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Abstract
The high prevalence of childhood obesity has raised concerns regarding long-term patterns of
adult health and has generated calls for obesity screening of young children. This study examined
patterns of obesity and the predictive utility of obesity screening for children of different ages in
terms of adult health outcomes. Using the National Longitudinal Survey of Youth, the Population
Study of Income Dynamics, and National Health and Nutrition Evaluation Surveys, we estimated
the sensitivity, specificity and predictive value of childhood BMI to identify 2, 5, 10, or 15 year-
olds who will become obese adults. We constructed models assessing the relationship of
childhood BMI to obesity-related diseases through middle age stratified by sex and race/ethnicity.
12% of 18 year-olds were obese. While 50% of these adolescents would not have been identified
by screening at age 5, 9% would have been missed at age 15. Approximately 70% of obese
children at age 5 became non-obese at age 18. The predictive utility of obesity screening below the
age of 10 was low, even when maternal obesity was also included. The elevated risk of diabetes,
obesity, and hypertension in middle age predicted by obesity at age 15 was significantly higher
than at age 5 (e.g., the RR of diabetes for obese white male 15 year-olds was 4.5; for 5 year-olds,
it was 1.6). Early childhood obesity assessment adds limited predictive utility to strategies that
also include later childhood assessment. Targeted approaches in later childhood or universal
strategies to prevent unhealthy weight gain should be considered.
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Introduction
The dramatic increase in childhood obesity over the past three decades has generated
considerable concern regarding the health of children as well as patterns of obesity and
related chronic conditions later in life (1–3). In response, the U.S. Preventive Services Task
Force recently recommended that children’s body mass index (BMI) should be assessed
starting at age 6 (4). The focus on obesity in young children is motivated by the fact that
they may suffer from a variety of social and health effects (5, 6), use more health care
services (7), and are forming life-long eating and exercise habits (8). These concerns and the
prospect of elevated risks for adult obesity and chronic disease have generated a variety of
interventions designed to improve childhood nutrition, physical activity, and other health-
related behaviors.

Although these interventions may prove useful, the dynamics of obesity from childhood into
adulthood that determine their utility remain relatively unexplored. While BMI in adulthood
tends to increase more or less consistently in later ages, a number of studies suggest that
childhood BMI is more variable, particularly in younger children (1, 9–13). Some obese
children increase rapidly in height and cease to be obese, while some non-obese children
gain weight rapidly, becoming obese adults (14, 15). This apparent variation in the
prevalence and progression of obesity in childhood may be important in assessing the utility
of different screening and intervention protocols directed at reducing childhood obesity and
its implications for later adult health. While some interventions delivered to children who
are obese are effective for a given period of childhood, there is much less evidence
demonstrating that these interventions are broadly effective for non-obese children or can
alter patterns of obesity into adulthood (16–26). In order to effectively target obesity
interventions in childhood, it would be important to correctly identify a significant portion
of children likely to become obese adults while not incorrectly labeling others who go on to
be normal weight adults (27). The ability of current recommendations for obesity assessment
in early childhood to simultaneously achieve both of these goals remains unclear.

This study seeks to assess the developmental patterns of obesity over childhood, the portion
of adult obesity and related chronic conditions associated with childhood obesity, and the
relative utility of assessing childhood obesity at different ages. A number of longitudinal
studies have examined the relationship between childhood obesity and adult obesity and
disease risk in specific geographic populations (9–11, 13–15). We extend this prior work by
examining the utility of childhood obesity assessment, modeling the relationship between
longitudinal patterns of child weight change and growth and adult risks for the U.S. Because
no nationally-representative, longitudinal studies of obesity from early childhood through
older adulthood exist, this study links longitudinal data from several national studies to
create synthetic cohorts capable of providing empirical insight into these issues.

