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Abstract

Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as
modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in
synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their
essential characteristics. However, the interactions that a network module has with downstream elements change the
dynamical equations describing the upstream module and thus may change the dynamic and static properties of the
upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene
transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the
simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and
skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate
bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could
tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and
show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load.
Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the
physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological
systems. This analysis is particularly important when scaling synthetic networks to more complex organisms.
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Introduction

A longstanding question about signal transduction and gene
transcription networks is how modular are they. Here modularity
means relative insulation of small subgraphs or motifs of the main
network from each other [1]. This question is especially relevant
for synthetic biology that aims to build artificial circuits from the
bottom up [2]. It is also relevant for molecular biologists that aim
to arrive at a quantitative understanding of a cellular decision, by,
for example, isolating a crucial network module [3].

For synthetic biologists the challenge is now to move from
simple network motifs such as pulse generators [4], genetic
switches [5-8], logic gates [9,10], and oscillators [11-13] to more
complicated networks combining multiple motifs and networks in
more complex organisms. Novel applications currently being
explored include plant biosensors [14], hazardous waste remedi-
ation [15], clean fuel technology [16], and numerous medical
applications [17-20]. Synthetic biologists hope to utilize biological
modules in a manner similar to electrical circuit board compo-
nents — plugging them together to attain a specific, and novel,
function [21]. At the core of the concept of either breaking down
complex biological systems into small modules, or even building
complex systems from modules, is the belief that these modules will
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behave predictably in isolation and in connection. Recent
theoretical and experimental work however [22-25] suggests that
the functioning of modules may not be independent of the
downstream components that they are connected to. Adding an
additional binding reaction to the output of a gene regulatory
network (or loading the network) may decrease system bandwidth
[24] and substrate sequestration in covalent modification cycles
may result in signaling delay [26]. In vitro studies find that there is
significant load-induced modulation of the upstream module in an
enzymatic signal transduction cascades [24]. Theoretical analysis
has also shown that a load can change the fundamental properties
of an oscillating circuit [27]. Thus understanding the effects of
adding a load to the output of these technologically important
network modules is required for a thorough understanding of the
challenges of scaling up synthetic networks to higher levels of
complexity.

Loads could also have noteworthy unrecognized effects in
natural systems. In fact all natural systems have loads in some ways
or the other. Motifs in signal transduction networks are connected
directly to a transcriptional response, or to downstream proteins
that may function as transcription factors or go on to activate tran-
scription factors. Motifs in gene transcription networks have tran-
scriptional outputs with protein domains that bind nonspecifically
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Author Summary

Cells rely on complex networks of protein-protein interac-
tions in order to carry out life functions. Scientists believe
that these networks are organized in a modular fashion;
that is they are made up of functionally distinct parts like
an electronic circuit. Modularity implies that just as we put
together electronic parts to make an amplifier that we can
use in many different circuits, we can put together
biochemical reactions to make an amplifier, or a switch
or an oscillator, which perform the same function in
different organisms. This assumption is important in
synthetic biology, where we engineer and assemble
synthetic genetic circuits in living organisms in a modular
fashion. We show that for important modules like genetic
and signaling switches, the assumption of modularity has a
crucial limitation. We show that if one simply connects a
biological switch to another downstream circuit, the
presence of the connection changes the operation of the
switch, which in some cases may stop behaving like a
switch. Our work underscores the importance of taking
into account these downstream connections and suggests
that natural systems may be balancing some of these
components in order to ensure that despite diversity,
modules continue to work in different systems with
fidelity.

and specifically to binding sites on the DNA, apart from inter-
acting with other transcription factors.

Circuits that function as switches play an important role in all
biological signaling and gene transcription networks because they
encode decisions. This change of state can be brought about by an
external signal, or an internal accumulation of a protein, which
can drive the system to a different steady state. Examples are the
regulatory circuits for the cell cycle in yeast [28], mitogen-acti-
vated protein kinase cascades in animal cells [29-31], and the lysis-
lysogeny switch in the A phage [32]. Since many small circuits can
show this kind of behavior, switches are among the earliest and
most well studied of protein interaction circuits [33]. The genetic
toggle switch, which was one of the first two synthetic circuits
constructed, is a well-known synthetic example [5]. Given the
ubiquity and importance of switch-like motifs, it is important to
understand how their function could be affected by binding down-
stream partners.

These reasons prompted our theoretical study of the behavior of
a simple genetic toggle switch [3], a toggle switch with positive
feedback as well as a common positive-feedback based switch
involving Ras activation in lymphocytes [29,30] under a load on
either one or both of its outputs. These circuits are shown in Fig. 1
and described below. The simple toggle switch is a widely studied
and emulated synthetic network motif based on the mutual
repression of two repressor proteins. However, naturally occurring
toggle switches are often found connected to an additional positive
autoregulatory component. For example in the competence system
in B. subtilis, ComK represses the production of Rok and Rok
represses the production of ComK; however ComK also has a
strong positive feedback upon its own production [34]. Another
example is found in the apoptosis network of many multicellular
organisms, including mammals. Within the pathway controlling
intrinsic apoptosis is a set of genes with double-negative repression,
Casp3 and XIAP, again accompanied by positive autoregulation
of Casp3 [35].

The Ras protein is a G-protein found on mammalian cellular
membranes that is important in many cellular processes and is
an upstream activator of the MAPK pathway. Ras goes from a
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GDP-bound inactive form to a GTP-bound active form, often in a
digital manner [30], and previous studies in lymphocytes have
shown that RasGDP is activated to RasG'TP via a bistable switch
that arises from a positive feedback loop on its own activation via
SOS (Son of Sevenless) [30]. However the Ras switch very
naturally has an associated load, since to transduce the cellular
signals down along the MAPK/ERK pathway, RasGTP naturally
binds to Raf kinase. Thus the Ras switch system contains all the
elements we need to study the effects of adding loads to a bistable
switch which is based on a positive feedback loop.

Methods

Genetic toggle switch

The basic genetic toggle switch consists of two mutually repress-
ing genes as shown in Fig. 1 along with an additional system to
toggle the states. As shown in previous studies, with the right
combination of parameters, the toggle switch will stay in one of
two stable states, each characterized by a high concentration of
one of the repressor proteins, and strong repression of the other.
The toggle switch can now be induced to switch states using two
possible strategies for inducing a transition: decrease the level of
highly expressed protein [5,36] or increase the expression of one of
the repressed proteins (Fig. 1) using an additional inducible system
[36]. For a model which utilizes the latter protocol we obtain a
system of four differential equations [36] after including a load.
The load may be a protein, a small molecule or a binding site on
DNA such that the bound complex prevents the repressor from
binding to and repressing its conjugate promoter. In order to make
the simplest and the most general model, we have assumed here
that the repressors reversibly bind the load only in one copy. We
assume that the total load Lt is a constant, L; is the free load and
conservation gives us the bound load as L;r—L,;.

% —o 4 llilv" —u—kom [Li7)uly +kogt [Liz)(1—£1) (1)
? —u+ 1{);214 —V—kom [Laz]vla +kogpa [Lar](1—£2)  (2)
% = —Komt kiuly + ko1 Ky (1—£1) 3)
% = —keona kavla +kopa ko (1 —£2) 4)

