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Abstract

Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as
modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in
synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their
essential characteristics. However, the interactions that a network module has with downstream elements change the
dynamical equations describing the upstream module and thus may change the dynamic and static properties of the
upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene
transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the
simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and
skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate
bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could
tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and
show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load.
Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the
physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological
systems. This analysis is particularly important when scaling synthetic networks to more complex organisms.

Citation: Lyons SM, Xu W, Medford J, Prasad A (2014) Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems. PLoS Comput Biol 10(3):
e1003533. doi:10.1371/journal.pcbi.1003533

Editor: Mark S. Alber, University of Notre Dame, United States of America

Received July 3, 2013; Accepted January 29, 2014; Published March 27, 2014

Copyright: � 2014 Lyons et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially supported by an NSF CAREER Grant: The Landscape of Differentiation, Award No. 1151454 (SML and AP) and a DOE ARPAE
grant DE-AR0000311 (WX, JM and AP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ashokp@engr.colostate.edu

. These authors contributed equally to this work.

Introduction

A longstanding question about signal transduction and gene

transcription networks is how modular are they. Here modularity

means relative insulation of small subgraphs or motifs of the main

network from each other [1]. This question is especially relevant

for synthetic biology that aims to build artificial circuits from the

bottom up [2]. It is also relevant for molecular biologists that aim

to arrive at a quantitative understanding of a cellular decision, by,

for example, isolating a crucial network module [3].

For synthetic biologists the challenge is now to move from

simple network motifs such as pulse generators [4], genetic

switches [5–8], logic gates [9,10], and oscillators [11–13] to more

complicated networks combining multiple motifs and networks in

more complex organisms. Novel applications currently being

explored include plant biosensors [14], hazardous waste remedi-

ation [15], clean fuel technology [16], and numerous medical

applications [17–20]. Synthetic biologists hope to utilize biological

modules in a manner similar to electrical circuit board compo-

nents – plugging them together to attain a specific, and novel,

function [21]. At the core of the concept of either breaking down

complex biological systems into small modules, or even building

complex systems from modules, is the belief that these modules will

behave predictably in isolation and in connection. Recent

theoretical and experimental work however [22–25] suggests that

the functioning of modules may not be independent of the

downstream components that they are connected to. Adding an

additional binding reaction to the output of a gene regulatory

network (or loading the network) may decrease system bandwidth

[24] and substrate sequestration in covalent modification cycles

may result in signaling delay [26]. In vitro studies find that there is

significant load-induced modulation of the upstream module in an

enzymatic signal transduction cascades [24]. Theoretical analysis

has also shown that a load can change the fundamental properties

of an oscillating circuit [27]. Thus understanding the effects of

adding a load to the output of these technologically important

network modules is required for a thorough understanding of the

challenges of scaling up synthetic networks to higher levels of

complexity.

Loads could also have noteworthy unrecognized effects in

natural systems. In fact all natural systems have loads in some ways

or the other. Motifs in signal transduction networks are connected

directly to a transcriptional response, or to downstream proteins

that may function as transcription factors or go on to activate tran-

scription factors. Motifs in gene transcription networks have tran-

scriptional outputs with protein domains that bind nonspecifically
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and specifically to binding sites on the DNA, apart from inter-

acting with other transcription factors.

Circuits that function as switches play an important role in all

biological signaling and gene transcription networks because they

encode decisions. This change of state can be brought about by an

external signal, or an internal accumulation of a protein, which

can drive the system to a different steady state. Examples are the

regulatory circuits for the cell cycle in yeast [28], mitogen-acti-

vated protein kinase cascades in animal cells [29–31], and the lysis-

lysogeny switch in the l phage [32]. Since many small circuits can

show this kind of behavior, switches are among the earliest and

most well studied of protein interaction circuits [33]. The genetic

toggle switch, which was one of the first two synthetic circuits

constructed, is a well-known synthetic example [5]. Given the

ubiquity and importance of switch-like motifs, it is important to

understand how their function could be affected by binding down-

stream partners.

These reasons prompted our theoretical study of the behavior of

a simple genetic toggle switch [5], a toggle switch with positive

feedback as well as a common positive-feedback based switch

involving Ras activation in lymphocytes [29,30] under a load on

either one or both of its outputs. These circuits are shown in Fig. 1

and described below. The simple toggle switch is a widely studied

and emulated synthetic network motif based on the mutual

repression of two repressor proteins. However, naturally occurring

toggle switches are often found connected to an additional positive

autoregulatory component. For example in the competence system

in B. subtilis, ComK represses the production of Rok and Rok

represses the production of ComK; however ComK also has a

strong positive feedback upon its own production [34]. Another

example is found in the apoptosis network of many multicellular

organisms, including mammals. Within the pathway controlling

intrinsic apoptosis is a set of genes with double-negative repression,

Casp3 and XIAP, again accompanied by positive autoregulation

of Casp3 [35].

The Ras protein is a G-protein found on mammalian cellular

membranes that is important in many cellular processes and is

an upstream activator of the MAPK pathway. Ras goes from a

GDP-bound inactive form to a GTP-bound active form, often in a

digital manner [30], and previous studies in lymphocytes have

shown that RasGDP is activated to RasGTP via a bistable switch

that arises from a positive feedback loop on its own activation via

SOS (Son of Sevenless) [30]. However the Ras switch very

naturally has an associated load, since to transduce the cellular

signals down along the MAPK/ERK pathway, RasGTP naturally

binds to Raf kinase. Thus the Ras switch system contains all the

elements we need to study the effects of adding loads to a bistable

switch which is based on a positive feedback loop.

Methods

Genetic toggle switch
The basic genetic toggle switch consists of two mutually repress-

ing genes as shown in Fig. 1 along with an additional system to

toggle the states. As shown in previous studies, with the right

combination of parameters, the toggle switch will stay in one of

two stable states, each characterized by a high concentration of

one of the repressor proteins, and strong repression of the other.

The toggle switch can now be induced to switch states using two

possible strategies for inducing a transition: decrease the level of

highly expressed protein [5,36] or increase the expression of one of

the repressed proteins (Fig. 1) using an additional inducible system

[36]. For a model which utilizes the latter protocol we obtain a

system of four differential equations [36] after including a load.

The load may be a protein, a small molecule or a binding site on

DNA such that the bound complex prevents the repressor from

binding to and repressing its conjugate promoter. In order to make

the simplest and the most general model, we have assumed here

that the repressors reversibly bind the load only in one copy. We

assume that the total load L1T is a constant, L1 is the free load and

conservation gives us the bound load as L1T2L1.

du

dt
~a1z

b1
’

1zvn
{u{kon1

’ L1T½ �u‘1zkoff 1
’ L1T½ � 1{‘1ð Þ ð1Þ

dv

dt
~a2z

b2
’

1zun
{v{kon2

’ L2T½ �v‘2zkoff 2
’ L2T½ � 1{‘2ð Þ ð2Þ

d‘1

dt
~{kon1

’k1u‘1zkoff 1
’k1 1{‘1ð Þ ð3Þ

d‘2

dt
~{kon2

’k2v‘2zkoff 2
’k2 1{‘2ð Þ ð4Þ

These four equations are presented in de-dimensionalized form,

with u,v,‘1,‘2 representing the dimensionless concentrations of

Repressor 1, Repressor 2, Load1 and Load2 respectively and t the

de-dimensionalized time. The basal parameter values that we use

are as follows: a1 =a2 = 0.2; b19 =b29 = 4; n = 3; kon19 = kon29 = 0.5;

koff19 = koff29 = 0.5; k1 = k2 = 1; [L1T] and [L2T] are variable. Note

that Equations (1) and (2) without the last two terms incorporating

the load are the standard equations for analyzing the toggle switch

that have been widely used in both empirical and theoretical work

[5,36]. These equations are discussed in more detail in Supple-

mentary Text S1 Section 1.1. The derivation of this model follows

that of Kobayashi et al [33]. All parameters excluding load binding

rates were sourced from Kobayashi et al [36]; extensive parameter

Author Summary

Cells rely on complex networks of protein-protein interac-
tions in order to carry out life functions. Scientists believe
that these networks are organized in a modular fashion;
that is they are made up of functionally distinct parts like
an electronic circuit. Modularity implies that just as we put
together electronic parts to make an amplifier that we can
use in many different circuits, we can put together
biochemical reactions to make an amplifier, or a switch
or an oscillator, which perform the same function in
different organisms. This assumption is important in
synthetic biology, where we engineer and assemble
synthetic genetic circuits in living organisms in a modular
fashion. We show that for important modules like genetic
and signaling switches, the assumption of modularity has a
crucial limitation. We show that if one simply connects a
biological switch to another downstream circuit, the
presence of the connection changes the operation of the
switch, which in some cases may stop behaving like a
switch. Our work underscores the importance of taking
into account these downstream connections and suggests
that natural systems may be balancing some of these
components in order to ensure that despite diversity,
modules continue to work in different systems with
fidelity.

