis to hand-picked ensemble spike data
where many (>8) units were active (Fig. 9F), and estimated the posterior probability of the
state trajectory (Fig. 9G). As an illustrated result shown in Fig. 9G, we recovered one long
(sequence length >4) state trajectory (9 consecutive time bins of state ID: 6 — 7 — ... —
14) that had high posterior probability. From the inferred state space map (Fig. 9D), the
replayed state trajectory corresponded to an inbound-run trajectory from around 175 cm to
100 cm on the track. The virtual replay speed was about 333 cm/s, 10-15 times faster than
the behavioral velocity (Fig. 9B). The compression factor was consistent with the scale
reported in previous findings (Foster and Wilson, 2006; Davidson et al., 2009). For each
candidate replay event, we also ran the inference procedure multiple times, each based on a
different initial condition. Based on many Monte Carlo trials, we could score the candidate
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replay event by its repeated frequency (via state-space mapping) and predictive free energy,
and then determine its statistical significance using a predefined criterion. If the replay event
was significant, the repeated frequency and predictive free energy of the replayed spatial
sequence would be presumably high; in contrast, the predictive free energy of a random
spatial sequence derived from randomly shuffled spike data would be lower. Nevertheless,
we did not delve into this issue further since it was beyond the focus of current study.

4 Topological vs. Topographic Coding of Spaces

There has been a debate on the role of hippocampal population codes between topographic
and topological representations of the spatial environment. In section 3, we have focused on
the sufficiency of topological representation. However, neither the necessity nor the
efficiency of a topological code has been studied as compared to the topographic code. In
this section, we investigate a few specific questions: Given the well-known fact that velocity
information is encoded in hippocampal rate codes (Zhang et al., 1998; Hirase et al., 1999;
Huxter et al., 2003; Lu and Bilkey, 2012), is it possible for hippocampal neurons to utilize
such metric information to accommodate a fuzzy and mixed representation, or to construct a
topological map with topographic constraints? From a computational perspective, what is
the optimal spatial representation that achieves a tradeoff between decoding accuracy and
encoding efficiency? How does the topological representation vary with respect to the
number of the neurons? How does the favor of the topological vs. topographic coding (in
terms of the decoding accuracy) change with respect to the number of neurons? The answers
to these questions are important and relevant not only in neuroscience but also in
engineering applications (such as robotics).

4.1 Comparison of Decoding Efficiency between Topological and Topographic Codes

A full topographical map implies topological information. However, it is unclear whether a
full topographical map is necessary for the hippocampus to adequately represent the spatial
environment. To address this question, we compared the decoding performance of a pure
topological code, a topographically-constrained code and a pure topographic code in an open
field environment (R7 data set). In a pure topological code, there are no a priori place fields,
and no spatial correlate can be used in encoding. In contrast, in a pure topographic code, the
spatial correlate is used in encoding to estimate the place fields of individual units, which
are subsequently used for decoding. For place fields, we used a nonparametric model based
on the assumption of Poisson firing rate statistics (section 2.6). A topographically-
constrained code is intermediate between purely topographic and purely topological, such
that some of the states in the topological map are provided by topographic (actual spatial)
information and are topographically constrained as landmarks in the environment.

First, we systematically varied the percentage level of topographic constraints in the
topological code and compared the decoding accuracy. A code with 0% topographic
constraint implies a pure topological code (decoding result illustrated in Fig. 6, E and F),
whereas a code with 100% topographic constraints is essentially a pure topographic code (in
this case, place fields were estimated and applied to maximum likelihood decoding
analysis). In the case of a pure topographic code, by varying the spatial bin size from 15 cm
to 10 cm to 5 cm, we obtained the respective average median decoding errors as 11.13 cm,
8.25 cm and 5.59 ¢cm. To begin to consider a topological code with topographic constraints,
we randomly assigned the spatial bins, either uniformly or proportional to the spatial
occupancy frequency in space (Fig. 6A), with the actual (known) spatial locations as
landmarks. For a spatially-binned 8 x 9 open field environment (with 15 cm bin size), the
percentage of the topographic constraints varied from 0, 10, 20, 40, 60, 80 to 100. Except for
the 0 and 100% levels, at each percentage level we repeated random samplings with
different assignments for 20 times to compute the mean decoding error. Thus decoding error
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was evaluated over all epochs of run behavior based on the animal’s actual positions. The
result is shown in Fig. 10A. As expected, as more topographic constraints were imposed, the
decoding accuracy gradually improved to a minimum of 7.5 cm (half bin size at 100%
level). In contrast, for the finest pure topographic code (with 5 cm spatial bin size), the mean
and median decoding errors are 10.08 cm and 5.59 cm, respectively.