These four equations are presented in de-dimensionalized form,
with u,v,01,0, representing the dimensionless concentrations of
Repressor 1, Repressor 2, Loadl and Load?2 respectively and t the
de-dimensionalized time. The basal parameter values that we use
are as follows: oy =0, =0.2; B, = B2’ =4;n1=3; kont” =kono' =0.5;
ko1 = ko’ =0.5; k; =kg = 1; [L;7] and [Loy] are variable. Note
that Equations (1) and (2) without the last two terms incorporating
the load are the standard equations for analyzing the toggle switch
that have been widely used in both empirical and theoretical work
[5,36]. These equations are discussed in more detail in Supple-
mentary Text S1 Section 1.1. The derivation of this model follows
that of Kobayashi et al [33]. All parameters excluding load binding
rates were sourced from Kobayashi et al [36]; extensive parameter
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Figure 1. Schematic diagram of the circuits studied in this paper. (A). The basic toggle switch is the network shown without the dotted line.
Repressor 1 represses the production of Repressor 2 and vice versa. The dotted line denotes a positive feedback motif found in some natural circuits.
(B). A cartoon of part of the MAPK activation pathway in T lymphocytes, adapted from [29], showing the role of Ras activation. Signals from peptide-
MHC complexes are received at the TCR and lead to phosphorylation of the cytoplasmic chains of the TCR by the Src kinase, Lck. This recruits the
kinase ZAP70 which trans-autoactivates and phosphorylates a scaffold called LAT, which recruits Grb2 and SOS to the plasma membrane. SOS
activates Ras as as shown. (C) A simplified model of the Ras switch. RasGDP transforms into RasGTP via the enzyme SOS. However the catalytic rate of
SOS increases when bound to RasGTP. This sets up an autocatalytic positive feedback. RasGTP is deactivated by enzymes called RasGAP’s (among

others).
doi:10.1371/journal.pcbi.1003533.g001

sensitivity of the load binding rates was performed and are discussed
in the Supplementary Text S1 section 1.4 and Figs. S1, S2, Table S1
and Figs. S15 and S16. The effect of a load arises from the binding
competition between the promoter where the repressor binds and
the load. This competition is not directly incorporated into the Hill
function, since the binding step with the promoter is not explicitly
modeled and is treated in an effective way. In reality however the
concentration of the promoter is so small compared to that of the
load, that the use of Hill functions is justifiable [37]. There are
possibly exceptional cases such as a high copy number of plasmids
compared to load concentrations where this assumption does not
apply. Note that the Hill function is an effective phenomenological
equation describing gene transcription and protein production, and
standard Law of Mass Action (LMA) methods to derive the Hill
functional form may not apply for many transcription factors that
nevertheless show Hill kinetics [38]. Thus it is preferable to use Hill
function forms for this analysis.

To calculate transition times, we first start the system in one
state, say high Repressor 1. After the system has reached steady-
state, we add a constant concentration of the inducer and measure
the time taken for Repressor 2 to go from 10% of its maximum
value to 90% of its maximum value. This is the “rise time”.
Similarly the “decay time” is the time taken for Repressor 1 to go
from 90% of its maximum value to 10% of its maximum value.
The level of the inducer remains fixed.

In practice the inducer may decay and the transition would
depend upon there being inducer present for a sufficiently long
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time to induce transition. In such cases the amount of inducer
required may be of interest. When the inducer is applied as a bolus
with a first order decay rate, it appears as an exponentially
decaying pulse. We thus included a fifth differential equation
governing the amount of Inducer.

dl
— =—dl 5
dt 1 ()

Here d; is the ratio of the inducer degradation constant to the
repressor degradation constant. We used Eq. 5 only when
estimating the amount of inducer required to switch states for
different loads and different decay rates of the load (Supplemen-
tary Text S1 section 1.4 and Supplementary Tables S3, S4).

A genetic toggle switch can be induced to change states by the
alternative method of repressing the highly expressed repressor,
and in fact the original toggle switch used this form of induction
[5,33]. We repeated our calculations for the basic model for the
case of alternative induction, but found no qualitative differences.
The alternative induction model along with the equations is
detailed in the Supplementary Text S1 section 1.4.

Equations 14 assume that the load itself stays in steady state
during the switching of the toggle between one state and another.
However in reality if the load is another protein, it is also
synthetized and degraded by the cell, and therefore its level could
be dynamic. We also simulated this situation by incorporating a
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synthesis and a degradation rate for each load. This resulted in
Equations 3 and 4 being replaced by:

de, ok .k kit ka
i SO N AL N S g Ko R, 6
yn vk u 1 ko1 o (e1)+ 5 5 b (6)
dty ok ok kin  ka
B o ka2 s 4 Koy Ky 22 K _Kary (g
v " 2kd2 Ve + Kof2 2kd2 (62)+ 5 5 2 ( )

Here ¢; is the load-repressor complex and kp; and k4 are the
synthesis and degradation rates respectively for Repressor 1, and
correspondingly for Repressor 2. The parameters are defined in
the Supplementary Text S1, section 1.5. Since the total load is no
longer conserved, we need to include additional equations for the
load repressor complex.

dc , '
d_‘Cl :konl klugl _kﬂffl k]Cl (8)
de ' '
d_j =kom kouly — ko koo ©)

Our model assumes that when the repressor protein is bound to
the load, it is protected from degradation. However it is also
possible that even when the protein is bound to the load, it can still
degrade. To check the impact of removing the protection
assumption, we also consider an additional model where the
repressor can still degrade with the same rate constant when
bound to the load. The equations for that model are slightly
modified versions of the equation above, and are presented in
detail in the Supplementary Text S1, section 3.2.

We conducted parameter sensitivity analysis on models utilizing
both forms of induction; these did not show any qualitative change
on wide variation of key parameters (Tables S1, S2, S3, S4 and
Supplementary Text S1).

Toggle with positive feedback

A positive feedback was added to the R1 side of the toggle
switch as an inducible promoter with a Hill coefficient of 1. We
assumed that the positive feedback acted on the same promoter as
the repression, resulting in a composite term for production of R1
from promoter 1 where p is the strength of positive feedback.

&=O€1 PRI+ B
dt 1+R1/k5+R;2/k;2

—diR, (10)

The derivation of this equation can be found in the
Supplementary Text S1, section 1.6.1. As before, a; is the leaky
production of R; while o;+fB; represents the activity of the
promoter in the absence of repression or positive feedback. We
chose kg and k5 = 1, d; = 0.2, and for the figures in the main paper
we chose p=3.5. We address other values of the positive feedback
in Fig. S6 and the Supplementary Text S1, section 1.6.2.

Stochastic simulations

We perform stochastic simulations and histogram the concen-
trations of the repressor proteins to construct their probability
distribution. The quasi-potential of the toggle is given by the
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negative logarithm of this probability distribution [39]. In order to
construct the probability distribution we make use of the
phenomenon of noise-induced switching. Recent theoretical work
has shown that multiplicative noises due to stochastic fluctuations
can induce switching [40-42]. Experimental results demonstrate
bimodal populations that correspond with theoretic predictions
arising from noise-induced switching [41].

Stochastic simulations were carried out using a modified Gillespie
algorithm using the standard rate expressions for every reaction
(Table S5). We chose a reaction volume that would correspond to a
small number of molecules in the system. Stochastic fluctuations
then drive the system to transition between states rapidly, allowing
us to collect sufficient data pomts. In order to make sure that the
system was not being biased by the small volume, we also repeated
the calculations for a five times larger volume (and hence molecule
number) and found qualitatively similar results (Fig. S4).

For the positive feedback toggle switch the same equations were
used except for the repressible production of Repressor 1, where
we used instead the rate expression given by the right hand side of
Eq. 10 in the Monte Carlo simulations.

Ras-kinase system

For our study we adapted the minimal model of the Ras switch
proposed by Das et. al. [30] with the addition of a reversibly
binding load in the form of the Raf protein (Fig. 1C). The model
contains three proteins, Ras, which exists as RasGDP or RasG'TP,
SOS, the guanine exchange factor (GEF) that catalyzes the
transformation from RasGDP to RasGTP and a GTPase,
RasGAP. SOS on its own has very low GEF activities. However,
the activity of the GEF pocket is strongly influenced by the binding
state of an allosteric pocket in Cdc25 domain [29,30]. When the
allosteric pocket is bound by RasGDP, the GEF activity is
increased by 5 times. If the allosteric pocket is bound by RasG'TP,
its GEF activity is increased by 75 times. In this way, RasGTP can
upregulate its own production rate by binding to SOS, thus
constituting a positive feedback loop. RasGTP is deactivated by
GTPase’s such as RasGAPs that are constitutively present.

After Raf binds RasGTP, the complex catalyzes the phosphor-
ylation of Raf leading to a phosphorylation cascade. For this study
we ignore Raf activation and only consider the effects of Raf as a
binding partner for RasGTP. The Das paper [30] also models the
systems using Michaelis-Menten (MM) forms for the actions of the
enzymes which is quite standard for modeling systems of enzymatic
reactions. However since in this model the load competes not with a
promoter, as in the toggle switch, but with another protein, it is
possible that the quasi-steady state assumption of the MM form
could be introducing some inaccuracies in the results. To account
for this possibility we wrote the entire model using the Law of Mass
Action. We separately simulated the model using the MM func-
tional forms (Supplementary Text S1 section 2 and Figs. S7 and S9).
The equations for the MM forms are listed and discussed in detail in
the Supplementary Text S1. The reactions and rate constants for
this model are listed in Table S6 and Table S7.