Loads Bias Biological Switches
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sensitivity of the load binding rates was performed and are discussed

in the Supplementary Text S1 section 1.4 and Figs. S1, S2, Table S1

and Figs. S15 and S16. The effect of a load arises from the binding

competition between the promoter where the repressor binds and

the load. This competition is not directly incorporated into the Hill

function, since the binding step with the promoter is not explicitly

modeled and is treated in an effective way. In reality however the

concentration of the promoter is so small compared to that of the

load, that the use of Hill functions is justifiable [37]. There are

possibly exceptional cases such as a high copy number of plasmids

compared to load concentrations where this assumption does not

apply. Note that the Hill function is an effective phenomenological

equation describing gene transcription and protein production, and

standard Law of Mass Action (LMA) methods to derive the Hill

functional form may not apply for many transcription factors that

nevertheless show Hill kinetics [38]. Thus it is preferable to use Hill

function forms for this analysis.

To calculate transition times, we first start the system in one

state, say high Repressor 1. After the system has reached steady-

state, we add a constant concentration of the inducer and measure

the time taken for Repressor 2 to go from 10% of its maximum

value to 90% of its maximum value. This is the ‘‘rise time’’.

Similarly the ‘‘decay time’’ is the time taken for Repressor 1 to go

from 90% of its maximum value to 10% of its maximum value.

The level of the inducer remains fixed.

In practice the inducer may decay and the transition would

depend upon there being inducer present for a sufficiently long

time to induce transition. In such cases the amount of inducer

required may be of interest. When the inducer is applied as a bolus

with a first order decay rate, it appears as an exponentially

decaying pulse. We thus included a fifth differential equation

governing the amount of Inducer.

dI1

dt
~{dI I1 ð5Þ

Here dI is the ratio of the inducer degradation constant to the

repressor degradation constant. We used Eq. 5 only when

estimating the amount of inducer required to switch states for

different loads and different decay rates of the load (Supplemen-

tary Text S1 section 1.4 and Supplementary Tables S3, S4).

A genetic toggle switch can be induced to change states by the

alternative method of repressing the highly expressed repressor,

and in fact the original toggle switch used this form of induction

[5,33]. We repeated our calculations for the basic model for the

case of alternative induction, but found no qualitative differences.

The alternative induction model along with the equations is

detailed in the Supplementary Text S1 section 1.4.

Equations 1–4 assume that the load itself stays in steady state

during the switching of the toggle between one state and another.

However in reality if the load is another protein, it is also

synthetized and degraded by the cell, and therefore its level could

be dynamic. We also simulated this situation by incorporating a

Figure 1. Schematic diagram of the circuits studied in this paper. (A). The basic toggle switch is the network shown without the dotted line.
Repressor 1 represses the production of Repressor 2 and vice versa. The dotted line denotes a positive feedback motif found in some natural circuits.
(B). A cartoon of part of the MAPK activation pathway in T lymphocytes, adapted from [29], showing the role of Ras activation. Signals from peptide-
MHC complexes are received at the TCR and lead to phosphorylation of the cytoplasmic chains of the TCR by the Src kinase, Lck. This recruits the
kinase ZAP70 which trans-autoactivates and phosphorylates a scaffold called LAT, which recruits Grb2 and SOS to the plasma membrane. SOS
activates Ras as as shown. (C) A simplified model of the Ras switch. RasGDP transforms into RasGTP via the enzyme SOS. However the catalytic rate of
SOS increases when bound to RasGTP. This sets up an autocatalytic positive feedback. RasGTP is deactivated by enzymes called RasGAP’s (among
others).
doi:10.1371/journal.pcbi.1003533.g001
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synthesis and a degradation rate for each load. This resulted in

Equations 3 and 4 being replaced by:

d‘1

dt
~{kon1

’k1
kb2

kd2
u‘1zkoff 1

’k1
kb1

kd1
c1ð Þz

kd1

d
{

kd1

d
‘1 ð6Þ

d‘2

dt
~{kon2

’k2
kb2

kd2
v‘2zkoff 2

’k2
kb2

kd2
c2ð Þz

kd2

d
{

kd2

d
‘2 ð7Þ

Here c1 is the load-repressor complex and kb1 and kd1 are the

synthesis and degradation rates respectively for Repressor 1, and

correspondingly for Repressor 2. The parameters are defined in

the Supplementary Text S1, section 1.5. Since the total load is no

longer conserved, we need to include additional equations for the

load repressor complex.

dc1

dt
~kon1

’k1u‘1{koff 1
’k1c1 ð8Þ

dc2

dt
~kon2

’k2u‘2{koff 2
’k2c2 ð9Þ

Our model assumes that when the repressor protein is bound to

the load, it is protected from degradation. However it is also

possible that even when the protein is bound to the load, it can still

degrade. To check the impact of removing the protection

assumption, we also consider an additional model where the

repressor can still degrade with the same rate constant when

bound to the load. The equations for that model are slightly

modified versions of the equation above, and are presented in

detail in the Supplementary Text S1, section 3.2.

We conducted parameter sensitivity analysis on models utilizing

both forms of induction; these did not show any qualitative change

on wide variation of key parameters (Tables S1, S2, S3, S4 and

Supplementary Text S1).

Toggle with positive feedback
A positive feedback was added to the R1 side of the toggle

switch as an inducible promoter with a Hill coefficient of 1. We

assumed that the positive feedback acted on the same promoter as

the repression, resulting in a composite term for production of R1

from promoter 1 where r is the strength of positive feedback.

dR1

dt
~a1z

rR1zb1

1zR1=k5zR
n2
2 =k

n2
2

{d1R1 ð10Þ

The derivation of this equation can be found in the

Supplementary Text S1, section 1.6.1. As before, a1 is the leaky

production of R1 while a1+b1 represents the activity of the

promoter in the absence of repression or positive feedback. We

chose k2 and k5 = 1, d1 = 0.2, and for the figures in the main paper

we chose r= 3.5. We address other values of the positive feedback

in Fig. S6 and the Supplementary Text S1, section 1.6.2.

Stochastic simulations
We perform stochastic simulations and histogram the concen-

trations of the repressor proteins to construct their probability

distribution. The quasi-potential of the toggle is given by the

negative logarithm of this probability distribution [39]. In order to

construct the probability distribution we make use of the

phenomenon of noise-induced switching. Recent theoretical work

has shown that multiplicative noises due to stochastic fluctuations

can induce switching [40–42]. Experimental results demonstrate

bimodal populations that correspond with theoretic predictions

arising from noise-induced switching [41].

Stochastic simulations were carried out using a modified Gillespie

algorithm using the standard rate expressions for every reaction

(Table S5). We chose a reaction volume that would correspond to a

small number of molecules in the system. Stochastic fluctuations

then drive the system to transition between states rapidly, allowing

us to collect sufficient data points. In order to make sure that the

system was not being biased by the small volume, we also repeated

the calculations for a five times larger volume (and hence molecule

number) and found qualitatively similar results (Fig. S4).

For the positive feedback toggle switch the same equations were

used except for the repressible production of Repressor 1, where

we used instead the rate expression given by the right hand side of

Eq. 10 in the Monte Carlo simulations.

Ras-kinase system
For our study we adapted the minimal model of the Ras switch

proposed by Das et. al. [30] with the addition of a reversibly

binding load in the form of the Raf protein (Fig. 1C). The model

contains three proteins, Ras, which exists as RasGDP or RasGTP,

SOS, the guanine exchange factor (GEF) that catalyzes the

transformation from RasGDP to RasGTP and a GTPase,

RasGAP. SOS on its own has very low GEF activities. However,

the activity of the GEF pocket is strongly influenced by the binding

state of an allosteric pocket in Cdc25 domain [29,30]. When the

allosteric pocket is bound by RasGDP, the GEF activity is

increased by 5 times. If the allosteric pocket is bound by RasGTP,

its GEF activity is increased by 75 times. In this way, RasGTP can

upregulate its own production rate by binding to SOS, thus

constituting a positive feedback loop. RasGTP is deactivated by

GTPase’s such as RasGAPs that are constitutively present.

