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Introduction
Modern vaccines based on recombinant antigens 
generally require adjuvant help to generate ade-
quate immune responses. Even live attenuated or 
inactivated vaccines contain intrinsic adjuvant 
structures [McKee et  al. 2007]. Thus, vaccines 
can be considered to consist of two principal 
components: antigen and adjuvant. In general, 
the mechanism of action of each of these two 
components is heavily investigated before a vac-
cine reaches licensing stage. For example, vaccine 
antigens are carefully screened based on bioinfor-
matic and experimental approaches for their abil-
ity to elicit protective immunity [Flower et  al. 
2010]. Likewise, specific receptors and immune 
signaling cascades are well known for immu-
nostimulators such as Toll-like receptor (TLR) 
agonists or C-type lectin receptor (CLR) agonists 
[Duthie et al. 2011]. While there may be less con-
sensus regarding mechanisms of action of partic-
ulate-based adjuvants such as aluminum salts and 
oil-in-water emulsions, even these adjuvants have 
been investigated at length to generate data on a 
range of potential biological mechanisms [Kool 
et  al. 2012; O’Hagan et  al. 2012]. However, a 
thorough analysis of the physicochemical interac-
tions between antigen and adjuvant, and the 

resulting optimization of those interactions, is too 
often lacking in the literature. The purpose of this 
review is to highlight the work that has been 
reported regarding antigen–adjuvant interactions 
and generate interest in the need for more investi-
gation in this area in order to optimize vaccine 
formulations for stability and bioactivity.

Adjuvants are often simplistically classified as 
immunostimulatory molecules (TLR ligands, CLR 
ligands, NOD-like receptor (NLR) ligands, sapo-
nins, etc.) or delivery systems (aluminum salts, 
emulsions, lipid vesicles, etc.). In reality, most adju-
vants are a combination of these two classes. For 
instance, aluminum salts and emulsions are not just 
delivery vehicles since they clearly generate adjuvant 
activity besides their potential antigen delivery func-
tions. Likewise, immunostimulatory molecules are 
rarely employed in isolation; in general, they are for-
mulated in some particle-based platform. The best 
illustration of this concept is perhaps the adjuvant 
AS04 in the Cervarix® vaccine, approved by the 
US Food and Drug Administration (FDA) in 2009, 
which is composed of aluminum oxyhydroxide and 
a TLR4 ligand (MPL®). Thus, the aluminum salt 
may serve as an adjuvant itself as well as a delivery 
vehicle for MPL® and/or the vaccine antigen.
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In this review, emphasis is placed on adjuvant  
formulations rather than unformulated immu-
nostimulatory molecules. While a few vaccines in 
development contain soluble unformulated immu-
nostimulatory molecules, little information is avail-
able regarding interactions of these adjuvants with 
the antigen. For instance, the most advanced vac-
cine candidate containing a soluble immunostimu-
latory molecule is Dynavax’s HEPLISAV, which 
has completed phase III clinical testing although an 
FDA committee decided in November 2012 that 
there was insufficient data to support the safety of 
the vaccine [FDA, 2012]. While HEPLISAV’s hep-
atitis B surface antigen forms small particles, the 
adjuvant itself (a CpG-based TLR9 ligand known 
as 1018 ISS) is apparently not formulated in any 
particle-based platform, which may explain why a 
relatively high dose of 3 mg is necessary, and no 
information is available regarding interactions 
between the antigen and adjuvant in HEPLISAV 
[Heyward, 2012; Sablan et al. 2012].

Most vaccines that contain immunostimulatory 
molecules employ some type of particle-based for-
mulation for the adjuvant molecule for stabiliza-
tion, delivery, or dose-sparing purposes. For 
example, using tetanus toxoid antigen, Diwan and 
colleagues demonstrated that 10-fold dose sparing 
of CpG adjuvant is feasible when the adjuvant is 
formulated in polymeric nanoparticles compared 
with soluble CpG [Diwan et al. 2004]. Thus, the 
complete formulation (comprising the immu-
nostimulatory molecule and the particulate plat-
form) becomes the entity of interest when 
investigating interactions with the antigen. In the 
following sections, we focus on the interactions of 
adjuvant formulations with vaccine antigens, 
beginning with the adjuvant most widely used in 
vaccines today and for the last century: aluminum 
salts. Owing to their ubiquity, there are multiple 
studies delineating the effect of antigen adsorption 
to aluminum salts, including the affinity of the 
adsorption interaction and corresponding effects 
on antigen structure and bioactivity. Emulsions 
and lipid vesicles will then be addressed, the latter 
forming one of the most versatile formulation plat-
forms since the antigen can be encapsulated in the 
vesicles or surface-conjugated. Finally, other for-
mulations falling outside of the above traditional 
platforms will be discussed.