We use the following notations for the species involved in the
system:

=[SOScat]; x;=[RasGDP]; x3=[RasGTP];

X1 =]

X4 =[SOScat(RasGDP)]; xs=[SOScat(RasGTP)];
X6 =[SOScat(RasGDP) : RasGDP];
x7=|
Xo=|

SOScat(RasGTP) : RasGDP); xs=[RasGAP);
=[RasGAP : RasGTP]; x1o=[Raf]; x11 =[RasGTP : Raf]
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= —Kom X1X2 4 kofr1 X4 — Kopp X1 X3+ koraxs — (11)

dx
712 = —kom X1X2 + ko1 X4 — kon3 X2 X5 + ko3 X7 (12)

—konaX2X4 +kofraxe +Kearsxo

dx
713 = —komax1x3 4+ ko225 + kearz X7 + KeasXe (13)

— KonsX3x8 4 kofrsXo — KonsX3X10 4 Kogre X11

% =kon1 X1X2 — Kor1 X4 — Kopa X2 Xa + kopraxe +keanxs  (14)
dxs

= Komx1xs —kograxs = Kosxaxs + Koy +keasxr - (15)

% = KonaX2Xa —Kofyaxe — Keat X (16)

% =kom3X2X5 —kor3X7 —KeasX7 (17)

% = — KonsX3Xs -+ Koy 5X9 + KearsXo (18)

% = Kons X338 — KofsX9 — K cars X9 (19)

% = —konsX3X10 + kofrex11 (20)

% =konsX3X10 —kofreX11 (21)

Moreover, four of the basic protein species along with the
complexes they participate in have associated conservation laws.
These are as follows:

SOST=x1+x4+x5+x6+x7 (22)

Rast = x4+ x34+ x4+ X5+ 2X6 +2x7 4+ X9 + X11 (23)

GAPr=x3+ X9 (24)

Rafr=x10+x11 (25)

In the Ras model too we implicitly assume that when RasGTP
is bound to Raf] it is protected from de-activation by a RasGAP.
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We also study the effects of relaxing this assumption on both the
LMA and the PSSA models. The modifications to the original
model are detailed in the Supplementary Text S1 section 3.3.1.

We used XPPaut to perform a bifurcation analysis of the Ras
switch with changing levels of SOS, with and without a load. The
quasi-potential landscape does not provide useful insights into load
induced modulation of the Ras switch and hence the probability
distributions are not reported.

Results

The bistability properties of the toggle switch do not
change unless the repressor can degrade when bound to
the load

The presence of a binding partner for either Repressor 1 or
Repressor 2 (which we refer to thereafter as the load) introduces
new terms in the differential equations describing the toggle
switch, i.e. the last two terms in Eq. 1 and in Eq. 2, as well as two
new equations, Eq. 3 and 4, in the dynamical system. However it
can be easily seen that in steady state Eq. 3 and 4 are also
independently set to zero, and therefore do not affect the
bifurcation properties of the switch. Even in the case of a dynamic
load, since Eq. S13 and S14 are set to zero to ensure the load-
repressor complex is in steady state, the additional terms in Eq. S9
and S10 are also zero. Thus the load makes no difference to either
the bistability of the switch or to the parameter values where the
bistability is seen.

The exception is when the repressor molecule can degrade even
when bound to the load, which may be relevant in some
experimental situations. As Fig. 2A shows, when a load is added
symmetrically to both sides of the toggle switch, the two stable
states approach each other and eventually annihilate, leaving a
monostable system. Fig. 2B shows that when a load is added only
to one side, the system again goes from bistable to monostable at
some critical value of the load. In effect, the upper stable point
vanishes and is no longer accessible due to leakage of the repressor
affected by the load.

The reason for the change in steady state behavior is made clear
on examining the equations of the system. Here we need to
incorporate additional reactions that represent the decay of the
repressor-load complex into the load alone. This leads to an
additional term in the equation for the load and the repressor-load
complex (Eq. S44 and S45). However this term does not appear in
the equation for the repressors, which continue to be governed by
Eq. 1 and Eq. 2. As a consequence in the steady state, the
additional terms in Eq. 1 and 2 no longer equal zero and the
steady state properties of the switch are influenced by the presence
of the load.

As can be seen from an examination of the chemical reaction
system, this mechanism of abrogation of bistability arises whenever
the load-repressor complex participates in a non-reversible (from
the repressor’s point of view) chemical process that leads to an
unbalanced leakage of the repressor from its function as a
repressor by the presence of the load. A more interesting example
of such a process could be provided by a chemical reaction system
where the load is an enzyme for one of the repressor molecules,
which is transformed by the enzymatic action into a protein no
longer capable of repression. The mathematical analysis of this
case 1s exactly the same as the model we are currently discussing
hence we do not consider it separately here.

However a load can significantly change the dynamic response
of the basic genetic toggle switch as we shall see below. We exam-
ined two different measures of dynamic response, response time
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Figure 2. Bifurcation diagram of the genetic toggle switch when the repressor can decay from the load-repressor complex. The thick
lines are stable steady states, the dashed lines are unstable steady states. (A). A load is added symmetrically to both sides of the toggle. The stable
states of only one Repressor molecule with respect to the load are shown. With zero load the toggle switch is bistable with well separated steady
states. As the load increases, the two stable states approach each other and the unstable state, and eventually merge in a bifurcation at a critical
value of the load. The system is monostable beyond this critical value. (B) A load is added only to Repressor 1. The high state of Repressor 1
approaches the unstable steady state as the load increases and merges with it at a critical value of the load, leaving only the lower state accessible to

the system.
doi:10.1371/journal.pcbi.1003533.g002

for state switching and the amount of inducer required for state
switching.

The response time for state switching of the toggle
switch increases

We measured two response times, the rise time which quantifies
the time taken for the concentration of Repressor 2 to increase
from its low or zero level in state 1 to its high level in state 2, and
the decay time which measures the time taken for Repressor 1 to
decay from its high level in state 1 to its low level in state 2, in both
cases in response to a constant inducer. Specifically the rise time
measured the time to go from 10% to 90% of the steady state
maximum, while the decay time measured the time to go from

Rise Time

= 20 o 25
> | A Y
E 15 g%
- (=
15
® 10 ®
N N0
5 5
E S € 5
ZO )
0 Z 0
0 20 40 60 80 100 0

Amount of Load

90% to 10% of the steady state maximum. These measurements
were made using the deterministic model in the cases when the
load was applied only to one side and to both sides of the switch.

We found that both the rise time and the decay time increase
with increasing load concentration. Interestingly, this relationship
was approximately linear in all cases (Fig. 3A & B). The slope of
the linear relationship represents the increase in response time due
to unit increase in load. We found that the slope of the line was
larger when the load was applied to the opposite side of the system
before the switching rather than the same side (Fig. 3A), indicating
that it is harder to switch out of a state without a load to a state
with a load than the reverse. However when a load was applied to
both sides, the slope of the linear fit was higher than when the load

Decay Time

O Same Side Load
Opposite Side Load
+ Both Sides Load

20 40 60 80 100
Amount of Load

Figure 3. Effects of a load on transition times of the basic toggle switch. (A). The time taken to reach 90% of maximum value for the protein
undergoing a low-to-high transition as a function of the Load, normalized by the steady-state amount of Repressor 1. Normalized time is a unit-less
number defined by the transition time (rise or decay) of the system at a given loading condition divided by the transition time (rise or decay) of an
unloaded system. (B). The time taken for the concentration of the protein undergoing a high-to-low transition to reach 10% of its maximum value.
The x- and y- axes are the same as for the previous panel.

doi:10.1371/journal.pcbi.1003533.g003
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was only on the opposite side, suggesting that both the “opposite
side” and the “same side” delays are operating.

While we also found an approximately linear relationship
between the decay time and the concentration of the load, there
was little difference between the decay times for the state with the
load (“same side load”) and the state without a load (“opposite side
load™) at our base parameter values. Thus the load affects rise time
and decay time differently. When a load was applied to both sides
of the switch, the slope of the decay time linear fit was larger, again
indicating the operation of both delays.