After Raf binds RasGTP, the complex catalyzes the phosphor-

ylation of Raf leading to a phosphorylation cascade. For this study

we ignore Raf activation and only consider the effects of Raf as a

binding partner for RasGTP. The Das paper [30] also models the

systems using Michaelis-Menten (MM) forms for the actions of the

enzymes which is quite standard for modeling systems of enzymatic

reactions. However since in this model the load competes not with a

promoter, as in the toggle switch, but with another protein, it is

possible that the quasi-steady state assumption of the MM form

could be introducing some inaccuracies in the results. To account

for this possibility we wrote the entire model using the Law of Mass

Action. We separately simulated the model using the MM func-

tional forms (Supplementary Text S1 section 2 and Figs. S7 and S9).

The equations for the MM forms are listed and discussed in detail in

the Supplementary Text S1. The reactions and rate constants for

this model are listed in Table S6 and Table S7.

We use the following notations for the species involved in the

system:

x1: SOScat½ �; x2: RasGDP½ �; x3: RasGTP½ �;

x4: SOScat RasGDPð Þ½ �; x5: SOScat RasGTPð Þ½ �;

x6: SOScat RasGDPð Þ : RasGDP½ �;

x7: SOScat RasGTPð Þ : RasGDP½ �; x8: RasGAP½ �;

x9: RasGAP : RasGTP½ �; x10: Raf½ �; x11: RasGTP : Raf½ �

Loads Bias Biological Switches
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dx1

dt
~{kon1x1x2zkoff 1x4{kon2x1x3zkoff 2x5 ð11Þ

dx2

dt
~{kon1x1x2zkoff 1x4{kon3x2x5zkoff 3x7

{kon4x2x4zkoff 4x6zkcat5x9

ð12Þ

dx3

dt
~{kon2x1x3zkoff 2x5zkcat3x7zkcat4x6

{kon5x3x8zkoff 5x9{kon6x3x10zkoff 6x11

ð13Þ

dx4

dt
~kon1x1x2{koff 1x4{kon4x2x4zkoff 4x6zkcat4x6 ð14Þ

dx5

dt
~kon2x1x3{koff 2x5{kon3x2x5zkoff 3x7zkcat3x7 ð15Þ

dx6

dt
~kon4x2x4{koff 4x6{kcat4x6 ð16Þ

dx7

dt
~kon3x2x5{koff 3x7{kcat3x7 ð17Þ

dx8

dt
~{kon5x3x8zkoff 5x9zkcat5x9 ð18Þ

dx9

dt
~kon5x3x8{koff 5x9{kcat5x9 ð19Þ

dx10

dt
~{kon6x3x10zkoff 6x11 ð20Þ

dx11

dt
~kon6x3x10{koff 6x11 ð21Þ

Moreover, four of the basic protein species along with the

complexes they participate in have associated conservation laws.

These are as follows:

SOST~x1zx4zx5zx6zx7 ð22Þ

RasT~x2zx3zx4zx5z2x6z2x7zx9zx11 ð23Þ

GAPT~x8zx9 ð24Þ

RafT~x10zx11 ð25Þ

In the Ras model too we implicitly assume that when RasGTP

is bound to Raf, it is protected from de-activation by a RasGAP.

We also study the effects of relaxing this assumption on both the

LMA and the PSSA models. The modifications to the original

model are detailed in the Supplementary Text S1 section 3.3.1.

We used XPPaut to perform a bifurcation analysis of the Ras

switch with changing levels of SOS, with and without a load. The

quasi-potential landscape does not provide useful insights into load

induced modulation of the Ras switch and hence the probability

distributions are not reported.

Results

The bistability properties of the toggle switch do not
change unless the repressor can degrade when bound to
the load

The presence of a binding partner for either Repressor 1 or

Repressor 2 (which we refer to thereafter as the load) introduces

new terms in the differential equations describing the toggle

switch, i.e. the last two terms in Eq. 1 and in Eq. 2, as well as two

new equations, Eq. 3 and 4, in the dynamical system. However it

can be easily seen that in steady state Eq. 3 and 4 are also

independently set to zero, and therefore do not affect the

bifurcation properties of the switch. Even in the case of a dynamic

load, since Eq. S13 and S14 are set to zero to ensure the load-

repressor complex is in steady state, the additional terms in Eq. S9

and S10 are also zero. Thus the load makes no difference to either

the bistability of the switch or to the parameter values where the

bistability is seen.

The exception is when the repressor molecule can degrade even

when bound to the load, which may be relevant in some

experimental situations. As Fig. 2A shows, when a load is added

symmetrically to both sides of the toggle switch, the two stable

states approach each other and eventually annihilate, leaving a

monostable system. Fig. 2B shows that when a load is added only

to one side, the system again goes from bistable to monostable at

some critical value of the load. In effect, the upper stable point

vanishes and is no longer accessible due to leakage of the repressor

affected by the load.

The reason for the change in steady state behavior is made clear

on examining the equations of the system. Here we need to

incorporate additional reactions that represent the decay of the

repressor-load complex into the load alone. This leads to an

additional term in the equation for the load and the repressor-load

complex (Eq. S44 and S45). However this term does not appear in

the equation for the repressors, which continue to be governed by

Eq. 1 and Eq. 2. As a consequence in the steady state, the

additional terms in Eq. 1 and 2 no longer equal zero and the

steady state properties of the switch are influenced by the presence

of the load.

As can be seen from an examination of the chemical reaction

system, this mechanism of abrogation of bistability arises whenever

the load-repressor complex participates in a non-reversible (from

the repressor’s point of view) chemical process that leads to an

unbalanced leakage of the repressor from its function as a

repressor by the presence of the load. A more interesting example

of such a process could be provided by a chemical reaction system

where the load is an enzyme for one of the repressor molecules,

which is transformed by the enzymatic action into a protein no

longer capable of repression. The mathematical analysis of this

case is exactly the same as the model we are currently discussing

hence we do not consider it separately here.

However a load can significantly change the dynamic response

of the basic genetic toggle switch as we shall see below. We exam-

ined two different measures of dynamic response, response time

Loads Bias Biological Switches
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for state switching and the amount of inducer required for state

switching.

The response time for state switching of the toggle
switch increases

We measured two response times, the rise time which quantifies

the time taken for the concentration of Repressor 2 to increase

from its low or zero level in state 1 to its high level in state 2, and

the decay time which measures the time taken for Repressor 1 to

decay from its high level in state 1 to its low level in state 2, in both

cases in response to a constant inducer. Specifically the rise time

measured the time to go from 10% to 90% of the steady state

maximum, while the decay time measured the time to go from

90% to 10% of the steady state maximum. These measurements

were made using the deterministic model in the cases when the

load was applied only to one side and to both sides of the switch.

We found that both the rise time and the decay time increase

with increasing load concentration. Interestingly, this relationship

was approximately linear in all cases (Fig. 3A & B). The slope of

the linear relationship represents the increase in response time due

to unit increase in load. We found that the slope of the line was

larger when the load was applied to the opposite side of the system

before the switching rather than the same side (Fig. 3A), indicating

that it is harder to switch out of a state without a load to a state

with a load than the reverse. However when a load was applied to

both sides, the slope of the linear fit was higher than when the load

Figure 2. Bifurcation diagram of the genetic toggle switch when the repressor can decay from the load-repressor complex. The thick
lines are stable steady states, the dashed lines are unstable steady states. (A). A load is added symmetrically to both sides of the toggle. The stable
states of only one Repressor molecule with respect to the load are shown. With zero load the toggle switch is bistable with well separated steady
states. As the load increases, the two stable states approach each other and the unstable state, and eventually merge in a bifurcation at a critical
value of the load. The system is monostable beyond this critical value. (B) A load is added only to Repressor 1. The high state of Repressor 1
approaches the unstable steady state as the load increases and merges with it at a critical value of the load, leaving only the lower state accessible to
the system.
doi:10.1371/journal.pcbi.1003533.g002

Figure 3. Effects of a load on transition times of the basic toggle switch. (A). The time taken to reach 90% of maximum value for the protein
undergoing a low-to-high transition as a function of the Load, normalized by the steady-state amount of Repressor 1. Normalized time is a unit-less
number defined by the transition time (rise or decay) of the system at a given loading condition divided by the transition time (rise or decay) of an
unloaded system. (B). The time taken for the concentration of the protein undergoing a high-to-low transition to reach 10% of its maximum value.
The x- and y- axes are the same as for the previous panel.
doi:10.1371/journal.pcbi.1003533.g003
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was only on the opposite side, suggesting that both the ‘‘opposite

side’’ and the ‘‘same side’’ delays are operating.