Aluminum salts
Aluminum salt adjuvants are the most commonly 
used class of adjuvants and were the first class of 

adjuvants approved for use in human vaccines 
[Vogel and Powell, 1995]. The safety and efficacy 
of these adjuvants are well established; however, 
their adjuvanticity is not entirely understood. 
Potential mechanisms of action include serving  
as a depot for slow antigen release, enhancing  
the recruitment of and subsequent uptake by 
immune cells, or direct stimulation of the immune 
system [Gupta, 1998; Gupta et  al. 1995; Hem 
and Hogenesch, 2007; Noe et al. 2010]. Several 
detailed reviews on aluminum adjuvants have 
been written [De Souza Reboucas et  al. 2012; 
Kamerzell et al. 2011; Wilson-Welder et al. 2009]; 
here we will focus on the physical properties of 
antigen–adjuvant interactions.

Several types of aluminum salt adjuvants are 
approved for use, including aluminum oxyhydrox-
ide and aluminum phosphate, of which Alhydrogel® 
and Adju-Phos® are respective commercial exam-
ples [White and Hem, 2000]. At neutral pH, the 
difference in the physical properties of these two 
adjuvants is quite significant. Aluminum oxyhy-
droxide has a point of zero charge (PZC) at pH 11 
and aluminum phosphate has a PZC at pH 4–5.5  
[al-Shakhshir et  al. 1995; Seeber et  al. 1991]. 
Adsorption of antigen by adjuvant is thought to be 
important for immune response, so when selecting 
which aluminum salt to use, antigen and adjuvant 
charge is a critical consideration. Electrostatics are 
often a dominant force in antigen adsorption by 
adjuvant [al-Shakhshir et al. 1995]; however, hydro-
gen bonding, van der Waals forces, hydrophobic 
interactions, and ligand exchange have also been 
shown to play a role [al-Shakhshir et  al. 1995;  
Iyer et al. 2004; Peek et al. 2007]. A recent report 
describes the generation of functionalized alu-
minum oxide for covalent conjugation of small 
molecule haptens [Maquieira et  al. 2012]. 
Furthermore, pH, ionic strength, and buffer and 
excipient selection can have a significant effect  
on antigen adsorption and adjuvant degradation 
[al-Shakhshir et al. 1995; Peek et al. 2007; Salnikova 
et al. 2008].

Antigen adsorption isotherms are easily con-
structed, since aluminum salts are denser than 
aqueous solutions and can be removed by centrif-
ugation [Iyer et al. 2004]. The strength of adsorp-
tion of antigen by aluminum salts is antigen 
specific and can have a significant effect on immu-
nopotentiation; modulation of the strength of 
adsorption by aluminum oxyhydroxide can be 
achieved by pretreatment with phosphate salts 
[Hansen et al. 2011]. Antigen adsorption may not 
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always be important for immunogenicity, as has 
been demonstrated by Romero Mendez and col-
leagues [Romero Mendez et  al. 2007]. In this 
study, three model vaccines in which protein was 
not adsorbed by aluminum phosphate produced 
antibody titers that were similar to those produced 
by protein adsorbed by aluminum phosphate. 
Confocal microscopy results suggested that the 
antigens used in this study were trapped in the 
void spaces between adjuvant aggregates and that 
this facilitated uptake of the antigen by dendritic 
cells. In the case of AS04 with human papilloma 
virus antigens, the TLR4 agonist (and half the 
dose of aluminum) could be administered 1 hour, 
but not 24 hours, before administration of the 
antigens (with the other half dose of aluminum) 
and still elicit similar antibody response as con-
temporaneous administration [Didierlaurent et al. 
2009].