We tested these results by changing parameter values for the
binding of the load (Table S1) and found that in all cases we obtain
a good linear fit for the response time. For the rise time, the slope
was uniformly larger when the load was applied to the opposite
side as compared to the same side, and it was the largest when
loads were applied on both sides. For the decay time, the slope
could be larger or smaller when the load was applied to the
opposite side of the decaying state compared with the same side,
but it was always larger than both when a load was applied on
both sides. The slope depended non-monotonically upon the
dissociation constant (Kd) of the binding between the repressor
protein and the load, with both low Kd and high Kd having a
smaller effect that those in between (Fig. SI). This was because
when the Kd was low, i.e. strong binding, the concentration of the
load-repressor complex was unaffected by the state of the switch.
However when the Kd was high, the maximum concentration of
the load-repressor complex was smaller, thereby having a lesser
effect on the system (Fig. S2). Thus response times are maximized
when the load acts as a dynamic sink, i.e. it takes up newly
synthesized repressor when the state changes from the unloaded to
the loaded side, and releases the bound repressor when switching
from the loaded side to the unloaded side.

Previous studies of response times of biochemical networks with
and without a load have also seen monotonic increases in the
response time of simple transcriptional circuits [37]. However the
extremely consistent approximately linear response we see under
wide variation in parameter values is extremely intriguing.

An increase In response time should also imply that the
concentration of inducer required to shift states should also be
affected, especially when it can decay. In accordance with this
expectation we also found that the concentration of inducer
required to switch states increased exponentially with increasing
load, as seen in Table S2. The parameter of the exponential fit was
dependent on the inducer decay rate, indicating that the amount
of time the inducer remains above a threshold is the key factor
governing the switching. We find that this response to a load is
unaffected by the mode of switching the toggle, and induction by
repression of the current state yields the same qualitative results
(Table S2 & S3).

In our analysis so far we have assumed that the total
concentration of the load is fixed. We now analyze the case when
the load is generated by a constitutively active promoter and can
decay at a first order rate. We find that in this case too the
qualitative features of the transition time remain the same as the
toggle switch with a fixed load, i.e. it was approximately linear in
all parameter regimes tested (Supplementary Text S1 section 1.5,
Fig. S3 and Table S4). The reason why we do not see a difference
from the basic toggle switch is that the transition times ultimately
measures time between steady states, and we wait for the system to
come quite close to the steady state value (90%). Thus the
concentration of the load has also reached a steady state value and
the system behaves as it would with a fixed load.

We also tested the response times when the repressor can leak
away from the systems after binding with the load. Here we find
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that (Fig. 4) when a load is applied to the same side, the rise time
continues to increase monotonically linearly with the load but the
decay times decreases monotonically with the load. However when
a load is applied to both sides, we find a negative linear relation
between the transition times for both rise and decay and the load.
The reasons for the change in behavior is because as we saw
previously, when the repressor can leak away from the repressor-
load complex, a load has a dramatic effect on the bistability
properties of the switch, abrogating bistability very quickly (Fig. 1).
When only one repressor has a load, the high state of that
repressor approaches the unstable state, indicating a decrease in
the domain of attraction. Shifting out of that state thus becomes
easier with increasing load. When both sides have loads, both
stable states approach the unstable state, therefore shifting out of
either state becomes easier, and both transition times decrease.

Dramatic changes in the potential energy landscape and
probability distributions of the toggle switch

The modulation in the dynamic properties of the basic genetic
toggle switch discussed above suggests that the load has altered the
potential energy landscape of the toggle switch, making it harder
to switch. For two-dimensional and higher systems, such as the
toggle switch, analytical methods to construct the potential
landscape are not available, but a quasi-potential can be
constructed from the probability distribution function of the
concentrations of the repressor molecules, where the quasi-
potential is given by the negative of the natural logarithm of the
probability distribution [43,44]. To calculate this we performed
Monte Carlo simulations of the toggle switch using a Gillespie type
algorithm elaborated in the Methods section. When the toggle
switch is symmetrically balanced, both the probability distribution
function and the potential energy landscape are completely
symmetric. If the system is started in State 1, random fluctuations
can drive it into State 2 and vice versa. The probability
distribution can then be constructed by counting the frequencies
of these random fluctuations. However since the genetic toggle
switch can be very stable, a numerical computation of the potential
energy landscape requires impractically long simulation times (as
we show below). While computational methods to sample rare
trajectories in such cases exist, they are very sensitive to choices of
parameters [42,45]. We developed a computational protocol in
order to numerically obtain the probability distribution function of
both protein concentrations and the transition times. We chose an
appropriate volume for the genetic toggle switch such that exactly
the same parameters as in the deterministic simulations led to the
operation of the toggle switch with only a small number of
proteins. The toggle remains bistable in this regime but the small
protein numbers vastly increases spontaneous stochastic fluctua-
tions arising out of multiplicative noise in the system and allows the
simulation to explore parameter space and collect enough data.

Our simulations showed that the switch switched states a large
number of times. In order to account for differences in the time
step in different states, the probability density function of the
concentrations was constructed using a time trace collected after
approximately 1 second intervals. As Fig. 5 shows, for a symmetric
switch we obtain a symmetric bi-modal probability distribution
that corresponds to a double-well potential.

When we add a load to the system asymmetrically, in the form
of a binding partner for the Repressor 1, we find that the
probability distribution becomes extremely skewed, and the total
weight of the probability distribution corresponding to the other
side, ie. Repressor 2, dramatically increases (Fig. 6A). This
indicates that the underlying double well potential has become
skewed and the state 2, corresponding to high Repressor 2, has
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Figure 4. Effects of a load on transition times of a toggle switch without the protection assumption. (A). The time taken to reach 90% of
maximum value for the protein undergoing a low-to-high transition as a function of the load. The system is de-dimensionalized as described in
Supplementary Text S1 section 1.1 and 3.2.1. (B). The time taken for the concentration of the protein undergoing a high-to-low transition to reach
10% of its maximum value. Note that the linear relationship for both-sided load transition times, and same-sided decay time, and opposite-sided rise
time has a negative slope. The relationship for same-sided rise time and opposite sided decay time has a very small, but positive slope.
doi:10.1371/journal.pcbi.1003533.g004

increased its stability at the cost of State 1 (Fig. 6C). When a load is
applied to both sides symmetrically, the concentration probability
distribution reverts to a symmetric bimodal distribution corre-
sponding to a symmetric double-well potential (Fig. 6B & D).

In order to test this directly we calculated the distribution of
lifetimes in state 1 and the lifetimes in state 2. As shown in Fig. 7,
when the switch is symmetric with no load, the lifetime distribution
is exponential, as should be expected for a simple two-state system.
However when the load is applied to Repressor 1, the probability
distribution of the lifetime in state 2 increases dramatically. The
average lifetime of state 1 also increases but only by a very small
amount. The time spent in state 2 does not appear to saturate, and
continues to increase with increasing load. When loads are applied

PDF for Symmetric Toggle

symmetrically to both sides, the lifetime histogram in Fig. 7 indi-
cates that both sides have been stabilized since the system spends
significantly longer time in each state. Note that in an equilibrium
system this would have been indicated by the deepening of the
potential well. However in non-equilibrium systems the potential
well picture does not completely capture the dynamics and there is
an additional contribution from a “curl flux [43,46] that needs to
be taken into account. For our purposes calculating both the
distribution of concentrations and the distributions of lifetimes
captures the dynamics of the toggle switch.