While we also found an approximately linear relationship

between the decay time and the concentration of the load, there

was little difference between the decay times for the state with the

load (‘‘same side load’’) and the state without a load (‘‘opposite side

load’’) at our base parameter values. Thus the load affects rise time

and decay time differently. When a load was applied to both sides

of the switch, the slope of the decay time linear fit was larger, again

indicating the operation of both delays.

We tested these results by changing parameter values for the

binding of the load (Table S1) and found that in all cases we obtain

a good linear fit for the response time. For the rise time, the slope

was uniformly larger when the load was applied to the opposite

side as compared to the same side, and it was the largest when

loads were applied on both sides. For the decay time, the slope

could be larger or smaller when the load was applied to the

opposite side of the decaying state compared with the same side,

but it was always larger than both when a load was applied on

both sides. The slope depended non-monotonically upon the

dissociation constant (Kd) of the binding between the repressor

protein and the load, with both low Kd and high Kd having a

smaller effect that those in between (Fig. S1). This was because

when the Kd was low, i.e. strong binding, the concentration of the

load-repressor complex was unaffected by the state of the switch.

However when the Kd was high, the maximum concentration of

the load-repressor complex was smaller, thereby having a lesser

effect on the system (Fig. S2). Thus response times are maximized

when the load acts as a dynamic sink, i.e. it takes up newly

synthesized repressor when the state changes from the unloaded to

the loaded side, and releases the bound repressor when switching

from the loaded side to the unloaded side.

Previous studies of response times of biochemical networks with

and without a load have also seen monotonic increases in the

response time of simple transcriptional circuits [37]. However the

extremely consistent approximately linear response we see under

wide variation in parameter values is extremely intriguing.

An increase in response time should also imply that the

concentration of inducer required to shift states should also be

affected, especially when it can decay. In accordance with this

expectation we also found that the concentration of inducer

required to switch states increased exponentially with increasing

load, as seen in Table S2. The parameter of the exponential fit was

dependent on the inducer decay rate, indicating that the amount

of time the inducer remains above a threshold is the key factor

governing the switching. We find that this response to a load is

unaffected by the mode of switching the toggle, and induction by

repression of the current state yields the same qualitative results

(Table S2 & S3).

In our analysis so far we have assumed that the total

concentration of the load is fixed. We now analyze the case when

the load is generated by a constitutively active promoter and can

decay at a first order rate. We find that in this case too the

qualitative features of the transition time remain the same as the

toggle switch with a fixed load, i.e. it was approximately linear in

all parameter regimes tested (Supplementary Text S1 section 1.5,

Fig. S3 and Table S4). The reason why we do not see a difference

from the basic toggle switch is that the transition times ultimately

measures time between steady states, and we wait for the system to

come quite close to the steady state value (90%). Thus the

concentration of the load has also reached a steady state value and

the system behaves as it would with a fixed load.

We also tested the response times when the repressor can leak

away from the systems after binding with the load. Here we find

that (Fig. 4) when a load is applied to the same side, the rise time

continues to increase monotonically linearly with the load but the

decay times decreases monotonically with the load. However when

a load is applied to both sides, we find a negative linear relation

between the transition times for both rise and decay and the load.

The reasons for the change in behavior is because as we saw

previously, when the repressor can leak away from the repressor-

load complex, a load has a dramatic effect on the bistability

properties of the switch, abrogating bistability very quickly (Fig. 1).

When only one repressor has a load, the high state of that

repressor approaches the unstable state, indicating a decrease in

the domain of attraction. Shifting out of that state thus becomes

easier with increasing load. When both sides have loads, both

stable states approach the unstable state, therefore shifting out of

either state becomes easier, and both transition times decrease.

Dramatic changes in the potential energy landscape and
probability distributions of the toggle switch

The modulation in the dynamic properties of the basic genetic

toggle switch discussed above suggests that the load has altered the

potential energy landscape of the toggle switch, making it harder

to switch. For two-dimensional and higher systems, such as the

toggle switch, analytical methods to construct the potential

landscape are not available, but a quasi-potential can be

constructed from the probability distribution function of the

concentrations of the repressor molecules, where the quasi-

potential is given by the negative of the natural logarithm of the

probability distribution [43,44]. To calculate this we performed

Monte Carlo simulations of the toggle switch using a Gillespie type

algorithm elaborated in the Methods section. When the toggle

switch is symmetrically balanced, both the probability distribution

function and the potential energy landscape are completely

symmetric. If the system is started in State 1, random fluctuations

can drive it into State 2 and vice versa. The probability

distribution can then be constructed by counting the frequencies

of these random fluctuations. However since the genetic toggle

switch can be very stable, a numerical computation of the potential

energy landscape requires impractically long simulation times (as

we show below). While computational methods to sample rare

trajectories in such cases exist, they are very sensitive to choices of

parameters [42,45]. We developed a computational protocol in

order to numerically obtain the probability distribution function of

both protein concentrations and the transition times. We chose an

appropriate volume for the genetic toggle switch such that exactly

the same parameters as in the deterministic simulations led to the

operation of the toggle switch with only a small number of

proteins. The toggle remains bistable in this regime but the small

protein numbers vastly increases spontaneous stochastic fluctua-

tions arising out of multiplicative noise in the system and allows the

simulation to explore parameter space and collect enough data.

Our simulations showed that the switch switched states a large

number of times. In order to account for differences in the time

step in different states, the probability density function of the

concentrations was constructed using a time trace collected after

approximately 1 second intervals. As Fig. 5 shows, for a symmetric

switch we obtain a symmetric bi-modal probability distribution

that corresponds to a double-well potential.

When we add a load to the system asymmetrically, in the form

of a binding partner for the Repressor 1, we find that the

probability distribution becomes extremely skewed, and the total

weight of the probability distribution corresponding to the other

side, i.e. Repressor 2, dramatically increases (Fig. 6A). This

indicates that the underlying double well potential has become

skewed and the state 2, corresponding to high Repressor 2, has
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increased its stability at the cost of State 1 (Fig. 6C). When a load is

applied to both sides symmetrically, the concentration probability

distribution reverts to a symmetric bimodal distribution corre-

sponding to a symmetric double-well potential (Fig. 6B & D).

In order to test this directly we calculated the distribution of

lifetimes in state 1 and the lifetimes in state 2. As shown in Fig. 7,

when the switch is symmetric with no load, the lifetime distribution

is exponential, as should be expected for a simple two-state system.

However when the load is applied to Repressor 1, the probability

distribution of the lifetime in state 2 increases dramatically. The

average lifetime of state 1 also increases but only by a very small

amount. The time spent in state 2 does not appear to saturate, and

continues to increase with increasing load. When loads are applied

symmetrically to both sides, the lifetime histogram in Fig. 7 indi-

cates that both sides have been stabilized since the system spends

significantly longer time in each state. Note that in an equilibrium

system this would have been indicated by the deepening of the

potential well. However in non-equilibrium systems the potential

well picture does not completely capture the dynamics and there is

an additional contribution from a ‘‘curl flux’’ [43,46] that needs to

be taken into account. For our purposes calculating both the

distribution of concentrations and the distributions of lifetimes

captures the dynamics of the toggle switch.

To test whether our results change for higher protein con-

centrations, we increased protein concentrations about fivefold

and recalculated the probability distribution function. We find that

Figure 5. The probability distribution function and the quasi-potential of the genetic toggle switch without a load. (A). The
probability distribution function of a toggle switch without a load. The x- and y- axes here represent the number of molecules of Repressor 1 and
Repressor 2 respectively, while the z-axis is the frequency of its occurrence. Note that the distribution is symmetric as expected. (B). The quasi-
potential of the symmetric toggle switch, showing the symmetric double-well potential constructed by taking the negative logarithm of the
probabilities shown in (A). A small offset of 0.001 was added to the probabilities to prevent taking the logarithm of zero. This does not change the
shape of the well.
doi:10.1371/journal.pcbi.1003533.g005

Figure 4. Effects of a load on transition times of a toggle switch without the protection assumption. (A). The time taken to reach 90% of
maximum value for the protein undergoing a low-to-high transition as a function of the load. The system is de-dimensionalized as described in
Supplementary Text S1 section 1.1 and 3.2.1. (B). The time taken for the concentration of the protein undergoing a high-to-low transition to reach
10% of its maximum value. Note that the linear relationship for both-sided load transition times, and same-sided decay time, and opposite-sided rise
time has a negative slope. The relationship for same-sided rise time and opposite sided decay time has a very small, but positive slope.
doi:10.1371/journal.pcbi.1003533.g004
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our qualitative results remain robust despite the increase in protein

concentrations (Supplementary Text S1 section 1.3 and Fig. S4).