Proteins adsorbed by adjuvant are frequently less 
stable than in solution [Peek et al. 2007] and may 
be more susceptible to physical and chemical deg-
radation [Estey et  al. 2009; Vessely et  al. 2009]. 
Differences in pH at the adjuvant surface can 
have a significant effect on the rates of antigen 
degradation [Ljutic et al. 2012], and the pH of the 
microenvironment around aluminum oxyhydrox-
ide has been shown to be 2 pH units higher than 
the bulk [Wittayanukulluk et al. 2004]. One must 
perform a detailed study of the protein on adju-
vant and not rely solely on antigen solution stud-
ies. When selecting excipients, pH, buffers, and 
other storage conditions for antigen adsorbed by 
adjuvant, it is important to be able to evaluate the 
stability and integrity of the antigen. Peek and 
colleagues studied the effects of various excipients 
on the stability of protein in solution and adsorbed 
by adjuvant [Peek et al. 2007]. They found that 
many of the same excipients that stabilized a pro-
tein in solution also stabilized the protein on 
adjuvant; however, the adsorbed protein remained 
less stable than in solution.

Many of the spectroscopic techniques tradition-
ally used to assess antigens are not suitable or 
must be modified due to the turbidity of solutions 
containing aluminum salt. Intrinsic tryptophan 
fluorescence can be used to assess the tertiary 
structure of the antigen using a traditional fluo-
rometer and a cuvette designed for front-face fluo-
rescence. Attenuated total reflection Fourier 
transform infrared (ATR-FTIR) and Raman spec-
troscopies can be used to examine properties of 
the secondary structure of the antigen. Differential 

scanning calorimetry (DSC) can be used to deter-
mine the thermal stability of the antigen–adjuvant 
system, and isothermal titration calorimetry (ITC) 
can be used to more thoroughly characterize anti-
gen adsorption; however, cleaning the calorimeter 
after the experiment may be difficult. Ausar and 
colleagues describes a high-throughput screening 
(HTS) approach that uses a real-time polymerase 
chain reaction (RT-PCR) instrument and extrinsic 
fluorescence dyes such as SYPRO Orange to rap-
idly screen for stabilizers of protein adsorbed by 
adjuvant [Ausar et al. 2011]. To assess the chemi-
cal stability of the antigen, traditional approaches 
(high-performance liquid chromatography 
[HPLC], mass spectrometry, capillary isoelectric 
focusing) may be used if antigen can be desorbed 
and isolated from the aluminum salts. Several 
methods have been used to desorb protein from 
aluminum including incubation with succinate, 
urea, phosphate, or various surfactants [Estey 
et al. 2009; Katz, 1987; Rinella et al. 1998; Vessely 
et al. 2009]. Aluminum salt adjuvants have been 
imaged by scanning electron microscopy (SEM) 
and transmission electron microscopy (TEM) 
[Burrell et al. 2000; Harris et al. 2012; Lee et al. 
2009b]. A recent study describes an ultrasonica-
tion treatment of Alhydrogel® to generate finely 
dispersed crystals that can be negatively stained 
for visualization of protein on the surface (Figure 
1) [Harris et al. 2012].

Emulsions
Emulsion-based adjuvant systems have also been 
widely employed in vaccine development and for-
mulation. Several different classes of emulsions 
exist, such as oil-in-water (o/w) emulsions, water-
in-oil (w/o) emulsions, water-in-oil-in-water 
(w/o/w) emulsions and protein-stabilized emul-
sions. O/w emulsions are formulated as oil nano-
particles suspended via surfactant in an oil phase, 
and have been observed to be more stable in pro-
tein-containing formulations than w/o/w emul-
sions [Barnett et al. 1996]. The w/o emulsions are 
essentially the inverse of o/w emulsions and are 
gentle enough on proteins to maintain enzymatic 
activity of chymotrypsin in the aqueous droplet 
[Lee and Brody, 2005]. The w/o/w emulsions con-
tain water droplets within larger oil droplets, 
which are themselves suspended within a bulk 
aqueous solution. Whereas o/w emulsions are gen-
erally preferred for human applications, both w/o 
and w/o/w emulsions are widely used in veterinary 
vaccines containing attenuated or inactivated anti-
gens [Aucouturier et al. 2001]. Protein-stabilized 
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emulsions have been extensively characterized and 
are a class of o/w emulsions, however with proteins 
as the primary surfactant species. While protein-
stabilized emulsions are generally studied for food 
science applications, the knowledge gained is often 
relevant for other systems such as vaccines, and 
for this reason we cite several food science studies 
below. In each of these systems, hydrophobic and 
electrostatic forces govern antigen–adjuvant inter-
actions that result in important interprotein inter-
actions and adsorbed protein conformational 
shifts (Figure 2).