Methods
Overview

We assessed the potential value of child obesity assessment in terms of efficiently detecting
individuals at elevated risk of adult obesity and chronic disease risk in the United States.
Because no single U.S. nationally-representative, longitudinal dataset exists that
characterizes the obesity trajectories from childhood through middle age, we applied the
following steps:

• Step 1: Measure the correlation between obesity at earlier ages and later ages in
childhood and adolescence using the National Longitudinal Survey of Youth
(NLSY) (i.e., predict obesity at age 18 based on BMI status at earlier ages).
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Similarly, use the Population Study of Income Dynamics (PSID) to assess this
correlation between obesity at age 18 and obesity and chronic disease risk at age
40. We refer to this as the “predictive utility” of obesity assessment.

• Step 2: Combine the NLSY and PSID BMI trajectories into a single model of
obesity from childhood through middle age (the Stanford Childhood Obesity
Prediction and Evaluation (SCOPE) model), using bootstrapping and statistical
matching. Impute chronic disease risks based upon the relationship between
individual characteristics such as age, sex, race, and BMI in middle age and
biological markers of chronic disease as observed in the current adult National
Health and Nutrition Evaluation Surveys (NHANES) sample.

• Step 3: Forecast future obesity and chronic disease health risks for current children
in the U.S. by applying the SCOPE model to a third nationally-representative
dataset, the current child NHANES sample, again using statistical matching to
attach SCOPE obesity trajectories to children of a given age in NHANES based on
BMI, sex, and race. We refer to this as the “future obesity and health” implications
of the current childhood BMI patterns.

Definitions
We computed BMI as weight (kilograms) divided by height (meters) squared. We classified
childhood BMIs at or above the age- and sex-specific 95th percentiles of the 2000 U.S.
Centers for Disease Control and Prevention (CDC) reference standard as obese, while we
classified those at or above the 85th and below the 95th percentiles as overweight (28). For
adults (i.e., individuals age ≥18), BMIs of 30 and over were classified as obese and between
25 and 30 were classified as overweight. Type 2 diabetes mellitus was defined as fasting
plasma glucose ≥126 mg/dl or else a prior diagnosis of type 2 diabetes (29). Hypertension
was defined as systolic blood pressure ≥140 mmHg, diastolic pressure ≥90 mmHg, or a prior
diagnosis of hypertension (30).

Study populations
We analyzed childhood BMI dynamics using the NLSY Children and Young Adult samples.
The samples contain information on the children of women in the original NLSY cohort,
providing biennial data on BMI, age, sex, race/ethnicity (31), and sex as well as mothers’
ages and BMIs (32–34). The weighted sample represents children born 1970–88 to women
aged 21–31 in the U.S. in 1979. To enable assessment of the relationship between childhood
BMI and adult obesity, our analysis requires children to have BMI measurements through
age 18 (4,884 respondents) (Appendix Table A1).

We analyzed adult BMI dynamics along with the risks of obesity-related diseases through
middle age using the PSID and NHANES. The PSID is a nationally-representative study of
nearly 9,000 families that contains information on sex, race/ethnicity, BMI, and self-
reported diagnoses of diabetes and hypertension. Most measures are available for 1986 and
1999–2009, with self-reported diagnoses available for 1999–2009. We constructed a
weighted sample of 18–25 years-olds in 1986 who had follow-up interviews at ages 38–47
(999 respondents) (Appendix Table A2). To capture the relationship between obesity in
middle age and physical and biochemical markers of chronic disease, we used the adult
NHANES sample (2003–2008), imputing values from NHANES to middle age-adults in the
PSID based on their age, sex, race, BMI, and self-reported diabetes and hypertension status,
along with other covariates (Appendix B). NHANES contains cross-sectional, nationally-
representative data for adults on sex, race/ethnicity, smoking status, anthropometric
measures (BMI), systolic and diastolic blood pressure, fasting plasma glucose and
glycosylated hemoglobin (HbA1c), and self-reported medication usage and year of diagnosis
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for diabetes and hypertension. The weighted sample of adults aged 38–49 in 2003–2008
represents the non-institutionalized U.S. population (2,780 respondents) (Appendix Table
A3).