To gain further insight into the topological code without or with topographic constraints, we
hypothesize an idealized situation where the animal has sampled uniformly (i.e., equal
navigation occupancy) and sufficiently in a circular environment (with radius 1 and area 7).
Without loss of generality, uniform landmark sampling in the environment is also assumed.
When the number of landmarks is 0, there is no spatial correlate, and one cannot establish
any correspondence between the abstract spatial topology and actual environment. In this
limit, the decoding error is infinity (without relying on occupancy and state space map).
When the number of topographic constraints is 1 (say, the landmark state i is in the center),
given any nonzero state transition probability P, orP; (1 < Vk < m, k # i) and the velocity
information, one can estimate the between-state distance dy ; however, since there is no
direction information, there will be uncertainty (radius of d; around the center) about the k-
th state location in the environment. In this case, the average error for mapping the
remaining m - 1 states is on the scale of the width of environment (diameter 2). When the
number of topographic constraints is 2 (say, the landmark states i and j are along the
diameter of the circular environment), given any nonzero state transition probability

Py, Pji, PriorPy; (1 < Vk < m, k # 1, j), one can estimate the between-state distances diyk
and djk based on the velocity; since in this case there is more metric information, the
uncertainty and average decoding error are reduced (roughly to the scale of 1). As 3
topographic constraints are imposed, given the estimated between-state distances we can use
these three spatial locations to triangulate the remaining (m — 3) state locations. Further
addition of landmarks will impose increasing constraints on the environment, and the
decreased decoding error will gradually saturate. Ultimately, the uncertainty and decoding
error will fall to 0, as the number of topographic constraints approaches m. Under certain
criteria, one can envision an optimal number 3 < m'< mthat achieves an optimal tradeoff
between the decoding error and the number of topographic constraints. See Fig. 10B for an
idealized illustration. In practice, the value of m" may vary as a function of the animal’s
spatial occupancy, behavioral sampling (and the induced state transition statistics), and the
size of m.

Next, in order to test the efficiency and robustness of the topographic code, while fixing the
number of neurons, we systematically varied the percentage of the sample size (i.e., the
number of temporal bins along with the spatial correlate during run epochs) available for
encoding analysis. A topographic code with 100% sample size would produce the best
achievable decoding accuracy, and the decoding accuracy would degrade with decreasing
sample size. In contrast, the performance of a pure topological code would remain
unchanged because of its encoding-free nature. We varied the sample size percentage (5%,
10%, 25%, 50%, 75% and 100%) by sampling either uniformly or proportional to the spatial
occupancy frequency in time, and computed the median decoding error. Regardless of the
sample size, the decoding analysis was always evaluated on the total run epochs based on
the animal’s actual positions. In this example, there were T = 2356 temporal bins and m= 72
spatial bins used to represent an area of 1.26 m2. The result is shown in Fig. 10C. As less
samples were used in encoding, the decoding accuracy of a topographic code degraded (first
slowly and then dramatically around 50%). This phenomenon was present in both uniform
sampling and occupancy-based sampling, but the performance was worse in uniform
sampling. This effect also persisted for various choices of spatial bin size (Fig. 10D,
assuming uniform sampling). Although the exact statistics could depend on the animal’s run
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behavior, we expect this phenomenon would generalize across behavior. In this example,
when the sample size was below 25%, the decoding accuracy of the topological code (with
15 cm bin size) outperformed that of the topographic code (even with the finest bin size).
Note however, if the spatial bin size of the topological code was reduced to 10 or 5 cm, the
decoding performance of the topological code deteriorated, partially due to the insufficient
sample size required to infer a large state space. In principle, animals can use an adaptive
spatial representation (e.g., fine/low resolution in high/low behavioral occupancy regions) to
compensate for non-uniform spatial sampling.