Within the context of protein-stabilized emulsions, 
hydrophobicity has been demonstrated to be the 
primary interaction mechanism [Junghans et  al. 
2010], in which emulsifying proteins can be easily 
denatured [Jutila et al. 2000] or displaced by non-
ionic surfactants such as polysorbates [Courthaudon 
et al. 1991; Dickinson and Gelin, 1992; Rampon 
et  al. 2003a, 2003b; Stevenson et  al. 1997] and 
sorbitan esters [Cornec et al. 1996], among others 
[Courthaudon et al. 1991]. This desorption tends 
to proceed as a gradual replacement of protein with 
surfactant [Rampon et al. 2003a] at the oil–water 
interface resulting from a change in protein binding 
exchange kinetics [Dickinson and Gelin, 1992] in a 

manner that appears to be a function of protein 
structure [Cornec et  al. 1996; Stevenson et  al. 
1997] and the timing of surfactant introduction 
[Courthaudon et al. 1991].

Electrostatic interactions pertain most signifi-
cantly to protein mixed with membranes gener-
ated with ionic surfactants [Chang et  al. 2008; 
Junghans et al. 2010] or ionic proteins [Chen and 
Dickinson, 1995a, 1995b, 1995c]. These interac-
tions are driven by charge differentials between 
components, and as such are highly impacted by 
formulation pH and ionic strength [Chang et al. 
2008; Chesko et al. 2005; Tokle and McClements, 
2011]. Emulsion particle size is another impor-
tant factor in protein–emulsion adsorption likely 
because the net surface area of an emulsion (with 
constant oil-phase and surfactant concentrations) 
increases when the particle size decreases, making 
more surface area available for protein adsorp-
tion. Depending on protein concentrations, pro-
tein monolayers or multilamellar protein shells 
can form around emulsions [Chang et al. 2008].

Another significant consideration regarding pro-
teins adsorbed to oils and emulsions is interpro-
tein interactions. The strongest of these interactions 

Figure 1. TEM images of Alhydrogel untreated (a), or ultrasonicated with a probe sonicator for 10 min (b)—(f). 
Panels (c)—(f) contain protein adsorbed to Alhydrogel and negatively stained with uranyl acetate. Keyhole 
limpet hemocyanin (c), respiratory syncytial virus nucleocapsid protein RSV n-RNA (d), anthrax protective 
antigen PA63 (e), and Escherichia coli outer membrane protein OmpF are shown. Scale bars indicate 100 nm. 
(Reproduced with permission from Harris et al. [2012]. Copyright © 2012 Elsevier.)
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is covalent aggregation via disulfide bridges, as has 
been observed in some o/w emulsions following 
formulation, perhaps due to oil-phase oxidation 
products or other low concentration reactive spe-
cies [Miles et  al. 2005]. Strong surface protein 
interactions between emulsions can result in floc-
culation events [Rampon et al. 2003a; Zhai et al. 
2011]; however, these can commonly be abated by 
increasing electrostatic repulsion [Zhai et  al. 
2011], or by adding cosolvents such as glycerol 
and sorbitol that increase aqueous phase viscosity 
(slowing particle velocity) and repulsive colloidal 
interactions between particles, in addition to alter-
ing the conformation of adsorbed proteins to 
avoid exposure of hydrophobic or cysteine resi-
dues [Chanasattru et  al. 2007]. Further, these 
interprotein interactions on a single surface can 
produce dense viscoelastic protein films [Zhai 
et al. 2011], potentially explaining why high pro-
tein concentrations can reduce overall formulation 
stability [Zhu et al. 2011].

Substantial shifts in protein secondary and ter-
tiary conformation have been observed following 
adsorption to emulsions and oils. Although some 
studies have claimed only minor changes in struc-
ture using atomic-level techniques such as elec-
tron paramagnetic resonance [Berzofsky et  al. 

1976], advanced spectroscopic methodologies 
that are sensitive to protein secondary and ter-
tiary structural rearrangements are required to 
fully understand these interaction systems. FTIR 
studies have captured changes in secondary struc-
ture for proteins adsorbed to emulsions [Jorgensen 
et  al. 2004]. Further, circular dichroism (CD) 
spectroscopy studies have detected a general 
decrease in β-sheet structure concurrent with an 
increase in α-helical content upon adsorption to 
oil and emulsions, which is lost during desorption 
[Lee et al. 2009a; Zhai et al. 2011, 2012]. Tertiary 
structural changes have also been observed via 
fluorescence spectroscopy such as blue shifts and 
increases in quantum yield that occur when pro-
teins are adsorbed to oils and emulsions, suggest-
ing that changes in tertiary structure result in 
shielding of tryptophan residues from solution 
[Castelain and Genot, 1994; Fox et  al. 2012; 
Husband et al. 2001; Jorgensen et al. 2004]. These 
structural rearrangements appear to be more 
resilient to thermal denaturation than nonad-
sorbed proteins [Zhai et al. 2011, 2012], poten-
tially due to α-helical conformation support 
imparted by the oil microenvironment. Moreover, 
the oil phase may have a considerable impact on 
adsorbed protein structure in comparison to 
native protein conformation, as oil polarity and 