Predictive utility of childhood obesity assessment
We analyzed the test sensitivity and specificity and positive predictive values of childhood
obesity status. Test sensitivity is the probability of being overweight or obese at a given age
in childhood (e.g., BMI ≥85th percentile at age 10) among those children who were obese at
age 18. Test specificity is the probability of being a normal weight child at a given age (e.g.,
BMI <85th percentile at age 10) among those children who were normal weight at age 18.
Lower test sensitivities suggest that a greater proportion of obese 18 year-olds are missed by
childhood screening, whereas lower test specificities imply that a greater proportion of
children are falsely labeled “at risk for adult obesity”. We also used Receiver Operating
Characteristic (ROC) curves to compare the trade-offs in sensitivity and specificity that
accompany various age- and sex-specific BMI cutoffs based on the CDC’s 2000
standardized growth charts. Positive predictive values represented the probability of being
obese at age 18 among those children who were above the obesity threshold at a given age.

We similarly assessed the test sensitivity and specificity of using maternal BMI to predict
the future adult obesity status of their children (e.g., the proportion of 10 year-olds who
became obese at age 18 and whose mothers were obese when the children were 10).
Likewise, we assessed the combination of childhood BMI with maternal BMI (i.e., the
proportion of obese 18 year-olds who were overweight or obese at age 10 or who were
normal weight but had mothers who were overweight or obese).

Future obesity and health
We developed a model to assess the significance of childhood obesity in predicting the risk
of obesity at age 18 and the impact of obesity at age 18 on obesity, fasting plasma glucose,
HbA1c, systolic and diastolic blood pressure, uncontrolled diabetes, and uncontrolled
hypertension for adults in their early 40s. We named the model the Stanford Childhood
Obesity Prediction and Evaluation (SCOPE) model. The model applies the developmental
patterns of BMI results from the analysis of the NLSY to the age, sex, race/ethnicity, and
BMI values representative of non-institutionalized U.S. children aged 2–5 in 2001–2008
based on children in NHANES (2,899 respondents) (Appendix Table A4). Specifically, it
alters each child’s BMI annually through age 18 based on BMI dynamics from the NLSY.
Continued changes in BMI from ages 18 through an individual’s early 40s are based on
adults in the PSID, and physical and biochemical measures of chronic disease in the early
40s are based on middle-aged adults in NHANES. The SCOPE model is built with the
following steps:

• Step 1: We sample with replacement from the age-specific BMI distributions of 2–
5 year-olds in the NHANES child sample for subgroups defined in terms of sex and
race, creating sex- and race-specific cohort of 10,000s of children.

• Step 2: We sample with replacement BMI trajectories for those age 2 to age 18
from the NLSY children for subgroups defined in terms of sex and race, creating
sex- and race-specific cohorts of 10,000s of childhood BMI trajectories.

• Step 3: For each sampled child in NHANES (Step 1), we use statistical matching
(described below) to attach an NLSY trajectory (Step 2) within our sex- and race-
specific cohorts, creating predicted future BMI trajectories for current U.S.
children.
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• Step 4: We sample with replacement BMI trajectories for those age 18–25 to age
38–47 from the PSID for subgroups defined in terms of sex and race, creating sex-
and race-specific cohorts of 10,000s of adult BMI trajectories.

• Step 5: We estimate cross-sectional quantile regressions relating age, sex, race,
smoking status, and diagnosed diabetes and hypertension status to fasting plasma
glucose and blood pressure values for middle age adults in the current NHANES
sample.

• Step 6: We use the adult NHANES quantile regressions (Step 4) to impute fasting
plasma glucose and blood pressure values in middle age (see below) for the
sampled PSID adults in middle age (Step 5).