4.2 Spatial Representation with Respect to Number of Neurons

Spatial topological representation of population codes depends on the hippocampal place
cells. In order to examine how the topological representation change with respect to the
number of place cells, we randomly selected a subset of neurons (10%, 25%, 50%, 75%) to
run the same analysis, for both 1D (R1 data set) and 2D (R7 data set) environments. We
have fixed the state dimensionality m= 60 for the 1D environment and m = 72 for the 2D
environment. As a general observation, as the number of neurons decreased, the quality of
the reconstructed state space map reduced or became more ambiguous (see representative
examples in Fig. 11A, as compared to Fig. 3A), so did the state transition matrix (result not
shown). However, the derived topology graph was relatively robust for both environments
(Fig. 11B). Specifically, in the 2D open-field environment, as fewer number of neurons were
included, the detail of the topology graph started to be missing (possibly due to the lack of
place field coverage in certain spatial locations); however, the 2D grid structure was still
preserved.

In addition, we repeated the same decoding analysis as Fig. 10C and compared the decoding
accuracy between topological and topographical codes with varying numbers of neurons.
The results on the median and median decoding error across 10 random trials are shown in
Fig. 11C. As expected, the performances of both topological and topographical codes
degraded with decreasing number of neurons. Furthermore, it appeared that the topological
code had overall superior performance in decoding accuracy, especially in the presence of
small number of neurons. In the 2D example here, the topographic code only obtained a
lower average median decoding error with more than 36 neurons (75% out of 47).

To summarize the findings of this section, we have demonstrated the merits and limitations
of topological and topographic codes in spatial representation and decoding accuracy. A
pure topographic code would imply a precise characterization of the place fields with respect
to the full environment. Such a code would be optimal for decoding, but it is not necessarily
efficient for encoding especially in the presence of a large environment and small sample
size. In contrast, an abstract topological code with a small number of topographic constraints
may achieve a good tradeoff between the decoding accuracy and encoding efficiency. For
the same practical reason, it is more efficient for downstream neurons of the hippocampus to
decode an animal’s spatial location based on a “fuzzy” semi-topographic map without
storing or accessing the place fields of neuronal ensembles. In addition, the topological code
is more robust in terms of spatial representation and decoding accuracy, especially with
fewer number of neurons.

5 Discussion

Although the physiology of rodent hippocampal cells has been well studied (Nakazawa et
al., 2004; Ahmed and Meht, 2009), it remains unclear how ensembles of hippocampal place
cells could represent abstract spatial topology through spiking activity alone. Understanding
the internal representation of rodent hippocampal population codes from the perspective of
the “internal observer” would provide insight into the population coding mechanism. Here
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we investigate this problem using a computational approach based on statistical modeling
and inference.

Our approach employs unsupervised learning for exploratory analysis of neural ensemble
spike data, aiming to discover the inherent temporal structure embedded in population
codes. This approach is generalizable beyond the rodent hippocampus, and can in principle
be applied to recordings from other neural circuits, in both rodents and primates. For
modeling other systems, we can employ a parametric neuronal tuning curve model that
incorporates covariates (Chen et al., 2009; Chen et al., 2011). Such a model-based approach
allows us to examine ensemble spiking activity in greater detail, such as quantifying the
representation variability of single-lap data. We can test hypotheses about the
dimensionality (1D vs. 2D) of spatial topology embedded in hippocampal population codes,
and we can also compare the coding efficiency between topological and topographic codes.
Specifically, the quantitative measure of topological complexity may be useful in not only
revealing the dimensionality of the spatial topology, but also allowing us to compare
hippocampal ensemble representations under different behavioral conditions in the same
environment.

5.1 Triangulating Embedded Topological Spaces

A general mathematical theory of triangulating topological spaces has been previously
discussed in (Curto and Itskov, 2008; Dabaghian et al., 2011; Dabaghian et al., 2012). In
theory, provided that the spatial environment is covered by a number of overlapping rodent
hippocampal place fields that are convex, then the space can be triangulated. Consequently,
when the place cells fire consistently in time whenever the animal forages in the same
spatial location, one can construct cell groups whose spiking activity coverage represent the
topological subsets, from which the embedded topological space can be triangulated.
Accordingly, as long as the space is fully covered by place fields, the topological
representation of the spatial environment will remain relatively unchanged even in the
presence of plasticity or remapping of individual place fields.