Figure 2. Common protein interactions with emulsion systems. (A) Hydrophobic interactions with the oil phase 
resulting in α-helical transitions. (B) Electrostatic interactions binding charged surfaces of antigen and emulsion. 
(C) Protein—protein interactions resulting in flocculation between particles. (D) Protein—protein interactions on 
the surface of the emulsion, resulting in increased surface viscosity. Image courtesy of Alessandro Baliani © 2013. 
Adapted from Lucien Barnes’ original artwork.
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chain disorder can vary folding of adsorbed pro-
teins [Herrero et al. 2011; Stevenson et al. 1997; 
Venien et al. 2000; Zhai et al. 2011, 2012].

Given the multitude of potential interactions and 
conformational changes between protein antigens 
and emulsion formulations, it is perhaps surpris-
ing that in some cases these interactions, though 
detectable, do not appear to affect bioactivity 
[Fox et al. 2012; Ott et al. 1995]. Likewise, signifi-
cant association between antigen and emulsion 
does not appear to be critical for adjuvant effects. 
For example, Ott and colleagues showed that the 
o/w adjuvant emulsion MF59® does not detecta-
bly bind the herpes simplex virus (HSV) antigen 
gD2 but still generates high-titer antibodies to the 
antigen [Ott et al. 1995]. Similarly, the HSV anti-
gen gB2 could be made to bind to MF59 to some 
extent, but this did not improve the elicited 
immune response at the normal MF59 dose; 
interestingly, at a lower MF59 dose, the effect of 
bound gB2 on elicited antibody titers was signifi-
cant, indicating that a certain density of antigen/
emulsion droplet may provide boosted immune 
responses. A recent report of recombinant HIV 
protein, gp140, interactions with MF59 found lit-
tle or no association of the protein with the oil 
phase as indicated by sodium dodecyl sulfate pol-
yacrylamide gel electrophoresis (SDS-PAGE), 
and only minor changes in protein conformation 
after extraction from the adjuvant as determined 
by monoclonal antibody enzyme-linked immuno-
sorbent assays (ELISAs), whereas polymer-based 
formulations had more significant effects on pro-
tein conformation [Lai et al. 2012]. Finally, MF59 
could be administered 24 hours before the anti-
gen or 1 hour after the antigen and elicit the same 
antibody responses as jointly administered adju-
vant and antigen. In a similar study, the o/w adju-
vant emulsion AS03 could be injected 1 hour 
before the antigen and induce the same antibody 
response to an influenza antigen as contemporary 
administration with the antigen [Morel et  al. 
2011]. Further, even though a low level of asso-
ciation was detected between antigen and AS03, 
administration of premixed vaccine compared to 
administration with two syringes at the same time 
(one with adjuvant and one with antigen) did not 
alter the immune response.

Lipid vesicles
Lipid vesicles comprise a class of formulations 
that generally consist of some sort of lipid bilayer 
encapsulating an aqueous core. Liposomes, 

composed of phospholipids and cholesterol, are 
the most prominent example, with several lipo-
some-based drug delivery products in use as well 
as GlaxoSmithKline’s liposome-based adjuvant 
formulation, AS01, in malaria vaccine phase III 
clinical trials. However, virosomes (liposomes 
with embedded fusogenic viral proteins) are the 
more accomplished formulation in the vaccine 
adjuvant field, with two virosome-based vaccine 
products licensed in Europe (Inflexal® and 
Epaxal®). Niosomes are formed with nonionic 
surfactants instead of phospholipids and have also 
shown promise as vaccine adjuvant formulations.