Switching between states is rare at these protein numbers, with a

mean residence time in state R1 for the unloaded switch being

approximately 6|105 min against about 700 min for the basal

case considered, a difference of almost three orders of magnitude.

However as for the basal case, the quasi-potential landscape skews

significantly with the addition of a load on the switch.

‘‘Opposite Side effect’’ dominates the load effect in the
basic toggle switch

These results allow us to interpret the dynamic results that we

obtained earlier. If the system is in state 2 and there is a load on

state 1, a transition requires an increase in Repressor 1 concen-

tration in order to suppress the production of Repressor 2. A load

on Repressor 1 however competes with the promoter of Repressor

2 for binding with Repressor 1, and thereby reduces the effective

concentration of Repressor 1. This effectively stabilizes state 2.

The dynamic analysis shows that state 1 not only remains an

attractor state but in fact it takes a longer time, and more inducer,

to shift out of state 1 as compared with the no-load situation. This

is because the load also acts as a reservoir for Repressor 1, and in

fact increases its total concentration. This slows down the tran-

sition to state 2. Interestingly this ‘‘same side effect’’ is generally

weaker than the ‘‘opposite side effect’’ above. In agreement with

this picture, the stochastic simulations show that the distributions

of lifetimes in state 1 broaden slightly on addition of a load.

If the load is present symmetrically on both sides, the concen-

tration histograms in Fig. 6 and the time histograms in Fig. 7 indi-

cate that both states have been stabilized, due to a combination of

the ‘same side’ and the ‘opposite side’ effect now acting together to

stabilize each state of the switch. In the dynamical simulations this

is seen by the increased slope of the response time line for the case

of a load on both sides. Results for additional parameter values are

shown in Fig S15 and Fig S16.

Positive feedback moiety makes toggle switch tunable
When a positive feedback moiety is introduced in the toggle

switch, we again see a linear relationship between the rise time and

the decay time of the two states of the switch and the load (Fig. S5).

Therefore here too the load appears to be skewing the underlying

potential landscape of the switch. Using stochastic simulations we

constructed the probability distribution function of this toggle

switch as described above. We found that even in the absence of a

load, when a positive feedback moiety is introduced on one side of

a toggle switch, the probability distribution for the toggle switch,

and hence the quasi-potential landscape, becomes extremely

skewed in favor of the state with positive feedback as shown in

Fig. 8A. Even with no load on the system, the switch is biased to

State 1 and the lifetime spent in State 1 is much longer than in

State 2. If a load is added to R2, the opposite side effect

additionally favors State 1. If a load is added to R1 however, the

opposite side effect favors State 2 (Fig. 8B). It is possible to balance

these effects resulting in a more even distribution by adjusting the

load on R1 and the strength of positive feedback. As the load on

R1 is increased beyond this balance point, the opposite side effect

dominates and the probability distribution becomes skewed

toward State 2 (Fig. 8C). As the opposite side effect increases

with increasing load, the lifetime in State 2 also increases in

agreement with the findings for the regular toggle switch (Fig. 8D).

The lifetime in State 1 also increases by a smaller amount, as for

the regular toggle switch (Fig. 8E).

For the toggle switch with the positive feedback moiety, we can

also check the consequences of allowing repressor leakage through

Figure 6. The probability distribution function and quasi-potential of a toggle switch with a load. The 3-dimensional plot is viewed with
the xy-plane horizontal for better contrast. The x- and y-axes are numbers of molecules of R1 and R2 while the z-axis is either probabilities or the
quasi-potential. (A). The probability distribution function (pdf) of the toggle switch of Fig. 5 but now with a load of 20 molecules on Repressor 1 (R1).
(B). The pdf of the toggle switch with a load of 20 molecules on R1 and 20 molecules on R2. (C). The quasi-potential of the toggle with a load of 20
molecules on R1, i.e. corresponding to panel A. (D). The quasi-potential of the toggle with equal loads of 20 molecules on each repressor, i.e.
corresponding to panel B.
doi:10.1371/journal.pcbi.1003533.g006
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the repressor-load complex. As shown in Fig. S13, this addition to

the system affects the steady state properties of the switch and

bistability is abrogated after the load increases beyond a critical

value, when load is present for both sides or only one side.

Loads fundamentally transform positive feedback based
switches in signal transduction

The RasGTP system shows a bistable transition from a low

RasGTP state to a high RasGTP state as the activating signal, in

our case the number of SOS molecules, are varied. As Fig. 9

shows, a system with no Raf shows a classic Z-shaped bifurcation

diagram with two bifurcations as SOS is varied. The first bifur-

cation marks the transition from a monostable low-RasGTP state

to a bistable system with a ‘‘high’’ RasGTP state (and an unstable

intermediate state). The second bifurcation marks the transition

from the bistable state to another monostable state with a high

concentration of RasGTP.

When Raf is added to the system, the bifurcation diagram

changes and the two bifurcations start approaching each other.

This is because the effect of adding Raf is equivalent to seques-

tering away some of the activated RasGTP in an ‘‘inactive’’ com-

plex. When Raf concentration crosses a threshold, the bifurcations

annihilate each other and disappear. This system is now char-

acterized by a single stable point for all concentrations of SOS,

and the disappearance of the threshold for Ras activation. While

there appears very little free Ras, in reality, even for low SOS

concentrations there is a large concentration of the activated

RasGTP-Raf complex (since RasGTP in these complexes is also

protected from the action of the Ras GTPases).

This can be seen in another way in Fig. S8 where the stable state

of RasGTP is plotted against the level of total Raf in the system,

keeping the level of SOS constant. Again we see that a bistable

system is transformed into a monostable system when Raf increases

beyond a threshold. These results are exactly the same for the model

which assumes Michaelis-Menten kinetics, except for small changes

in molecule numbers, as can be seen in Fig. S7 and S9. Results do

not change on changing load-binding parameters (Fig. S10, S11)

Thus the addition of the Raf scaffold, which is an integral part of

the MAPK cascade, fundamentally changes the qualitative behavior

of the positive feedback switch. The main reason why the steady

state bifurcation properties are affected here in contrast to the basic

genetic toggle switch is that for this signaling circuit, as seen in Eq.

22–25, total Raf and Ras are conserved, as is typical for a short

timescale signal transduction system. These conservation laws

couple Raf concentration to RasGTP concentration even at steady

state. Therefore adding Raf to the system effectively reduces total

Ras concentration since Raf sequesters away Ras from the switch.

To see this more generally, consider for example a chemical

reaction system comprising of n-species Y1,:::Yn. Let us assume

without loss of generality that the species Yn is coupled to a

Figure 7. Distribution of the lifetimes of the toggle switch with and without loads. The time the system spent in either state R1 or state R2
was calculated from the time trace of the stochastic simulations and a histogram made of the results. The histogram is shown on a semi-log plot to
accommodate the data on a single chart. (A). Lifetimes in State R1. The unloaded state is the solid curve that is to the extreme left of the others,
showing that the lifetimes in state R1 increase slightly on addition of load on R1 alone due to the ‘‘same side effect’’. (B) Lifetimes in State R2 when
load is on R1. The solid curve on the extreme left is the unloaded state. There is a significant increase in lifetimes due to the ‘‘opposite-side effect’’ of
the load on R1. (C). Lifetimes with a balanced load, showing that both the states R1 and R2 get stabilized with a significant increase in lifetimes on
addition of a small load on both sides. Note that the distributions for R1 and R2 for equivalent cases coincide as should be expected.
doi:10.1371/journal.pcbi.1003533.g007
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downstream circuit through a binding reaction with a load, L. The

(n+2) differential equations describing this system are:

dY1

dt
~f1(Y1,:::Yn) ð26Þ

dYn

dt
~fn(Y1,:::,Yn)zkon½YnL�{koff ½Yn�½L� ð27Þ

d½L�
dt

~koff ½YnL�{kon½Yn�½L� ð28Þ

d YnL½ �
dt

~koff YnL½ �{kon Yn½ � L½ � ð29Þ

Note that for simplicity of notation we have not indicated the

dependence of the dynamical system on its own parameter values.