5.2 Relation to Other Methods and Limitation of Our Approach

Recently, a few computational approaches have been proposed to uncover the spatial
topology maps from hippocampal population codes (Curto and Itskov, 2008; Dabaghian et
al., 2012). These approaches are based on two some common assumptions: (i) the temporal
pattern of hippocampal neuronal firing (especially co-firing) is key to decoding spatial
information; (ii) since co-firing implies spatial overlap of place fields, a map encoded by co-
firing of place cells will be based on connectivity and adjacency, which will give arise to a
topological map.

Specifically, the basic idea of the algebraic analysis approach (Curto and Itskov, 2008) is (i)
to define some cell groups consisting of place cells that collectively fire within a two theta-
cycle (250 ms) window, (ii) to extract the topological features (homology groups) from the
cell groups, (iii) to reconstruct a topology graph for every cell group and a distance matrix
for any pairwise cell groups, and (iv) to run a nonmetric multidimensional scaling (MDS)
algorithm to visualize the distance matrix, thereby revealing the embedded spatial topology.
In their theoretical assumptions, the hippocampal place fields were convex (except for a
small percentage of multipeaked place fields) and the union of the place fields covered the
whole space. In practice, these assumptions are not always valid, and in addition, temporal
smoothing of the spike trains and selection of proper threshold values in step (ii) and step
(iii) are crucial in their analysis (K. Marku, personal communication).
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In the investigation of two open-field experimental data sets (R7 and R8), we have also
analyzed the hippocampal ensemble spike data using available software of the algebraic
approach (http://www.math.unl.edu/~vitskov2/software/SpikeTop/). We found that the
results derived from the algebraic analysis were less intuitive and difficult to interpret. In
addition, the final results were rather sensitive to the thresholding and smoothing operations
(data not shown due to space limitation), whereas the outcomes of our derived topology
graph were more robust with respect to different initial conditions (with or without
thresholding). This might be due to the fact that our probabilistic model explicitly exploits
the Markovian structure of the population codes. Provided that the Markovian structure of
{S(t)} is discarded and the spike activity at any time bins are marginally independent, then
all methods will boil down to estimating the correlations between place cells.

In our statistical approach, the derived topology graph relies on an accurate estimate of the
state transition matrix. As discussed earlier in section 3, thresholding is a useful step to
“denoise” the estimated state transition matrix. In addition to the heuristics, another possible
solution is to systematically search for a “suboptimal” threshold along a thresholding path,
and the selected threshold would reflect a good tradeoff between the interpretability of the
graph and the topological complexity. Nevertheless, how to choose sensible threshold value
to produce a reliable topology graph remains a subject of our future study.

5.3 Neural Representation of Spatial Maps and Temporal Sequences

In rodents, various forms of spatial maps are represented in the hippocampus-entorhinal
cortex network. It was suggested that the hippocampus functions as an associative or
attractor network (Tsodyks, 1999) that encodes the abstract topological map of the space,
which serves as a “locus” of the animal’s spatial awareness (Burgess and O’Keefe, 1996;
Muller et al., 1996); whereas other parts of the circuit (such as the entorhinal cortex) provide
metric information with a complementary representation of the environment. Although we
have restricted our focus to hippocampal place cells, other types of cells, such as grid cells,
head direction cells and border cells, also contribute to spatial representation and navigation
(Leutgeb et al., 2005b; McNaughton et al., 2006; Mathis et al., 2012).

Hippocampal place fields are well known to be plastic in novel environments (Frank et al.,
2004; Frank et al., 2006) and to remap with manipulation of spatial cues and with
progressive morphing of the environment (Gothard et al., 1996; Colgin et al., 2008; Leutgeb
et al., 2004; Leutgeb et al., 2005a). These findings suggested the topological coding nature
of the rodent hippocampus. One theoretical hypothesis of topological coding is that VVoronoi
tessellation of many overlapping place fields provides a triangulation of the space, and that a
topological representation is achieved by chaining these neighboring subspaces together
through sequential neuronal activity (Dabaghian et al., 2011).