The main advantage of lipid-vesicle-based sys-
tems is their versatility. A superb review by Watson 
and colleagues of liposome-based vaccine devel-
opment, with emphasis on formulation parame-
ters, was recently published [Watson et al. 2012]. 
Here, we focus only on the antigen association 
aspect of lipid vesicle adjuvants with emphasis on 
the most recent reports from the literature. As a 
general rule, it is thought that some form of asso-
ciation of the antigen with the liposome is desira-
ble, although this may substantially increase the 
complexity of manufacturing and maintaining 
stability [Haensler, 2010; Watson et al. 2012]. For 
example, GlaxoSmithKline’s liposomal system 
AS01 is apparently a simple mixture with the 
RTS,S malaria antigen, with no available infor-
mation regarding extent or mechanism of anti-
gen–adjuvant association. Indeed, Yanasarn and 
colleagues discovered that simple mixtures of ani-
onic antigens with negatively charged anionic 
liposomes produced equivalent immune responses 
to cationic liposomes (even though the cationic 
liposomes demonstrated a higher level of associa-
tion with the antigen), although this adjuvant 
activity depended on the anionic lipids employed 
[Yanasarn et al. 2011]. In contrast, developers of 
the CAF01 adjuvant formulation, comprising 
cationic lipid with the immunostimulatory mole-
cule trehalose dibehenate, have demonstrated 
that electrostatic association of antigen with adju-
vant is necessary for optimal adjuvant activity 
[Henriksen-Lacey et al. 2010].

Besides electrostatic association, antigens may be 
covalently bound or chelated to modified lipids or 
intercalated into the bilayer. For example, viro-
some adjuvant activity is best when the antigen of 
interest is associated with the virosome, either 
through encapsulation (for optimal T-cell 
responses) or anchored to the bilayer via hydro-
phobic protein domains or protein lipidation (for 
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optimal antibody responses) [Moser, 2011]. 
Antigen conjugation to a lipid vesicle surface can 
be accomplished by covalent or noncovalent 
attachment, with the conjugation method having 
a potential effect on the adjuvant activity. For 
instance, covalent attachment of antigen com-
pared with noncovalent attachment via metal 
chelation demonstrated improved adjuvant activ-
ity; furthermore, antigen attachment via trivalent 
metal chelation was not better than monovalent 
linkage despite the higher association affinity of 
the former [Watson et al. 2011]. New click chem-
istry methods have shown potential for more 
straightforward and/or controlled linking of anti-
gen to adjuvant nanoparticles [Mahon et  al. 
2012], but more studies are needed to evaluate 
their practical product potential for vaccine 
applications.

Another important but often overlooked consid-
eration is the antigen density per particle [Vorup-
Jensen, 2012; Watson et  al. 2012]. Appropriate 
antigen density on the surface of lipid vesicles and 
other nanoparticles may result in B-cell receptor 
cross-linking and enhanced immune responses 
[Little, 2012]. Moon and colleagues developed a 
novel multilamellar lipid vesicle delivery system 
(ICMV) with recombinant malaria antigen chem-
ically linked to the vesicle surface or encapsulated 
in the vesicle interior (Figure 3), resulting in sig-
nificantly enhanced antibody titers compared with 
encapsulated antigen; this lipid vesicle delivery 
system, in combination with TLR4 agonist, 
induced a balanced Th1/Th2 type response, 
broadened antibody specificity while increasing 

avidity, and caused expansion of helper T cells 
[Moon et al. 2012]. A well-controlled click chem-
istry technology was used by Elias and colleagues 
to show that an intermediate density of targeting 
proteins on a nanoparticle surface provided better 
cell binding compared with lower or higher densi-
ties [Elias et  al. 2012]. Antigen density in viro-
somes has also been shown to be an important 
factor for immunogenicity and protection 
[Homhuan et al. 2004].

Other adjuvant formulations
IC31 is a binary polyelectrolyte complex consisting 
of the TLR9-agonist oligodeoxynocleotide mixed 
with an excess of the antimicrobial peptide 
KLKL(5)KLK. For negatively charged antigens, 
adhesion is likely due to coulombic forces. At pH 
7.9, any unbound antigen Ag85B-ESAT-6 (pI 4.88) 
was not detectable by SDS-PAGE and Western 
blot in the supernatant after ultracentrifugation of 
the antigen–adjuvant complex for 1 hour at 
100,000g, and the Western blot of preformulated 
antigen to antigen that had been adsorbed and 
then desorbed from IC31 showed that the antigen 
was not significantly degraded by adsorption to the 
adjuvant [Agger et al. 2006]. However, to the best 
of the authors’ knowledge no characterization of 
bound antigen structure has been evaluated. 
Adsorption efficiencies and kinetics depend on the 
pH of the vaccine formulation, antigen pI, and 
antigen hydrophobicity. The extent of antigen 
adsorption and its adsorbed conformation are 
likely important physicochemical properties of the 
vaccine formulation. Indeed, association of the 

Figure 3. Interbilayer crosslinked multilamellar vesicles (ICMVs) enhance immune responses by presenting 
surface-linked malaria antigen along with TLR4 agonist to antigen-presenting cells (right), mimicking the 
malaria sporozoite structure (left). (Reproduced with permission from Little [2012]). 
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antigen with the adjuvant may be necessary for 
uptake by dendritic cells [Aichinger et al. 2011].