Now in the steady state, if the set of equations is complete, the left

side uniformly goes to zero and we recover the result that the

steady state remains exactly the same with or without a load, as for

the genetic toggle switch. However let us now assume that we have

an additional conservation law, say,

Y (0)
n ~Ynz½YnL� ð30Þ

This conservation law implies that one equation in our

dynamical system is redundant, and we need to drop one equation

to make the system linearly independent. We can decide to drop

Eq. 19, and substitute Yn~Y 0
n {½YnL� in Eq. 20 and Eq. 21 and

solve the resulting (n+1) equations for the (n+1) unknowns,

Y1,:::,Yn{1,YnL,L, obtaining Yn as a residual from Eq. 22. Thus

the steady state solutions of the Yi
0s now involve the amount of the

load. Clearly, the existence of the conservation law has led to a

change in the steady state properties of the dynamical system.

Note that Yn itself would usually enter (by itself or in the form of

other complexes, which then would also need to be accounted for in

the conservation law Eq. 22) into one or more of the equations for

the remaining species, Y1,:::Yn{1. This would result in the

equations for those other species explicitly involving, and thus

depending upon the level of the load. For the Ras system above, Eq.

16 couples the load, Raf, to the concentration of Ras. However Ras

concentration and SOS concentration are also coupled. Thus the

load explicitly affects the steady state values of all species

concentrations in this system. This leads to a fundamental qua-

litative change in the bifurcation properties of the system.

Discussion

It has been pointed out previously that significant sequestration

effects can abrogate zero order ultrasensitivity [26,47,48], can

Figure 8. The genetic toggle switch with a positive feedback motif on Repressor 1 (R1). (A). The probability distribution function (pdf) with
no load. The positive feedback on Repressor 1 leads to a pdf skewed in favor of R1. (B). The pdf with a load of 20 molecules on R1 showing the
increase in the weight of R2 due to the ‘‘opposite side effect’’. (C). The pdf with a load of 40 molecules on R1. This load is more than enough to skew
the pdf in favor of state R2. (D). Histogram of lifetimes in R1 with varying levels of load on R1. Comparison with panel A shows that the unloaded state
has been stabilized by the positive feedback. Note that the lifetimes increase very slightly due to the ‘‘same side effect’’. (E). Histogram of lifetimes in
R2 with varying levels of load on R1. The unloaded case is the curve on the extreme left. Note the initial asymmetry in the lifetime distribution due to
the positive feedback, as well as the large increase in lifetimes with the inclusion of a load.
doi:10.1371/journal.pcbi.1003533.g008
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change the dynamics of simple phosphorylation circuits [23,24]

and change oscillatory behavior in some circuits [27]. We add to

this body of work by demonstrating that the addition of a simple

binding partner to the output protein of a genetic or signaling

switch can have dramatic effects on its properties, and can

fundamentally change the operation of the switch.

For a genetic toggle switch with two mutually repressing

proteins such as the classic switch built by Gardner et al. [5] we

showed that even though the presence of the binding partner does

not alter steady state properties of the switch, it can drastically

change the dynamic properties. Using a novel potential landscape

analysis, we showed that this is because the addition of the binding

partner skews the underlying quasi-potential, making one state

significantly more stable than the other. In practice therefore, a

genetic toggle switch that is significantly skewed towards one side

may never properly function as a switch. Thus the downstream

consequences of such loads need to be taken into account when

designing larger synthetic circuits with the toggle switch as one of

the elements.

On the other hand this phenomenon actually provides a way of

making artificial switches tunable. It is possible to engineer a

biased switch merely by adding a load on the opposite side of the

toggle, which is a useful device when engineering a switch that is

designed to be switched on only in special circumstances. A load

on both repressor proteins similarly stabilizes both sides of the

toggle switch. This could be useful when working with synthetic

components with low concentrations in cells, especially those that

display stochastic switching. A load on both repressor proteins can

significantly increase the stability of such a toggle.

In natural systems, mutually repressing toggle switches are often

found with other complexities, such as a positive feedback motif on

one side. The positive feedback motif by itself biases the toggle

switch by stabilizing the side it is on at the expense of the other

side. A load on the same side then stabilizes the opposite side, and

can re-establish balance between the two quasi-potential wells. For

engineering circuits in multi-cellular organisms, it is worth noting

that that feedback between the load on a toggle switch and the

strength of the positive feedback may ensure that the switch

operates efficiently even in the presence of cell to cell variability in

the load. How loads vary between cells and in multi-cellular

organisms is an interesting question to explore in future work. The

presence of the positive feedback provides a potential target for

evolutionary fine-tuning of the switch.

In the above analyses we use novel potential landscape methods

that have proved useful and insightful in fields such as protein

folding to discuss the fundamental properties of a dynamical

system that shows not apparent changes in its stability properties.

We demonstrate that these methods, though still relatively

underdeveloped for use with non-equilibrium chemical reaction

systems, hold promise for understanding the dynamics of such

systems beyond what linear stability analysis can provide. How-

ever there are certain conditions when addition of a load changes

the stability properties of the genetic toggle switch. One class of

such effects happen when the repressor can leak away from the

repressor-load complex, as can happen either when the repressor

can decay or degrade when bound to the load, or when the load

can modify the repressor and make it unable to repress. We show,

employing standard bifurcation analysis, that additional loads in

this system can abrogate the switch-like properties of the toggle

switch entirely.

In switches based on autocatalysis or positive feedback with an

enzymatic deactivation, such as is often found in signaling systems,

the effects of a load are equally dramatic. We show that in a simple

model of Ras activation, adding a small concentration of Raf

molecules changes the bifurcation diagram of the signaling circuit

and can completely abrogate the bistability in the system. While

we have chosen a specific example of Ras activation, our simplified

model, with an autocatalytic forward reaction and an enzymatic

backward reaction is a minimal model for a many positive

feedback switches. The change in the bifurcation diagram arises

from the conservation laws that couple the concentration of the

load with the concentrations of the proteins in the upstream module.

Given the sensitivity of non-linear dynamical systems to initial

conditions, it should probably be expected that many, if not all,

positive feedback based switches that operate at the short timescales

of signal transduction, and therefore must possess these conservation

laws, should exhibit this sensitivity to the effect of a load.

Our results throw up an interesting puzzle for quantitative

biologists. In many natural signal transduction systems such as the

MAPK cascade, the concentration of the output of a bistable

switch is quite comparable to the concentration of the load, thus

significant changes in load concentrations could have dramatic

effects on the behavior of the switch. However it has also been

shown that there is a significant cell to cell variability in protein

concentrations [49]. How do cells ensure that positive feedback

based switches such as the Ras switch continue to operate robustly

in the bistable regime? Additional regulatory mechanisms

involving feedback between the load and its partner protein may

exist that confer robustness to the qualitative behavior of the

biochemical switch. Arguably some of the bells and whistles of

natural protein networks that are often disregarded when

analyzing the network may in fact be performing this role. In

other words, self-assembled switches have to be complex! In this

Figure 9. Bifurcation diagram of the Ras switch with different
levels of Raf (load) on the system. The total number of SOS in the
simulation box is used as the parameter being tuned, which varies from
0 to 1000. For Raf = 0, Raf = 10 and Raf = 30, there are two bifurcations as
SOS is increased. In the first bifurcation a new high valued stable steady
state appears along with the low valued stable steady state. In the
second bifurcation, the low valued stable state disappears leaving
behind only the high valued state. The dotted line marks the unstable
steady state that also comes into existence in the bistable region. As
total Raf increases, the two bifurcations approach each other. When
Raf = 50, the system has lost both of its bifurcations and is characterized
by a single stable steady state at all values of Raf.
doi:10.1371/journal.pcbi.1003533.g009
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context it is worth mentioning that it has been persuasively argued

[50,51] that some biological circuits maintain robustness of ‘‘fold-

change’ behavior rather than absolute levels of protein concen-

tration. It is possible that additional protein-protein interactions

that couple concentrations of loads with output proteins may end

up in performing this function. Another significant factor that

needs consideration is the role of spatial segregation in producing

feedback from the downstream module to the upstream one. In

fact it has been shown experimentally that MAPK substrates

sequester activated MAPK in the nucleus, and thus protect it from

cytoplasmic phosphatases. Changing the concentration of one

substrate therefore affects the concentration of activated MAPK

[52].