The rodent hippocampus is also responsible for representing episodic memory in the form of
ordered temporal sequences (Hasselmo, 2012). The representation of topological maps can
be viewed as a form of ordered spatial sequence, where the place cells encode the “relative”
space while animals forage in the environment. When the space is morphed, the place fields
also change accordingly. In most rodent behavioral tasks, space and time are strongly
coupled and nearly inseparable (Redish et al., 2000). Recently, the question of a
hippocampal representation of time has been studied by disentangling the spatial component
(Pastalkova et al., 2008; MacDonald et al., 2011). In a temporal sequence memory task,
during the delay periods hippocampal neuronal ensembles temporally organized and
disambiguated distinct sequences of events that comprised specific repeated experiences
(MacDonald et al., 2011). It would be interesting to use our approach to investigate these
“time cells” and “time fields”.
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5.4 Efficiency of Topological and Topographic Codes

From a computational decoding perspective, a topological code is more efficient than a pure
topographic code, especially in the presence of a large environment and sparse sample size.
It is impractical to restore every piece of topographic information in the real world. To
improve accurate spatial representation, a topological code can be incorporated with some
metric information and topographic landmarks, producing a fuzzy semi-topographic map.
Animals may use different behavioral strategies (such as non-periodic stopping or orienting)
to identify landmarks inside the environment. In addition, other neurons such as border cells
and visual cortical cells can provide additional cues for the environment, which together
may produce a coherent spatial representation. Such a spatial mapping strategy has been
widely used in robotic localization and mapping.

5.5 Implications Beyond Hippocampal Population Codes

The probabilistic interpretation of neural population codes has become an active research
topic (Zemel et al., 1998; Ma et al., 2006; Beck et al., 2007). An accurate statistical
characterization of neural codes would enable us to better understand neural representations
at both single cell and population levels. This would also help to develop efficient
algorithms to decode neural ensemble spiking activity online in brainmachine interfaces
(Kemere et al., 2008). Characterizing the internal representation of ensemble spiking activity
in terms of hidden states facilitates our intuitive understanding of data acquired during
various tasks, including eye movement, motor planning, associative learning, motor
planning, and reaching movement (Seidemann et al., 1996; Rainer and Miller, 2000; Smith
et al., 2004; Jones et al., 2007; Czanner et al., 2008; Yu et al., 2009; Chen et al., 2009;
Lawhern et al., 2010). In addition, the variability in behavior and task-related neural
responses at the single cell level would be expected to contribute to variability in population
responses. Statistical approaches may provide a quantitative way to examine such noisy
ensemble spiking activity across trials.

The concept of topological coding of a stimulus is not limited to the representation of space
in the rodent hippocampus. In fact, similar experimental findings have been reported in the
primate primary motor cortex (M1) (Georgopoulos, 2002) and primary visual cortex (V1)
(Singh et al., 2008). Georgopoulos (2002) discussed motor topology and the neural
representations of direction, size, and location of movement in space. Specifically, he
reviewed the results of of behavioral studies of drawing geometrical figures and discussed
how the representation of topological features can be invariantly extracted from primate M1
neuronal populations irrespective of attributes of size, location, and the muscles effecting the
motor trajectory. In another context, Singh et al. (2008) cast the fundamental question about
neural representation in terms of the topological structure of primate V1 neuronal ensemble
spiking activity. They reported that the topological structure of V1 spiking patterns was
similar to those evoked by natural image stimulation and was consistent with the topology of
a 2-sphere in 3D space. Other brain areas such as the restrosplenial cortex (RSC) (Wyss and
Van Groen, 1992; Vann et al., 2009) might also use topological coding for kinematic
stimuli.