• Step 7: For subgroups defined in terms of sex and race of the NHANES-NLSY
future childhood BMI trajectories for current U.S. children (Step 3), we use
statistical matching (described below) to attach PSID adult BMI trajectories and
their associated adult NHANES imputed middle-age biochemical values (Step 6),
creating predicted future BMI trajectories and middle age chronic disease profiles
for current U.S. children.

Statistical methods
All analyses were undertaken using Stata 11/SE (Stata Corp, College Station, Texas). All
analyses adjusted for the sampling designs of the respective surveys (35).

To construct each individual’s longitudinal BMI path from childhood through adulthood and
their associated markers of chronic disease, we first used each dataset’s sampling weights
and bootstrapped from the datasets based on these weights to generating synthetic cohorts
with 10,000s of observations for each dataset (i.e., NHANES children, NLSY children,
PSID adults) (36, 37). We then applied statistical matching approaches to link the datasets
together, finally imputing biochemical measures of chronic disease based on quantile
regressions.

Statistical matching—Statistical matching using sex, age, race/ethnicity and BMI
enables greater consistency for the predicted longitudinal patterns of BMI and risks across
data sets (Appendix B) (38). Our matching procedure employed all variables that the
datasets had in common and which were measured in the same way. Within subgroups
defined by age, sex, and race, statistical matching was based on similar BMI values. For
each observation (i) in the first dataset (e.g., NHANES child sample), we computed the
probability (pij) of matching an observation (j) in the second dataset (e.g., NLSY child
longitudinal dataset), where pij is defined based on overlap spline polynomial weights (wij)
and ϕ() is the standard normal cumulative density function (38):

The parameters a and b define the normalized kernel used for statistical matching (i.e., how
strongly differences in BMI values reduce the likelihood of being matched). For matching
children in the NHANES and NLSY, we set b to 0.1 and a to 0.1 since the range of BMI
values for children 2–5 is relatively small. For those age 18 in NLSY and PSID, we set b to
0.2 and a to 0.1 since the range of BMI values widens in adulthood. This implied that for a
child with a give BMI, 65% of probability mass of matches fell within 0.1 BMI units, 93%
within 0.2 BMI units, and 99% within 0.3 BMI units. For adults, these were 50%, 82%, and
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96%, respectively. Because we use bootstrapped datasets with 10,000s of observations,
statistical matching between them defines a distribution of future BMI paths for each
individual in the first dataset based on individuals who are more similar to them in the
second dataset being more likely to contribute to their future BMI paths to the distribution.

Imputing biochemical measures—We imputed fasting plasma glucose, glycosylated
hemoglobin, systolic blood pressure, and diastolic blood pressure values for the middle aged
adults in the PSID. To do so, using the NHANES adult sample (2003–2008), we estimated
quantile regressions describing how the distribution of fasting plasma glucose, glycosylated
hemoglobin, systolic blood pressure, and diastolic blood pressure depended on sex, race/
ethnicity, age, BMI, smoking status, a previous diabetes diagnosis, the duration of diagnosed
diabetes, the use of diabetes medications, diagnosed hypertension, and the use of
hypertension medications (Appendix B) (39). For each individual in the bootstrapped PSID
dataset and each biochemical value we wished to impute, we drew a uniform random
number between 1 and 99 to determine which quantile the individual fell within, we then
computed the predicted value based on the quantile drawn and the individual’s observed
characteristics (i.e., the covariates in the regression). Thus, individuals who were, for
example white, non-smoking men age 40 with BMI 30 who had no history of diagnosed
diabetes or hypertension could have different values for their fasting plasma glucose
consistent with the distribution of these values for similar individuals in NHANES.