Chitosan nanoparticles, another polyelectrolyte 
formulation, can be formulated to have either a 
positive or negative surface charge. The surface 
charge, buffer type, pH, and antigen, all deter-
mine the type and strength of interaction, as well 
as reactogenicity in vitro and in vivo. A complex 
of chitosan and dextran sulfate can be formu-
lated to be cationic (excess chitosan) or anionic 
(excess dextran sulfate). The capsid protein from 
HIV-1, p24, bound to both positively and nega-
tively charged particles regardless of pH [Drogoz 
et  al. 2008]. Complexes with excess chitosan 
bound p24 more efficiently than complexes with 
excess dextran sulfate. Furthermore, acetic acid 
and ammonium phosphate buffer disrupted 
adhesion, suggesting that hydrogen bonding is 
involved in the immobilization process [Drogoz 
et al. 2008; Schatz et al. 2003]. Adsorption and 
desorption kinetics depend strongly on the excess 
electrolyte in the complex. Particles with excess 
dextran sulfate in a pH 6.2 solution had very 
rapid sorption kinetics, reaching equilibrium 
after only 15 hours. Below the isoelectric point of 
p24, adsorption efficiency was low and reached 
equilibrium at 35% binding after 24 hours on the 
same chitosan particles [Drogoz et  al. 2008]. 
Drogoz and colleagues found sorption capacity 
to be above that predicted by a monolayer model 
as a function of solid content suggesting absorp-
tion into the particle under certain conditions. 
Thus, the immobilization process is not only 
directed by the charge of the protein and polye-
lectrolyte particle, but also by protein/particle 
ratio and the protein partition coefficient between 
the solution and the colloid. Another report 
investigating an analogous protein–polymer 
interaction concluded that proteins may over-
come overall charge repulsion through more spe-
cific interactions of polymer with oppositely 
charge protein patches, which releases counter 
ions and increases system entropy [Rosenfeldt 
et al. 2004].

There are a variety of other polymer particles 
in development as putative vaccine antigen 
delivery systems. Suitable polymers include poly 
(ε-caprolactone), poly(ethylenimine), poly(γ-
glutamic acid), poly(D,L-lactic acid), poly(methyl 
methacrylate), and poly(uridylic acid), in addition 
to the chitosan polymer described above [Ferreira 
et al. 2012]. Polymer particles can be formulated 
with a variety of immunostimulatory molecules 

and have been explored in the context of various 
diseases and both parenteral and mucosal delivery 
routes [Davis, 2006; Kirby et  al. 2008; Murillo 
et al. 2002; Roman et al. 2008]. As with chitosan 
and IC31 particles, the charge differential between 
the antigen and polymer particle is one of the pri-
mary drivers of adsorption; as such adsorption is 
highly impacted by formulation pH and ionic 
strength [Chesko et al. 2008]. The optimal condi-
tion for electrostatic binding is the pH at which 
surface charge differentials are greatest, although 
non-Coulombic forces can overcome even charge 
repulsion [Chesko et  al. 2005, 2008]. Thus, 
adsorption depends on the surface pI and hydro-
phobicity of the protein, the formulation PZC and 
surface chemistry, and the pH and ionic strength 
of the solution [Chesko et al. 2008]. Investigations 
into polymeric particle development with protein 
have yielded a variety of methods for modulating 
important properties such as protein adsorption, 
size, release rate, and encapsulation efficiency 
[Blanco and Alonso, 1997; Ho et al. 2008; Jiang 
and Schwendeman, 2001; Yang et  al. 2000]. A 
recent report by Dey and colleagues employed 
dynamic light scattering and surface plasmon res-
onance (SPR) to show that a recombinant HIV 
glycoprotein, gp140, bound to polyanionic poly-
mer at low pH and slowly disassociated when the 
pH was raised to 7.4; SDS-PAGE, monoclonal 
antibody ELISA, and SPR assays confirmed that 
the protein was stable for several hours at low pH 
in the presence of the polymer, although some 
conformational changes were apparent due to 
reduced antibody binding [Dey et  al. 2012]. 
Interestingly, a complex emulsion–polymer com-
bination adjuvant enhanced antibody responses to 
gp140 more than either formulation alone [Dey 
et al. 2012; Lai et al. 2012].