5.6 Concluding Remarks

We have applied a computational approach to examine the neural representation of spatial
topology in the rodent hippocampus. Using probabilistic modeling and Bayesian inference
without access to spatial correlates of the neuronal activity, we successfully extracted the
underlying topological features (e.g., junctions and dimensionality) of the environment, in
addition to certain metric (semi-topographic) information (e.g., track length) embedded in
the population code. The topological representation of space embedded in rodent
hippocampal population codes was robust. Our results raise several testable questions: How
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would the internal representation of population codes change with manipulation of
hippocamal function, such as partial hippocampus lesions (Kesner and Novak, 1982),
transgenic manipulations of hippocampal circuitry (McHugh et al., 1996; Suh et al., 2011),
or Alzheimer’s disease models (Cacucci et al., 2009)? In addition, how can our approach be
extended to the analysis of sleep-associated ensemble spike data, in which there is no
behavioral correlate to compare against? These questions will be the topic of our future
investigations.
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Electrophysiology and recording

Male Long-Evans rats or mice were implanted with micro-drive arrays containing between
11 and 24 tetrodes. The micro-drive arrays were implanted above either the right dorsal
hippocampus or bilaterally above both hippocampi in one rat (Yamamoto and Wilson,
2008). The tetrodes were slowly lowered into the brain reaching the cell layer of CA1 two to
four weeks following the date of surgery. Each tetrode’s signal was split into spike and LFP
channels. Spike channels were filtered between 300 Hz and 6 kHz, and the LFP channels
were filtered between 1 Hz and 450 Hz. Thresholds were set on each tetrode channel and
waveform shape was saved from each tetrode channel whenever an individual channel
passed a fixed threshold. A differential reference electrode was left in the white matter
immediately dorsal to the hippocampus. Recorded spikes were manually clustered and
sorted to obtain single units using a custom software (XClust, M.A.W.). Once stable units
were obtained, the rodents were allowed to explore freely in the environment. We used
diodes placed on the head of each animal to track position with a sampling rate of 30 frames/
S.

Animal behavior

Under different experimental protocols, rodents (rats or mice) freely foraged in specific
spatial environments, including a linear track, T-maze, end-to-end T-maze (“H-maze”), and
open field (Fig. 1). In the linear track, T-maze and open field, there were no behavioral
restrictions placed on the animals, and the rodents were encouraged to explore the
environment with rewards (e.g., chocolate sprinkle, fruit juice) distributed at the end of the
tracks or inside the open field. In the H-maze, the animals performed a spatial working
memory task involving paired sample and test epochs, as described in (Jones and Wilson,
2005). In the sample phase, rats ran in the “force” direction to turn left (L) or right (R) to
win reward. In the test phase, rats ran the “choice” direction and found reward by choosing
the reward site that required a non-matching behavior (turning R or L). To identify the
period of rodent locomotion during spatial navigation, we used a velocity threshold (>10
cm/s for mice and >15 cm/s for rats) to select the RUN epochs and merged them together.
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Fig. 1. Examples of spatial environmentsused in the analysis

A: linear track. B : T-maze. C : H-maze. D : open field. In panel A, the animal’s linearized
run trajectory is shown, and in panels C and D, the animal’s actual spatial trajectories are
shown. Note that among three one-dimensional environments (A—C), the linear track has 2
endpoints and no junction, the T-maze has 3 endpoints and 1 junction, and the H-maze has 4
endpoints and 2 junctions.
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Fig. 2.

A: Variability of rodent hippocampal population neuronal responses (in the form of spike
count matrix) in a lap-by-lap comparison (Left: rat, linear track R1 data set; Right: mouse,
linear track R2 data set). All six laps consisted of one cycle of an outbound-inbound
trajectory that contained varying number of time bins. Each panel can be viewed as “single-
lap” place fields for all hippocampal units. Color bar represents the spike count. The
similarities between 6-lap ensemble spike patterns are quantified by a cross-correlation
matrix shown below. The average running velocities for the rat during the 6 laps were 42.8,
40.7, 38.8, 42.8, 42.0 and 44.3 cm/s, respectively; the average running velocities for the
mouse during the 6 laps were 22.2, 27.9, 31.6, 33.3, 30.8 and 36.4 cm/s, respectively. B :
Quantifying the variability of the ensemble spike data show above. In each box plot, the
normalized free energy score was computed from each single lap based on the inferred
model parameters. The statistics were obtained from 50 independent Monte Carlo trials.
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Fig. 3. Linear track (R1 data set) result