Previous discussions of the effect of loads on the operation of

circuits have suggested the use of insulators, that is circuit elements

that insulate the upstream module from the downstream module

[22]. The initial suggestions for building insulators in Ref. [22]

involved incorporating signal amplification along with negative

feedback in the upstream circuit. Another way of insulating the

circuit is to ensure that the demand of the load for its cognate

repressor is never significant compared to the total amount of

repressor. For a genetic switch therefore, a possible insulating

mechanism is if the link to the downstream circuit is through a

promoter. For example, consider making an AND gate from an

output of the toggle switch. This can be done by inserting a

constitutively produced protein Y that binds to R1 such that the

complex is a transcription factor for another protein, say Z. Thus

there is an AND relationship between the two inputs, Y and R1

and the output Z. To offset the effect of load induced modulation

of the dynamics of R1, an additional step can be inserted such that

R1 first binds to the promoter region of another gene that codes

for protein X and activates its transcription, and it is the protein X,

rather than R1, that can bind to Y and activate production of Z.

The advantage of adding this extra step is that the concentration of

the promoter for X is very small compared to the concentration of

R1, and therefore load induced modulation of the upstream toggle

can be kept at a minimum. Note however that this cannot be done

without the additional cost of the time delay required for the

transcription and translation of X.

As can be seen, any additional step or series of steps that can

amplify a weak signal can act as an insulator. Another standard

example of an amplifying circuit is a phosphorylation cascade

which is especially relevant when considering Ras activation since

it directly leads to the MAPK phosphorylation cascade. Phos-

phorylation cascades are also very fast, and therefore do not face

the additional time delays of an additional transcriptional step.

From the point of view of synthetic circuit design, the insulating

mechanism here could be constructed by designing a weak binding

affinity of Ras (or the synthetic protein that plays that role) for Raf

(or the equivalent protein). The bound complex then catalyzes a

phosphorylation cascade that ends by connecting to the down-

stream circuit.

Note that this method of insulation does not have the same time

delay costs as the additional transcription steps. However it does

come with the metabolic costs of having to produce large amounts

of proteins that are essentially serving no useful physiological

purpose for the cell. This cost could be relevant in some synthetic

biology applications, and certainly needs to be evaluated during

circuit design. It has been shown in the context of phosphorylation

cycles that insulation always carries a metabolic cost, and in

general better insulation carries a greater metabolic cost [53].

The existence of the MAPK phosphorylation cascade however

begs the question whether it serves the purpose of insulation of the

upstream Ras circuit from the downstream circuit. While it is not

possible to answer this intriguing question without further

experiments, it does appear that the Ras-Raf complex is present

is quite large numbers on activated cells. This would suggest that

insulation is not the function for which the cascade may have

evolved. Our own analysis of the genetic toggle switch with the

positive feedback motif suggests that Nature may prefer more

complicated forms of regulation that balance the different

components of the circuit. However there is no reason why both

methods cannot be utilized. To our mind this is a very exciting

question that requires more attention from experimentalists and

theorists alike.

It should also be noted that due to non-specific binding of

transcription factors with DNA as well as between proteins, every

circuit in the cell, real or synthetic, operates in the presence of a

load. Variability in the functioning of circuits that are seen when

transferring synthetic circuits between species, or even in different

cells, may be a result of not only differences in basic protein

concentrations, but also of this undervalued but nevertheless

tangible load. Based on this reasoning we predict that some of the

host-dependent effects that complicate synthetic biology, i.e. a

synthetic circuit that works in one organism not performing well in

another, are in fact due to changes in the intrinsic load due to non-

specific binding when changing hosts.

Our analysis underscores the importance of incorporating loads

when simulating models of switches in natural and synthetic

systems. Mathematical analysis of switch-like motifs therefore

would do well to at least include a load on their output proteins, in

order to incorporate the possible effects of load induced modu-

lation on the circuit.

Supporting Information

Figure S1 Surface plots showing response times of the
simple genetic toggle switch with changes in load (L) and
changes in the dissociation constant (Kd) of binding with
load. The units of L and Kd are (molecules/mm3). The z-axis

measures the response time indicated in the title. ‘‘Same Side

Rise’’ and ‘‘Same Side Decay’’ refers to the rise time and decay

time when the load is on the same side as the repressor whose

concentration is increasing. ‘‘Opposite Side Rise’’ and ‘‘Opposite

Side Decay’’ refers to the rise time and the decay time when the

load is on the other side of the repressor whose concentration is

increasing. ‘‘Both Sides Rise’’ or decay refer to the rise and decay

times when a load is present on both sides (symmetrically). The

plot shows that at every Kd, the relation between the response

time and load is approximately linear. The response time is largest

for the case of ‘‘Both Sides Rise’’ followed by ‘‘Opposite Side

Rise’’. The response time is also non-monotonic with respect to

the Kd for a given load, and is maximized at intermediate values

of Kd.

(TIF)

Figure S2 Time plot of switching of the simple toggle
switch with a load on Repressor 1, at three different
values of the dissociation constant. In all three cases the

system is switched by providing 150 molecules/mm3 of an inducer

at 1000 minutes. The inducer stays constant at that value and is

not shown in the plots. The left panel has a very high dissociation

constant (Kd = 1000 molecules/mm3) of binding between the load

and the repressor, due to which the load has a minimal effect on

the system. The middle panel has an intermediate value (Kd = 1

molecules/mm3) because of which the load acts as a dynamic sink

by releasing Repressor 1 and slowing the switching. The right

panel shows the effect of a small dissociation constant (Kd = 1023

molecules/mm3). At such strong binding affinities, all of the load is
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always bound to Repressor 1. Thus the load has minimal effect on

the switching dynamics. In all cases total load concentration is 100

molecules/mm3.

(TIF)

Figure S3 Effects of a dynamic load on dynamics of a
symmetric toggle switch. (A). The time taken to reach 90% of

maximum value for the protein undergoing a low-to-high

transition as a function of the equilibrium constant of a dynamic

load. Normalized time is a unit-less number defined by the

transition time (rise or decay) of the system at a given loading

condition divided by the transition time (rise or decay) of an

unloaded system. (B). The time taken for the concentration of the

protein undergoing a high-to-low transition to reach 10% of its

maximum value.

(TIF)

Figure S4 Stochastic time trace and the probability
distribution function of repressor concentrations for the
large volume simulations. (A). Comparison of time traces of

the stochastic simulations of the simple toggle switch with basal

parameters (top panel) and a larger volume (bottom panel). The

average molecule number is about 5 times greater, and the

number of transitions are significantly fewer. (B). The probability

distribution function of the genetic toggle switch with the larger

molecular number without (left) and with (right) a load. The effect

of a load on R1 is qualitatively the same for this system as for the

smaller system. Since transitions are slower the data are more

uneven for this simulation.

(TIF)

Figure S5 Transition times in a genetic toggle switch
with a positive feedback moiety. In all cases the strength of

the positive feedback (denoted here by P instead of r) is 3.5 on

either Repressor 1 (R1) or Repressor 2 (R2). Top Left: Rise time -

time to transition INTO state R1 with the positive feedback on

R1. Note that the rise time is larger at nonzero loads when the

load is on R2 or when the load is on both sides, in agreement

with the simple toggle switch. Top Right: Rise time - time to

transition INTO state R1 with the positive feedback on R2.

Bottom Left: Decay time - time to transition OUT OF state R1

with the positive feedback on R1. Bottom Right: Decay time -

time to transition OUT OF state R1 with the positive feedback

on R2.

(TIF)

Figure S6 Probability distribution functions of repres-
sor concentrations for the toggle with a positive
feedback moiety. The left panel shows that when r= 0, the

switch is balanced evenly. As r increases, the side of the switch

with the positive feedback becomes more and more prominent, at

the expense of the other side. When r= 5, the system spends most

of its time in one state.

(TIF)

Figure S7 Bifurcation diagram of the Ras switch with
different levels of Raf (load) on the system for the model
with Pseudo Steady State Assumption (PSSA). The total

number of SOS in the simulation box is used as the parameter

being tuned, which varies from 0 to 1000. For Raf = 0, Raf = 10

and Raf = 30, there are two bifurcations points as SOS is

increased. In the first bifurcation a new high valued stable steady

state appears along with the low valued stable steady state. In the

second bifurcation, the low valued stable state disappears leaving

behind only the high valued state. The dotted line marks the

unstable steady state that also comes into existence in the bistable

region. As total Raf increases, the two bifurcations approach each

other. When Raf = 50, the system has lost both of its bifurcations

and is characterized by a single stable steady state at all values of

Raf.

(TIF)

Figure S8 Bifurcation diagram of the Ras activation
model based on Law of Mass Action (LMA). Here the total

number of Raf molecules (RafT) is the primary parameter being

varied. Without Raf, the Ras activation system is bistable as

reported. With increasing RafT, the ‘‘high’’ stable steady state

branch comes closer with the unstable steady state branch and

both are eliminated after a threshold of RafT. A monostable region

is maintained beyond the threshold.