To test whether our results change for higher protein con-
centrations, we increased protein concentrations about fivefold
and recalculated the probability distribution function. We find that
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Figure 5. The probability distribution function and the quasi-potential of the genetic toggle switch without a load. (A). The
probability distribution function of a toggle switch without a load. The x- and y- axes here represent the number of molecules of Repressor 1 and
Repressor 2 respectively, while the z-axis is the frequency of its occurrence. Note that the distribution is symmetric as expected. (B). The quasi-
potential of the symmetric toggle switch, showing the symmetric double-well potential constructed by taking the negative logarithm of the
probabilities shown in (A). A small offset of 0.001 was added to the probabilities to prevent taking the logarithm of zero. This does not change the
shape of the well.
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Figure 6. The probability distribution function and quasi-potential of a toggle switch with a load. The 3-dimensional plot is viewed with
the xy-plane horizontal for better contrast. The x- and y-axes are numbers of molecules of R1 and R2 while the z-axis is either probabilities or the
quasi-potential. (A). The probability distribution function (pdf) of the toggle switch of Fig. 5 but now with a load of 20 molecules on Repressor 1 (R1).
(B). The pdf of the toggle switch with a load of 20 molecules on R1 and 20 molecules on R2. (C). The quasi-potential of the toggle with a load of 20
molecules on R1, i.e. corresponding to panel A. (D). The quasi-potential of the toggle with equal loads of 20 molecules on each repressor, i.e.

corresponding to panel B.
doi:10.1371/journal.pcbi.1003533.g006

our qualitative results remain robust despite the increase in protein
concentrations (Supplementary Text S1 section 1.3 and Fig. S4).
Switching between states is rare at these protein numbers, with a
mean residence time in state R1 for the unloaded switch being
approximately 6 x 10° min against about 700 min for the basal
case considered, a difference of almost three orders of magnitude.
However as for the basal case, the quasi-potential landscape skews
significantly with the addition of a load on the switch.

“Opposite Side effect” dominates the load effect in the

basic toggle switch

These results allow us to interpret the dynamic results that we
obtained earlier. If the system is in state 2 and there is a load on
state 1, a transition requires an increase in Repressor 1 concen-
tration in order to suppress the production of Repressor 2. A load
on Repressor 1 however competes with the promoter of Repressor
2 for binding with Repressor 1, and thereby reduces the effective
concentration of Repressor 1. This effectively stabilizes state 2.
The dynamic analysis shows that state 1 not only remains an
attractor state but in fact it takes a longer time, and more inducer,
to shift out of state 1 as compared with the no-load situation. This
is because the load also acts as a reservoir for Repressor 1, and in
fact increases its total concentration. This slows down the tran-
sition to state 2. Interestingly this “same side effect” is generally
weaker than the “opposite side effect” above. In agreement with
this picture, the stochastic simulations show that the distributions
of lifetimes in state 1 broaden slightly on addition of a load.

If the load is present symmetrically on both sides, the concen-
tration histograms in Fig. 6 and the time histograms in Fig. 7 indi-
cate that both states have been stabilized, due to a combination of
the ‘same side’ and the ‘opposite side’ effect now acting together to
stabilize each state of the switch. In the dynamical simulations this
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is seen by the increased slope of the response time line for the case
of a load on both sides. Results for additional parameter values are
shown in Fig S15 and Fig S16.

Positive feedback moiety makes toggle switch tunable

When a positive feedback moiety is introduced in the toggle
switch, we again see a linear relationship between the rise time and
the decay time of the two states of the switch and the load (Fig. S5).
Therefore here too the load appears to be skewing the underlying
potential landscape of the switch. Using stochastic simulations we
constructed the probability distribution function of this toggle
switch as described above. We found that even in the absence of a
load, when a positive feedback moiety is introduced on one side of
a toggle switch, the probability distribution for the toggle switch,
and hence the quasi-potential landscape, becomes extremely
skewed in favor of the state with positive feedback as shown in
Fig. 8A. Even with no load on the system, the switch is biased to
State 1 and the lifetime spent in State 1 is much longer than in
State 2. If a load is added to R2, the opposite side effect
additionally favors State 1. If a load is added to R1 however, the
opposite side effect favors State 2 (Fig. 8B). It is possible to balance
these effects resulting in a more even distribution by adjusting the
load on R1 and the strength of positive feedback. As the load on
R1 is increased beyond this balance point, the opposite side effect
dominates and the probability distribution becomes skewed
toward State 2 (Fig. 8C). As the opposite side effect increases
with increasing load, the lifetime in State 2 also increases in
agreement with the findings for the regular toggle switch (Fig. 8D).
The lifetime in State 1 also increases by a smaller amount, as for
the regular toggle switch (Fig. 8E).

For the toggle switch with the positive feedback moiety, we can
also check the consequences of allowing repressor leakage through
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Figure 7. Distribution of the lifetimes of the toggle switch with and without loads. The time the system spent in either state R1 or state R2
was calculated from the time trace of the stochastic simulations and a histogram made of the results. The histogram is shown on a semi-log plot to
accommodate the data on a single chart. (A). Lifetimes in State R1. The unloaded state is the solid curve that is to the extreme left of the others,
showing that the lifetimes in state R1 increase slightly on addition of load on R1 alone due to the “same side effect”. (B) Lifetimes in State R2 when
load is on R1. The solid curve on the extreme left is the unloaded state. There is a significant increase in lifetimes due to the “opposite-side effect” of
the load on R1. (Q). Lifetimes with a balanced load, showing that both the states R1 and R2 get stabilized with a significant increase in lifetimes on
addition of a small load on both sides. Note that the distributions for R1 and R2 for equivalent cases coincide as should be expected.
doi:10.1371/journal.pcbi.1003533.g007

the repressor-load complex. As shown in Fig. S13, this addition to there appears very little free Ras, in reality, even for low SOS
the system affects the steady state properties of the switch and concentrations there is a large concentration of the activated
bistability is abrogated after the load increases beyond a critical RasGTP-Raf complex (since RasGTP in these complexes is also
value, when load is present for both sides or only one side. protected from the action of the Ras G'TPases).

This can be seen in another way in Fig. S8 where the stable state
Loads fundamentally transform positive feedback based of RasGTP is plotted against the level of total Raf in the system,
switches in signal transduction keeping the level of SOS constant. Again we see that a bistable

The RasGTP system shows a bistable transition from a low systemn is transformed into a monostable system when Raf increases

RasGTP state to a high RasGTP state as the activating signal, in beyond a threshold. These results are exactly the same for the model

our case the number of SOS molecules, are varied. As Fig. 9 which assumes Michaelis-Menten kinetics, except for small changes
shows, a system with no Raf shows a classic Z-shaped bifurcation in molecule numbers, as can be seen in Fig. S7 and S9. Results do
diagram with two bifurcations as SOS is varied. The first bifur- ~ not change on changing load-binding parameters (Fig. S10, S11)
cation marks the transition from a monostable low-RasGTP state Thus the addition of the Raf scaffold, which is an integral part of
to a bistable system with a “high” RasGTP state (and an unstable the MAPK cascade, fundamentally changes the qualitative behavior
intermediate state). The second bifurcation marks the transition of the positive feedback switch. The main reason why the steady
from the bistable state to another monostable state with a high state bifurcation properties are affected here in contrast to the basic
concentration of RasGTP. genetic toggle switch is that for this signaling circuit, as seen in Eq.
When Raf is added to the system, the bifurcation diagram 22-25, total Raf and Ras are conserved, as is typical for a short
changes and the two bifurcations start approaching each other. timescale signal transduction system. These conservation laws
This is because the effect of adding Raf is equivalent to seques- couple Raf concentration to RasGTP concentration even at steady
tering away some of the activated RasGTP in an “inactive” com- state. Therefore adding Raf to the system effectively reduces total
plex. When Raf concentration crosses a threshold, the bifurcations Ras concentration since Raf sequesters away Ras from the switch.
annihilate each other and disappear. This system is now char- To see this more generally, consider for example a chemical
acterized by a single stable point for all concentrations of SOS, reaction system comprising of n-species Y7,...Y,. Let us assume

and the disappearance of the threshold for Ras activation. While without loss of generality that the species Y, is coupled to a
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Figure 8. The genetic toggle switch with a positive feedback motif on Repressor 1 (R1). (A). The probability distribution function (pdf) with
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R2 with varying levels of load on R1. The unloaded case is the curve on the extreme left. Note the initial asymmetry in the lifetime distribution due to
the positive feedback, as well as the large increase in lifetimes with the inclusion of a load.

doi:10.1371/journal.pcbi.1003533.g008

downstream circuit through a binding reaction with a load, L. The
(n+2) differential equations describing this system are: Y,§°) = Yo+ YL (30)

dY, This conservation law implies that one equation in our
71 =fi(Y1,...Yy) (26) dynamical system is r.edundapt, and we need to drop one equation

t to make the system linearly independent. We can decide to drop
Eq. 19, and substitute ¥, = Y?—[Y,L] in Eq. 20 and Eq. 21 and
solve the resulting (n+l) equations for the (n+l) unknowns,
A Yi,...Y,—1,Y,L,L, obtaining Y, as a residual from Eq. 22. Thus

%= £ (Y1, Yo) +kon YuL) — ko[ Ya][L] (27) the steady state solutions of the ¥;'s now involve the amount of the
dt load. Clearly, the existence of the conservation law has led to a
change in the steady state properties of the dynamical system.