A: state space map (m= 60 from model selection). Color bar represents the repeated
frequency of mapping between the state and position. B : one example of the estimated state
transition probability matrix. C : inferred spatial topology graph from the transition matrix.
Dark-colored edges imply that two nodes are strongly connected or two states are linked by
high transition probability values. Note that the axes of the topology map are in arbitrary
unit (a.u.). D : inferred topology graph derived from a thresholded transition matrix
(threshold 0.2). Despite the deformation of the orientation and width of the graph, the ring
topology structure remains the same due to topological invariance. E : model selection based
on the Bayesian deviance information criterion (DIC). Error bar statistics were computed
from the results of 50 independent Monte Carlo trials. F : distributions of the derived free
energy value from the raw (solid curve) and shuffled (dashed curve) spike count data for the
same R1 data set (m= 60). In each condition, probability distributions were estimated from
the derived free energy values based on 100 independent Monte Carlo trials. The median
free energy obtained from the raw spike data was significantly greater than that obtained
from the shuffled data (Mann-Whitney test, P < 0.001), and these two empirical
distributions were also significantly different (two-sample KS test, P < 0.001).
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Fig. 4. A: Linear track (R2 data set) result

Al : state space map (m= 40). Color bar represents the repeated frequency of mapping
between the discrete state and discretized position bin of the linear track, and dark color
represents high frequency. A2 : one example of the estimated state transition matrix. A3 :
inferred spatial topology graph from the thresholded transition matrix. The estimated state
space map and topology graph appeared less satisfactory, as compared to the ones estimated
from the rat data shown in Fig. 3, Aand D. B : T-maze (R5 data set) result. B1 : ground truth
state transition matrix inferred from the animal’s behavior (m= 86 from linearization of T-
maze shown in Fig. 1B). B2 : inferred spatial topology graph from the ground truth transition
matrix. B3 : state space map (m = 60 from model selection). Color bar represents the
repeated frequency of mapping between the discrete state and discretized position bin of the
T-maze. B4 : one example of the estimated state transition probability matrix. B5 : inferred
spatial topology graph from the thresholded transition matrix. Due to thresholding of low
transition probability values, the estimated topology graph appeared smoother compared to
one shown in panel B2.
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A: linearized position of the H-maze. B : state space map (m = 85 from model selection).
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discretized position bin of the Hmaze. C : one example of the estimated state transition

probability matrix. D : inferred spatial topology graph from the thresholded transition

matrix.
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Fig. 6. Open field (R7 data set) result

A: space occupancy map in an evenly binned 8 x 9 grid (15-cm spatial bin size). B :
histogram of the rat’s run velocity with a 250ms temporal bin size. C : one example of the
estimated state space map, where the median value of the spatial position that each state
(circled number) represented was shown. From the numbered state sequence, one can infer
the animal’s trajectory in the open field. D : the comparison of true and estimated (sorted)
state occupancy curves, which both showed a skewed distribution. E and F : snapshot
comparison between the true (black) and estimated (blue) animal’s run trajectory in the 2D
environment (based on the mapping in panel C). The mean estimation errors across the
complete run trajectory in the x and y-axes are 11.70 cm and 11.71 cm, respectively. G :
model selection for spatial bin size based on the Bayesian deviance information criterion
(DIC). Error bar statistics were computed from the results of 50 independent Monte Carlo
trials. H : distributions of the free energy value derived from the H2 hypothesis with raw
(red solid curve) and shuffled (dotted curve) spike count data, and from the H1 hypothesis
with raw data (blue dashed curve). All free energy values were obtained based on the same
model size (m= 72). Probability distributions of the free energy were estimated from 100
random Monte Carlo trials. The median free energy derived from the H2 hypothesis with
raw data (red solid curve) was significantly greater than those derived from the HO and H1
hypotheses (Mann-Whitney test, P < 0.001). The free energy distribution of H2 (red) was
significantly different from the others (two-sample KS test, P < 0.001).
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Fig. 7. Open field (R7 data set) result