(TIF)

Figure S9 Bifurcation diagram of the Ras activation
PSSA model with total number of Raf molecules (RafT)
as the primary parameter. Without Raf, the Ras activation

system is bistable as reported. With increasing RafT, the ‘‘high’’

stable steady state branch comes closer with the unstable steady

state branch and both are eliminated after a threshold of RafT. A

monostable region is maintained beyond the threshold.

(TIF)

Figure S10 Parameter sensitivity of the bistability of
Ras switch to changes in koff6. Increase of koff6 results in

leftward shifts of both stable fixed points, increase in the bistable

regime and increase in maximal RasGTP activation level (Green

Line) when compared to baseline with original value (Blue Line).

Decrease of koff6 (Red Line) results in right shift of both limit

points, increase in unstable bistable regime and decrease in

maximal RasGTP activation level. Qualitative features of bis-

tability are maintained.

(TIF)

Figure S11 Parameter sensitivity of the bistability of
Ras switch to changes in kon6. Increase of kon6 (Green Line)

results in right shift of both limit points, increase in unstable

bistable regime and decrease in maximal RasGTP activation level

when compared to baseline original value (Blue Line). Decrease of

kon6 (Red Line) results in left shifts of both limit points, increase in

bistable regime and increase in maximal RasGTP activation level.

Qualitative features of bistability are maintained.

(TIF)

Figure S12 Comparison between bifurcation diagrams
of toy genetic toggle switch with and without protection
of repressor degradation when bound with promoters. If

the protection is not included (Blue Line), a minor increase in the

bistable region can be observed with right shift of upper limit point

and left shift of lower limit point compared to the case with

protection assumed (Red Line). Note that this is not the same as

degradation after being bound with the load.

(TIF)

Figure S13 Bifurcation diagram of the genetic toggle
switch with positive feedback loop on one side after
removal of the protection assumption. The left panel shows

the bifurcation diagram when the load is added symmetrically to

both sides. Without load molecule, the toggle switch is bistable as

predicted. With the increase in LT, the unstable steady state and

the ‘‘low’’ stable steady state come closer and meet at certain

threshold. The value of ‘‘high’’ stable steady state decreases with

increase in LT. Beyond the threshold, the toggle switch becomes

monostable. The right panel shows the effect of just adding a load

to R1. In this case the high state of R1 approaches the unstable

steady state, and annihilates itself. The system jumps to the low
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stable state, which is equivalent to the ‘‘high’’ state of the other

repressor.

(TIF)

Figure S14 Bifurcation diagram of the Ras activation
model when Ras can degrade when bound with Raf. As

the number of Raf molecules increase, the bistable region

decreases. However unlike the case with no protection, the curve

moves to the left. When Raf molecules increase by a large amount,

bistability is abrogated.

(TIF)

Figure S15 Transition times for various k9on and k9off

values plotted as a function of load for the basic toggle
switch. Even if the binding-unbinding rates are slower or much

faster than protein decay rates, the load-transition time relation-

ship stays linear. A, C, E, G, I, K, M, O, Q and S show the rise

time. B, D, F, H, J, L, N, P, R, and T show decay time. (A,B)

k9on = 4, k9off = 0.5, Kd = 0.125. (C,D) k9on = 10, k9off = 0.5,

Kd = 0.05. (E,F) k9on = 4, k9off = 4, Kd = 1. (G,H) k9on = 10,

k9off = 10, Kd = 1. (I,J) k9on = 4, k9off = 20, Kd = 5. (K,L)

k9on = 10, k9off = 50, Kd = 5. (M,N) k9on = 4, k9off = 40, Kd = 10.

(O,P) k9on = 10, k9off = 100, Kd = 10. (Q,R) k9on = 40, k9off = 400,

Kd = 10. (S,T) k9on = 100, k9off = 1000, Kd = 10.

(TIF)

Figure S16 Probability distributions of repressor con-
centrations for various values of k9on and k9off for the
basic toggle switch. Even when the binding-unbinding with the

load is several times faster than protein decay rates, the basic

phenomena discussed in the paper remains unchanged. (A)

k9on = 50, k9off = 500 (B) k9on = 500 k9off = 500 (C) k9on = 500

k9off = 5000.

(TIF)

Figure S17 Bistability of the toggle switch with positive
feedback. A bifurcation diagram of the simple toggle switch

with a positive feedback moiety on one side, with respect to the

parameter r that measures the strength of the positive feedback.

Only the concentration of R1 is shown for simplicity. The

switch remains bistable till r becomes larger than a little over

200.

(TIF)

Table S1 Slopes of linear fits to rise and decay time
with various values of Koff, Kon and b. The first column

reports the values of the dissociation constant (Kd = Koff/Kon)

and the kinetic constants of the binding of Repressor 1, 2 or the

value for b, which represents promoter strength. The other

columns report the slopes of the linear fits of the various rise

times and decay times. In all cases the fits have high R-squared

values (.0.95). Intercept is 1, as the slopes are normalized to

the un-loaded transition time. For Kd we change the para-

meters by two orders of magnitude in both directions to show

that the linear relation is robust despite these changes. Note

that the relation between rise time or decay time and the

binding constant is non-monotonic. Units are as reported in the

text.

(DOC)

Table S2 Exponential Fits of the amount of inducer
required to transition states as a function of load. The

basic genetic toggle switch switch was toggled to its other state by

production of the other repressor protein by an inducer, given

here as a bolus with a decay rate as shown. The size of the bolus

was increased until the state changed. This was repeated at

different levels of load and the minimum size of the bolus

required was fit by an exponential function of the load. The fits

are shown here, along with their R-squared values. ‘‘Load

applied to the opposite side’’ means switching from a state

without a load to a state with a load. ‘‘Load applied to the same

side’’ means switching from a state with a load to a state without

a load.

(DOC)

Table S3 Exponential Fits of the amount of inducer
required to transition states as a function of load, in the
case of induction by repression. The switch was toggled to its

other state by repression of the current state by an external

molecule, given to the system as a bolus with a decay rate as

shown. The size of the bolus was increased until the state changed.

This was repeated at different levels of load and the minimum size

of the bolus required was fit by an exponential function of the load.

The fits are shown here, along with their R-squared value. Thus

the inducer required depends exponentially on the load in both the

methods of induction. ‘‘Load applied to the opposite side’’ means

switching from a state without a load to a state with a load. ‘‘Load

applied to the same side’’ means switching from a state with a load

to a state without a load.

(DOC)

Table S4 Slopes of linear fits to rise and decay time
with a dynamic load, with varying values of load decay
rate Kd, load binding rates Kon and Koff, and constant
K1. The first four columns report the values of the various

parameters. The other columns report the slopes of the linear fits

of the various rise times and decay times. In most cases the fits

have high R-squared values (.0.95). The two exceptions are

.0.90 and starred. Intercept is 1, as the slopes are normalized to

the un-loaded transition time. Note that for all cases, the

relationship between load (expressed here as Keq = Kb/Kd) and

transition time is a positive linear relationship.

(DOC)

Table S5 Rate expressions used for the stochastic
simulations of the genetic toggle switch. The rate

expressions used for the stochastic simulation of the toggle switch

along with the description of the reaction are listed.

(DOC)

Table S6 List of reactions in the minimal model of Ras
activation. The reactions in the minimal model of Ras

activation, along with the labels of the corresponding rate

constants are shown. Parameters used in the simulations are given

in Table S7.

(DOCX)

Table S7 Kinetic rate parameters used for the simula-
tions of the Ras model. Here the numbers in the subscript of

the rate constants in the ‘‘Constant’’ column refer to the reactions

shown in the corresponding row of Supplementary Table S6. The

meaning of the rate constants are as follows: kon refers to the on-

rate, koff is the off rate and kcat is the catalytic rate. The sources for

the rates are as shown in the last column.

(DOC)

Table S8 List of reactions in the toy model of genetic
toggle switch. The reactions in the toy model of the genetic

toggle switch, discussed in Supplementary Text S1 section 3.1 are

listed. The description of the various chemical species in the

reactions are also provided in the Supplementary Text S1.

(DOCX)

Text S1 Supporting Information including derivation
and analysis of toggle switch and Ras models, param-
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eters used for the simulation and their sources, results
of the parameter sensitivity analysis, details of the effect
of a dynamic load on the genetic toggle switch, results
for the Ras model with Michealis-Menton kinetics,
results for the models without the protection assump-
tion.

(PDF)
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