M = kQ ff[Yn L] —kou[Y,][L) (28) Note that Y}, itself would usually enter (by itself or in the form of
dt other complexes, which then would also need to be accounted for in
the conservation law Eq. 22) into one or more of the equations for

the remaining species, Y7p,...Y,_1. This would result in the

d[Y,L] = Kogr [ YnL] = kon[ Y] [L] (29) equalioys for those other species explicitly involving, and thus
di depending upon the level of the load. For the Ras system above, Eq.

16 couples the load, Raf] to the concentration of Ras. However Ras
concentration and SOS concentration are also coupled. Thus the
load explicitly affects the steady state values of all species
concentrations in this system. This leads to a fundamental qua-
litative change in the bifurcation properties of the system.

Note that for simplicity of notation we have not indicated the
dependence of the dynamical system on its own parameter values.
Now in the steady state, if the set of equations is complete, the left
side uniformly goes to zero and we recover the result that the

. . . Discussion
steady state remains exactly the same with or without a load, as for
the genetic toggle switch. However let us now assume that we have It has been pointed out previously that significant sequestration
an additional conservation law, say, effects can abrogate zero order ultrasensitivity [26,47,48], can
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Figure 9. Bifurcation diagram of the Ras switch with different
levels of Raf (load) on the system. The total number of SOS in the
simulation box is used as the parameter being tuned, which varies from
0 to 1000. For Raf =0, Raf = 10 and Raf = 30, there are two bifurcations as
SOS is increased. In the first bifurcation a new high valued stable steady
state appears along with the low valued stable steady state. In the
second bifurcation, the low valued stable state disappears leaving
behind only the high valued state. The dotted line marks the unstable
steady state that also comes into existence in the bistable region. As
total Raf increases, the two bifurcations approach each other. When
Raf =50, the system has lost both of its bifurcations and is characterized
by a single stable steady state at all values of Raf.
doi:10.1371/journal.pcbi.1003533.g009

change the dynamics of simple phosphorylation circuits [23,24]
and change oscillatory behavior in some circuits [27]. We add to
this body of work by demonstrating that the addition of a simple
binding partner to the output protein of a genetic or signaling
switch can have dramatic effects on its properties, and can
fundamentally change the operation of the switch.

For a genetic toggle switch with two mutually repressing
proteins such as the classic switch built by Gardner et al. [5] we
showed that even though the presence of the binding partner does
not alter steady state properties of the switch, it can drastically
change the dynamic properties. Using a novel potential landscape
analysis, we showed that this is because the addition of the binding
partner skews the underlying quasi-potential, making one state
significantly more stable than the other. In practice therefore, a
genetic toggle switch that is significantly skewed towards one side
may never properly function as a switch. Thus the downstream
consequences of such loads need to be taken into account when
designing larger synthetic circuits with the toggle switch as one of
the elements.

On the other hand this phenomenon actually provides a way of
making artificial switches tunable. It is possible to engineer a
biased switch merely by adding a load on the opposite side of the
toggle, which is a useful device when engineering a switch that is
designed to be switched on only in special circumstances. A load
on both repressor proteins similarly stabilizes both sides of the
toggle switch. This could be useful when working with synthetic
components with low concentrations in cells, especially those that
display stochastic switching. A load on both repressor proteins can
significantly increase the stability of such a toggle.
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In natural systems, mutually repressing toggle switches are often
found with other complexities, such as a positive feedback motif on
one side. The positive feedback motif by itself biases the toggle
switch by stabilizing the side it is on at the expense of the other
side. A load on the same side then stabilizes the opposite side, and
can re-establish balance between the two quasi-potential wells. For
engineering circuits in multi-cellular organisms, it is worth noting
that that feedback between the load on a toggle switch and the
strength of the positive feedback may ensure that the switch
operates efficiently even in the presence of cell to cell variability in
the load. How loads vary between cells and in multi-cellular
organisms is an interesting question to explore in future work. The
presence of the positive feedback provides a potential target for
evolutionary fine-tuning of the switch.

In the above analyses we use novel potential landscape methods
that have proved useful and insightful in fields such as protein
folding to discuss the fundamental properties of a dynamical
system that shows not apparent changes in its stability properties.
We demonstrate that these methods, though stll relatively
underdeveloped for use with non-equilibrium chemical reaction
systems, hold promise for understanding the dynamics of such
systems beyond what linear stability analysis can provide. How-
ever there are certain conditions when addition of a load changes
the stability properties of the genetic toggle switch. One class of
such effects happen when the repressor can leak away from the
repressor-load complex, as can happen either when the repressor
can decay or degrade when bound to the load, or when the load
can modify the repressor and make it unable to repress. We show,
employing standard bifurcation analysis, that additional loads in
this system can abrogate the switch-like properties of the toggle
switch entirely.

In switches based on autocatalysis or positive feedback with an
enzymatic deactivation, such as is often found in signaling systems,
the effects of a load are equally dramatic. We show that in a simple
model of Ras activation, adding a small concentration of Raf
molecules changes the bifurcation diagram of the signaling circuit
and can completely abrogate the bistability in the system. While
we have chosen a specific example of Ras activation, our simplified
model, with an autocatalytic forward reaction and an enzymatic
backward reaction is a minimal model for a many positive
feedback switches. The change in the bifurcation diagram arises
from the conservation laws that couple the concentration of the
load with the concentrations of the proteins in the upstream module.
Given the sensitivity of non-linear dynamical systems to initial
conditions, it should probably be expected that many, if not all,
positive feedback based switches that operate at the short timescales
of signal transduction, and therefore must possess these conservation
laws, should exhibit this sensitivity to the effect of a load.

Our results throw up an interesting puzzle for quantitative
biologists. In many natural signal transduction systems such as the
MAPK cascade, the concentration of the output of a bistable
switch is quite comparable to the concentration of the load, thus
significant changes in load concentrations could have dramatic
effects on the behavior of the switch. However it has also been
shown that there is a significant cell to cell variability in protein
concentrations [49]. How do cells ensure that positive feedback
based switches such as the Ras switch continue to operate robustly
in the bistable regime? Additional regulatory mechanisms
mvolving feedback between the load and its partner protein may
exist that confer robustness to the qualitative behavior of the
biochemical switch. Arguably some of the bells and whistles of
natural protein networks that are often disregarded when
analyzing the network may in fact be performing this role. In
other words, self-assembled switches have to be complex! In this
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context it 1s worth mentioning that it has been persuasively argued
[50,51] that some biological circuits maintain robustness of “fold-
change’ behavior rather than absolute levels of protein concen-
tration. It is possible that additional protein-protein interactions
that couple concentrations of loads with output proteins may end
up in performing this function. Another significant factor that
needs consideration is the role of spatial segregation in producing
feedback from the downstream module to the upstream one. In
fact it has been shown experimentally that MAPK substrates
sequester activated MAPK in the nucleus, and thus protect it from
cytoplasmic phosphatases. Changing the concentration of one
substrate therefore affects the concentration of activated MAPK
[52].

Previous discussions of the effect of loads on the operation of
circuits have suggested the use of insulators, that is circuit elements
that insulate the upstream module from the downstream module
[22]. The initial suggestions for building insulators in Ref. [22]
involved incorporating signal amplification along with negative
feedback in the upstream circuit. Another way of insulating the
circuit is to ensure that the demand of the load for its cognate
repressor is never significant compared to the total amount of
repressor. For a genetic switch therefore, a possible insulating
mechanism is if the link to the downstream circuit is through a
promoter. For example, consider making an AND gate from an
output of the toggle switch. This can be done by inserting a
constitutively produced protein Y that binds to R1 such that the
complex is a transcription factor for another protein, say Z. Thus
there is an AND relationship between the two inputs, Y and R1
and the output Z. To offset the effect of load induced modulation
of the dynamics of R1, an additional step can be inserted such that
R1 first binds to the promoter region of another gene that codes
for protein X and activates its transcription, and it is the protein X,
rather than R1, that can bind to Y and activate production of Z.
The advantage of adding this extra step is that the concentration of
the promoter for X is very small compared to the concentration of
R1, and therefore load induced modulation of the upstream toggle
can be kept at a minimum. Note however that this cannot be done
without the additional cost of the time delay required for the
transcription and translation of X.