A: ground truth state transition probability matrix estimated from the animal’s behavior (m =
72). B : one example of the state transition probability matrix estimated from the ensemble
spike data, which shared a similar structure as panel A. In panels A and B, the diagonal
elements {P;;} of the matrices were zeroed out before feeding the transition matrices to infer
topology graphs. C and D : ground truth topology graph (from the ground truth transition
matrix) and inferred topology graph (from the estimated transition matrix), respectively. E
and F : topology graphs inferred from hippocampal ensemble activity for the open field
environment (left column: R7 data set; right column: R8 data set). All axes of the panels are
in a.u.. Nodes correspond to states. In each panel, the animal’s run trajectory during the first
2 minutes was color coded. G and H : quantification of the animal’s behavior in terms of the
number of visited nodes within the graph shown above every 30 seconds (normalized by the
total number of visited nodes). Error bar shows the SD estimated from 10 Monte Carlo runs.
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Fig. 8. Toprow : heat maps of inferred state density (in color bar) for four spatial environments
(shown in Fig

1), with estimated topological complexity Ty (mean state density) and state dimensionality m
shown above. In all heat maps, the spatial bin size is 5 cm, therefore the state density unit is
5cm~1 or 25cm=2. Note that the state density is typically higher at the bifurcation points in
the T-maze and H-maze. Bottom panel : estimated mean and median state density statistics
for the above four spatial environments. Error bar shows the SD statistic from 10 Monte
Carlo runs.
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Fig. 9. Detection of the reactivation of spatial sequenceson alinear track (R4 data set)

A: animal’s position on the track (blue line). The horizontal red line indicates the the
stationary awake period where the animal had low velocity (<2 cm/s) and high SPW-R-
associated hippocampal multi-unit activity bursts (MUA > mean+4 SD). B : animal’s run
velocity, where the horizontal line represents the 2 cm/s velocity threshold. C : aggregated
MUA across all tetrodes, where the horizontal dashed and solid lines represent the mean and
mean+4 SD of the MUA, respectively. D : state space map inferred from the locomotion
period. E and F : snapshots of the ensemble spiking activity from 18 single units during
quiet wakefulness. G : reconstructed state trajectory for a replay event from panel F. Note
that in our replay detection approach, the virtual position can be “filled in” even in the
absence of spiking activity in some time bins.
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Fig. 10. A: comparison of decoding accuracy as a function of per centage of topographic
constraints, wheretheerror bar showsthe SD among 20 Monte Carlo trialswith random
sampling

The code with 0% topographic constraints implies a pure topological code, whereas the code
with 100% topographic constraints is essentially a pure topographic code. B : an idealized
curve between the order of average decoding error and the number of topographic
constraints varying from 0 to m. According to certain criterion, an optimal number 3 < m* <
mmay be identified to achieve a desirable tradeoff between the average decoding error and
the number of topographic constraints. C : decoding accuracy of topographic codes as a
function of sample size with strategies of uniform sampling and occupancy-based sampling.
D : decoding accuracy of topographic codes as a function of sample size with varying spatial
bin size. In panels C and D, horizontal lines represent the average decoding error from the
pure topological code given 15 cm bin size.
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Fig. 11. A: Examples of the derived state space map for the 1D linear track environment (m = 60,
R1 data set) with varying numbers of neurons (10%, 25%, 50%, 75% out of 74)

B : Examples of the derived topology graph for the 2D open field environment (m= 72, R7
data set) with varying numbers of neurons (10%, 25%, 50%, 75% out of 49). C:
Comparison of the mean and median decoding errors between the topological and
topographic codes in the same 2D environment with varying numbers of neurons. Error bar
was obtained from 10 random trials.
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Table 1
Summary of experimental data

Data set #All (used) units  Total (RUN) epoch  Environment
RI (rat A) 74 (30) 30.5 (4.7) min linear track (3.0 m)
R2 (mouse) 107 (51) 39.6 (4.0) min linear track (1.5 m)
R3 (rat B) 23 (20) 34.0 (0.9) min linear track (2.1 m)
R4 (rat B) 22 (18) 31.5(2.5) min linear track (2.1 m)
R5 (rat C) 39 (25) 16.0 (4.0) min T-maze (2.05 m)
R6 (rat D) 27 (27) 63.7 (13.2) min H-maze (5.3 m)
R7 (rat E) 49 (47) 24.3 (4.9) min open field

(radius ~0.5 m)
R8 (rat F) 37 (36) 22.9 (7.5) min open field

(radius ~0.5 m)
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