Immune stimulating complexes (ISCOMs) are a 
class of vaccine adjuvant formulations developed in 
the mid-1980s [Morein et  al. 1984]. These adju-
vants consist of mixtures of saponin, cholesterol, 
and phospholipids in specific stoichiometric ratios. 
Antigen is either formulated into the ISCOM with-
out chemical modification [Homhuan et al. 2004], 
or by covalent modification via conjugation to phos-
pholipid or fatty acid, then formulated into the 
ISCOM [Pedersen et al. 2012; Reid, 1992]. Because 
ISCOM particles have a negative surface charge 
[Kersten et  al. 1991; Pedersen et  al. 2012] as do 
many soluble proteins, strong adhesion of most  
soluble proteins is not observed. Attempts to 
improve adhesion of soluble proteins by treating 
with extreme pH conditions (pH 2.5) and high lipid 
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concentration increased recovery to 14% [Morein 
et al. 1990]. Based on the more efficient incorpora-
tion of amphipathic antigens such as envelope pro-
teins [Morein et al. 1984], and the need for lipids for 
incorporation of antigen [Lovgren and Morein, 
1988], the major mechanism of association between 
the ISCOM and antigen is likely hydrophobic in 
nature. Small-angle X-ray scattering spectroscopy 
(SAXS) and modeling by Monte Carlo integration 
suggest that lipid-modified antigen is incorporated 
into the ISCOM inside of the cage-like structure 
rather than on the external surface (Figure 4) 
[Pedersen et  al. 2012]. Furthermore, this study 

showed that ISCOMs likely consist of three parti-
cles with different geometry: an icosahedral struc-
ture with a mean diameter of 28.8 nm accounting 
for 10% of the mixture, a tennis ball structure (12 
pentagonal and eight hexagonal openings) with a 
mean diameter of 38.1 nm accounting for 76% of 
the mixture, and a football (soccer ball) structure 
with a mean diameter of 48.6 nm accounting for 
11% of the mixture. Based on modeling of the 
SAXS data, the smaller structures contain only one 
antigen molecule per particle; the larger structure 
contains two antigen molecules per particle. 
Positioning of the antigen is likely an important 

Figure 4. Immune stimulating complex (ISCOM) model structures with antigen positions (blue) from small 
angle x-ray scattering data (SAXS). (A) Icosahedral structure with a single associated antigen molecule. (B) 
‘Tennis ball’ structure with a single associated antigen molecule. (C) ‘Football’ structure with two associated 
antigen molecules. (D) Experimental SAXS data of ISCOM with loaded antigen. The dashed line is the 
nonsmeared fit of the data. The solid line is the actual fit of the data with instrumental smearing; modeling by 
Monte Carlo integration. (E) Schematic of the ‘tennis ball’ model structure showing the orientation of the 12 
pentagonal and 8 hexagonal openings. The other structures have only hexagonal openings. (Reproduced with 
permission from Pedersen et al. [2012]. Copyright © 2012 Elsevier.)
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factor in the nature, strength, and duration of the 
immune response to the vaccine.

Conclusion
There is much to be learned regarding how anti-
gens and adjuvant formulations interact. In many 
cases, it appears that antigen–adjuvant association 
behavior could be further characterized and sub-
sequently optimized for maximum vaccine stabil-
ity and biological activity. On the other hand, in 
some cases, direct antigen–adjuvant association 
may not be necessary or even desirable. For exam-
ple, adjuvant stockpiling in preparation for an 
influenza pandemic favors separate vialing of 
adjuvant and antigen since the dose and strain of 
the latter is not knowable until the pandemic 
arrives. However, even in this case, a thorough 
understanding of antigen–adjuvant interactions is 
essential to ensure stability after mixing and to 
prevent unforeseen interaction effects from 
decreasing vaccine efficacy. Just as regulatory bod-
ies only approve adjuvants in the context of a vac-
cine product and not by themselves, vaccine 
developers must also consider vaccines containing 
adjuvants as a unit with integral interactions and 
associations, and perform the requisite characteri-
zation studies to understand each antigen–adju-
vant combination.
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