As can be seen, any additional step or series of steps that can
amplify a weak signal can act as an insulator. Another standard
example of an amplifying circuit is a phosphorylation cascade
which is especially relevant when considering Ras activation since
it directly leads to the MAPK phosphorylation cascade. Phos-
phorylation cascades are also very fast, and therefore do not face
the additional time delays of an additional transcriptional step.
From the point of view of synthetic circuit design, the insulating
mechanism here could be constructed by designing a weak binding
affinity of Ras (or the synthetic protein that plays that role) for Raf
(or the equivalent protein). The bound complex then catalyzes a
phosphorylation cascade that ends by connecting to the down-
stream circuit.

Note that this method of insulation does not have the same time
delay costs as the additional transcription steps. However it does
come with the metabolic costs of having to produce large amounts
of proteins that are essentially serving no useful physiological
purpose for the cell. This cost could be relevant in some synthetic
biology applications, and certainly needs to be evaluated during
circuit design. It has been shown in the context of phosphorylation
cycles that insulation always carries a metabolic cost, and in
general better insulation carries a greater metabolic cost [53].

The existence of the MAPK phosphorylation cascade however
begs the question whether it serves the purpose of insulation of the
upstream Ras circuit from the downstream circuit. While it is not
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possible to answer this intriguing question without further
experiments, it does appear that the Ras-Raf complex is present
is quite large numbers on activated cells. This would suggest that
msulation is not the function for which the cascade may have
evolved. Our own analysis of the genetic toggle switch with the
positive feedback motif suggests that Nature may prefer more
complicated forms of regulation that balance the different
components of the circuit. However there is no reason why both
methods cannot be utilized. To our mind this is a very exciting
question that requires more attention from experimentalists and
theorists alike.

It should also be noted that due to non-specific binding of
transcription factors with DNA as well as between proteins, every
circuit in the cell, real or synthetic, operates in the presence of a
load. Variability in the functioning of circuits that are seen when
transferring synthetic circuits between species, or even in different
cells, may be a result of not only differences in basic protein
concentrations, but also of this undervalued but nevertheless
tangible load. Based on this reasoning we predict that some of the
host-dependent effects that complicate synthetic biology, ie. a
synthetic circuit that works in one organism not performing well in
another, are in fact due to changes in the intrinsic load due to non-
specific binding when changing hosts.

Our analysis underscores the importance of incorporating loads
when simulating models of switches in natural and synthetic
systems. Mathematical analysis of switch-like motifs therefore
would do well to at least include a load on their output proteins, in
order to incorporate the possible effects of load induced modu-
lation on the circuit.

Supporting Information

Figure S1 Surface plots showing response times of the
simple genetic toggle switch with changes in load (L) and
changes in the dissociation constant (Kd) of binding with
load. The units of L and Kd are (molecules/um?). The z-axis
measures the response time indicated in the title. “Same Side
Rise” and “Same Side Decay” refers to the rise time and decay
time when the load is on the same side as the repressor whose
concentration is increasing. “Opposite Side Rise” and “Opposite
Side Decay” refers to the rise time and the decay time when the
load is on the other side of the repressor whose concentration is
increasing. “Both Sides Rise” or decay refer to the rise and decay
times when a load is present on both sides (symmetrically). The
plot shows that at every Kd, the relation between the response
time and load is approximately linear. The response time is largest
for the case of “Both Sides Rise” followed by “Opposite Side
Rise”. The response time is also non-monotonic with respect to
the Kd for a given load, and is maximized at intermediate values
of Kd.

(TIF)

Figure S2 Time plot of switching of the simple toggle
switch with a load on Repressor 1, at three different
values of the dissociation constant. In all three cases the
systemn is switched by providing 150 molecules/pm® of an inducer
at 1000 minutes. The inducer stays constant at that value and is
not shown in the plots. The left panel has a very high dissociation
constant (Kd = 1000 molecules/um®) of binding between the load
and the repressor, due to which the load has a minimal effect on
the system. The middle panel has an intermediate value (Kd =1
molecules/ umS) because of which the load acts as a dynamic sink
by releasing Repressor 1 and slowing the switching. The right
panel shows the effect of a small dissociation constant (Kd=10""
molecules/pm?). At such strong binding affinities, all of the load is
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always bound to Repressor 1. Thus the load has minimal effect on
the switching dynamics. In all cases total load concentration is 100
molecules/pm®.

(TIF)

Figure S3 Effects of a dynamic load on dynamics of a
symmetric toggle switch. (A). The time taken to reach 90% of
maximum value for the protein undergoing a low-to-high
transition as a function of the equilibrium constant of a dynamic
load. Normalized time is a unit-less number defined by the
transition time (rise or decay) of the system at a given loading
condition divided by the transition time (rise or decay) of an
unloaded system. (B). The time taken for the concentration of the
protein undergoing a high-to-low transition to reach 10% of its
maximum value.

(TIF)

Figure S84 Stochastic time trace and the probability
distribution function of repressor concentrations for the
large volume simulations. (A). Comparison of time traces of
the stochastic simulations of the simple toggle switch with basal
parameters (top panel) and a larger volume (bottom panel). The
average molecule number is about 5 times greater, and the
number of transitions are significantly fewer. (B). The probability
distribution function of the genetic toggle switch with the larger
molecular number without (left) and with (right) a load. The effect
of a load on R1 is qualitatively the same for this system as for the
smaller system. Since transitions are slower the data are more
uneven for this simulation.

(TTF)

Figure S5 Transition times in a genetic toggle switch
with a positive feedback meoiety. In all cases the strength of
the positive feedback (denoted here by P instead of p) is 3.5 on
either Repressor 1 (R1) or Repressor 2 (R2). Top Left: Rise time -
time to transition INTO state R1 with the positive feedback on
R1. Note that the rise time is larger at nonzero loads when the
load is on R2 or when the load is on both sides, in agreement
with the simple toggle switch. Top Right: Rise time - time to
transition INTO state R1 with the positive feedback on R2.
Bottom Left: Decay time - time to transition OUT OF state R1
with the positive feedback on R1. Bottom Right: Decay time -
time to transition OUT OF state R1 with the positive feedback
on R2.

(TIF)

Figure S6 Probability distribution functions of repres-
sor concentrations for the toggle with a positive
feedback moiety. The left panel shows that when p=0, the
switch is balanced evenly. As p increases, the side of the switch
with the positive feedback becomes more and more prominent, at
the expense of the other side. When p =5, the system spends most
of its time in one state.

(TTF)

Figure §7 Bifurcation diagram of the Ras switch with
different levels of Raf (load) on the system for the model
with Pseudo Steady State Assumption (PSSA). The total
number of SOS in the simulation box is used as the parameter
being tuned, which varies from 0 to 1000. For Raf=0, Raf=10
and Raf=30, there are two bifurcations points as SOS is
increased. In the first bifurcation a new high valued stable steady
state appears along with the low valued stable steady state. In the
second bifurcation, the low valued stable state disappears leaving
behind only the high valued state. The dotted line marks the
unstable steady state that also comes into existence in the bistable
region. As total Raf increases, the two bifurcations approach each
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other. When Raf =50, the system has lost both of its bifurcations
and is characterized by a single stable steady state at all values of
Raf.
(TTF)

Figure S8 Bifurcation diagram of the Ras activation
model based on Law of Mass Action (LMA). Here the total
number of Raf molecules (Rafy) is the primary parameter being
varied. Without Raf, the Ras activation system is bistable as
reported. With increasing Rafy, the “high” stable steady state
branch comes closer with the unstable steady state branch and
both are eliminated after a threshold of Rafy. A monostable region
is maintained beyond the threshold.

(TTF)

Figure S9 Bifurcation diagram of the Ras activation
PSSA model with total number of Raf molecules (Rafy)
as the primary parameter. Without Raf, the Ras activation
system is bistable as reported. With increasing Rafr, the “high”
stable steady state branch comes closer with the unstable steady
state branch and both are eliminated after a threshold of Rafy. A
monostable region is maintained beyond the threshold.

(TIF)

Figure S10 Parameter sensitivity of the bistability of
Ras switch to changes in k,gg. Increase of kg results in
leftward shifts of both stable fixed points, increase in the bistable
regime and increase in maximal RasGTP activation level (Green
Line) when compared to baseline with original value (Blue Line).
Decrease of koqs (Red Line) results in right shift of both limit
points, increase in unstable bistable regime and decrease in
maximal RasGTP activation level. Qualitative features of bis-
tability are maintained.

(TIF)

Figure S11 Parameter sensitivity of the bistability of
Ras switch to changes in k6. Increase of k., (Green Line)
results in right shift of both limit points, increase in unstable
bistable regime and decrease in maximal RasGTP activation level
when compared to baseline original value (Blue Line). Decrease of
kons (Red Line) results in left shifts of both limit points, increase in
bistable regime and increase in maximal RasGTP activation level.
Qualitative features of bistability are maintained.

(TTF)

Figure S12 Comparison between bifurcation diagrams
of toy genetic toggle switch with and without protection
of repressor degradation when bound with promoters. If
the protection is not included (Blue Line), a minor increase in the
bistable region can be observed with right shift of upper limit point
and left shift of lower limit point compared to the case with
protection assumed (Red Line). Note that this is not the same as
degradation after being bound with the load.

(TTF)

Figure S13 Bifurcation diagram of the genetic toggle
switch with positive feedback loop on one side after
removal of the protection assumption. The left panel shows
the bifurcation diagram when the load is added symmetrically to
both sides. Without load molecule, the toggle switch is bistable as
predicted. With the increase in L, the unstable steady state and
the “low” stable steady state come closer and meet at certain
threshold. The value of “high” stable steady state decreases with
increase in Ly. Beyond the threshold, the toggle switch becomes
monostable. The right panel shows the effect of just adding a load
to R1. In this case the high state of R1 approaches the unstable
steady state, and annihilates itself. The system jumps to the low

March 2014 | Volume 10 | Issue 3 | 1003533



stable state, which is equivalent to the “high” state of the other
repressor.

(TIF)

Figure S14 Bifurcation diagram of the Ras activation
model when Ras can degrade when bound with Raf. As
the number of Raf molecules increase, the bistable region
decreases. However unlike the case with no protection, the curve
moves to the left. When Raf molecules increase by a large amount,
bistability is abrogated.

(TTF)

Figure S15 Transition times for various k',, and k' ¢
values plotted as a function of load for the basic toggle
switch. Even if the binding-unbinding rates are slower or much
faster than protein decay rates, the load-transition time relation-
ship stays linear. A, C, E, G, I, K, M, O, Q and S show the rise
time. B, D, F, H, J, L, N, P, R, and T show decay time. (A,B)
k'on=4%4, k'or=0.5, Kd=0.125. (C,D) k'y,,=10, k',xz=0.5,
Kd=0.05. (E’F) kron = 4’» k,oﬂ": 4> Kd=1. (GvH) k,On = 10,
k'og=10, Kd=1. (I]) k'en=4, k'(y=20, Kd=5. (K]L)
ko, =10, k'or=50, Kd=5. (M,N) k',,=4, k',xz=40, Kd=10.
(O,P) k', =10, k' (=100, Kd=10. (Q,R) k',,, =40, k' ,4=400,
Kd=10. (S,T) k', =100, k' ;= 1000, Kd = 10.

(TIF)

Figure S16 Probability distributions of repressor con-
centrations for various values of k',, and k' g for the
basic toggle switch. Even when the binding-unbinding with the
load is several times faster than protein decay rates, the basic
phenomena discussed in the paper remains unchanged. (A)
k', =50, k'ogy=500 (B) k'y,,=500 k',gz=500 (C) k'y,=500
k' o= 5000.

(TIF)

Figure S17 Bistability of the toggle switch with positive
feedback. A bifurcation diagram of the simple toggle switch
with a positive feedback moiety on one side, with respect to the
parameter p that measures the strength of the positive feedback.
Only the concentration of Rl is shown for simplicity. The
switch remains bistable till p becomes larger than a little over
200.

(TIF)

Table S1 Slopes of linear fits to rise and decay time
with various values of K g, K., and B. The first column
reports the values of the dissociation constant (Kd = Koff/Kon)
and the kinetic constants of the binding of Repressor 1, 2 or the
value for B, which represents promoter strength. The other
columns report the slopes of the linear fits of the various rise
times and decay times. In all cases the fits have high R-squared
values (>0.95). Intercept is 1, as the slopes are normalized to
the un-loaded transition time. For K4 we change the para-
meters by two orders of magnitude in both directions to show
that the linear relation is robust despite these changes. Note
that the relation between rise time or decay time and the
binding constant is non-monotonic. Units are as reported in the
text.

(DOC)

Table S2 Exponential Fits of the amount of inducer
required to transition states as a function of load. The
basic genetic toggle switch switch was toggled to its other state by
production of the other repressor protein by an inducer, given
here as a bolus with a decay rate as shown. The size of the bolus
was increased until the state changed. This was repeated at
different levels of load and the minimum size of the bolus
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required was fit by an exponential function of the load. The fits
are shown here, along with their R-squared values. “Load
applied to the opposite side” means switching from a state
without a load to a state with a load. “Load applied to the same
side” means switching from a state with a load to a state without
a load.

(DOC)

Table S3 Exponential Fits of the amount of inducer
required to transition states as a function of load, in the
case of induction by repression. The switch was toggled to its
other state by repression of the current state by an external
molecule, given to the system as a bolus with a decay rate as
shown. The size of the bolus was increased until the state changed.
This was repeated at different levels of load and the minimum size
of the bolus required was fit by an exponential function of the load.
The fits are shown here, along with their R-squared value. Thus
the inducer required depends exponentially on the load in both the
methods of induction. “Load applied to the opposite side” means
switching from a state without a load to a state with a load. “Load
applied to the same side’” means switching from a state with a load
to a state without a load.

DOC)

Table S4 Slopes of linear fits to rise and decay time
with a dynamic load, with varying values of load decay
rate K, load binding rates K,,, and K, ¢, and constant
K;. The first four columns report the values of the various
parameters. The other columns report the slopes of the linear fits
of the various rise times and decay times. In most cases the fits
have high R-squared values (>0.95). The two exceptions are
>0.90 and starred. Intercept is 1, as the slopes are normalized to
the un-loaded transition time. Note that for all cases, the
relationship between load (expressed here as K., =K,/Kg) and
transition time is a positive linear relationship.

(DOC)

Table S5 Rate expressions used for the stochastic
simulations of the genetic toggle switch. The rate
expressions used for the stochastic simulation of the toggle switch
along with the description of the reaction are listed.

(DOC)

Table S6 List of reactions in the minimal model of Ras
activation. The reactions in the minimal model of Ras
activation, along with the labels of the corresponding rate
constants are shown. Parameters used in the simulations are given
in Table S7.

DOCX)

Table $7 Kinetic rate parameters used for the simula-
tions of the Ras model. Here the numbers in the subscript of
the rate constants in the “Constant” column refer to the reactions
shown in the corresponding row of Supplementary Table S6. The
meaning of the rate constants are as follows: k., refers to the on-
rate, k,q 1s the off rate and ke, is the catalytic rate. The sources for
the rates are as shown in the last column.

(DOC)

Table S8 List of reactions in the toy model of genetic
toggle switch. The reactions in the toy model of the genetic
toggle switch, discussed in Supplementary Text S1 section 3.1 are
listed. The description of the various chemical species in the
reactions are also provided in the Supplementary Text SI.

(DOCX)

Text S1 Supporting Information including derivation
and analysis of toggle switch and Ras models, param-
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eters used for the simulation and their sources, results
of the parameter sensitivity analysis, details of the effect
of a dynamic load on the genetic toggle switch, results
for the Ras model with Michealis-Menton kinetics,
results for the models without the protection assump-
tion.

(PDF)
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