Face validation and sensitivity analyses—We compared results of both our analyses
within a single dataset (e.g., NLSY) and between multiple datasets (e.g., the SCOPE model)
to similar analyses we undertook using The National Longitudinal Study of Adolescent
Health (i.e., Add Health), an independent dataset that has information on anthropometry
from teen years through individuals in their early 30s. We assessed the test sensitivity and
specificity estimates from NLSY which included some self-reported BMI values by
restricting the NLSY sample to those with objective measures. We also compared the
estimated test characteristics from NLSY to those we estimated in the Add Health study
dataset. Finally, we compared the relationship between an individual’s BMI as a teenager to
BMI in the mid-20s in the NLSY-PSID statistically matched dataset created for the SCOPE
model and those observed in the Add Health study dataset. To assess the sensitivity of the
SCOPE model’s predictions to the statistical matching procedures used, we repeated the
main SCOPE analysis by predicting obesity and chronic disease outcomes at age 18 and in
middle age using statistical matching that required greater concordance of BMI for
individuals between datasets with the same age, sex, and race-specific subgroups (children:
a=0.05, b=0.05; adults; a=0.1, b=0.1). Statistical matching with these parameters greatly
increased the likelihood of matching a BMI value ±0.2 kg/m2 but also increased the variance
of estimates because it reduced the number of potential individuals to match.

Role of funders
The funders of this research had no role in the conception and design; analysis; drafting of
the manuscript; or in the decision to publish.

Results
Childhood and adult obesity dynamics

There is considerable age-dependent variability in the association between childhood and
adult obesity in the NLSY data. Approximately 12% of 18 year-olds had BMIs ≥30. The
prevalence of children with BMI ≥95th standardized CDC percentile is highest in 2 year-olds
(20–24%), dropping by age 5 to 12–13% (Table 1). Overweight and obesity generally
increases through teenage years. While 22% (21% for boys and 23% for girls) of 5 year-old
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children had a BMI ≥85th percentile, they comprised only 50% (48% for boys and 52% for
girls) of individuals who were obese at age 18 (Table 2). Consequently, half of obese 18
year-olds would not have been detected by an obesity assessment at age 5. More than 70%
of children with BMI ≥85th percentile at age 5 became non-obese at age 18.

Regardless of BMI percentile used as a threshold to identify children “at risk of adult
obesity”, screening later in childhood has more favorable combinations of sensitivity and
specificity than earlier in childhood (Figure 1). At the standard 85th percentile cutoff,
childhood BMI, particularly for children under 10, lacks the sensitivity and specificity that
enables accurate prediction of obesity status at age 18. Although sensitivity improves for
children above age 10 (Table 2, Figure 2, Panels A and B), moderate specificity and 12%
obesity prevalence in 18 year-olds imply that the positive predictive value for obesity at age
18 does not exceed 40% at any age (Figure 2, Panels C and D).

Including maternal obesity in childhood obesity assessment improves the detection of future
obese 18 year-olds (Figure 2, Panels A and B), especially in children below age 8. Yet, due
to high false positive rates (i.e., many non-obese children whose mothers’ BMIs are high go
on to be non-obese 18 year-olds), the clinical utility of using maternal obesity in conjunction
with childhood obesity assessment is weakened (Figure 2, Panels C and D). Using the
combined criteria of either maternal BMI ≥30 or child BMI ≥85th percentile at ages 5–7,
approximately 75% of obese 18 year-olds would have been detected. However, nearly 30%
of all 5–7 year-olds who became non-obese 18 year-olds would have been incorrectly
labeled as “at risk for adult obesity.” The positive predictive value of combined child and
mother obesity assessment does not exceed 25% at any age (Figure 2, Panels C and D).
Using a detection criterion of both the child and mother being above the thresholds improves
the positive predictive value amongst those testing positive but reduces the absolute
proportion of obese 18 year-olds actually detected by childhood obesity assessment by 40–
55% (data not shown).

When stratifying by race/ethnicity, both childhood obesity and maternal obesity generally
have higher sensitivities and lower specificities among black and Hispanic children in the
NLSY than among white children. For example, being above the CDC’s 85th BMI percentile
at age 10 has a sensitivity and specificity for detecting obesity at age 18 of 81% and 79% for
white children and 88% and 74% for black and Hispanic children (See Appendix Tables C2
and C311 for detailed results). Given the somewhat higher prevalence of obesity at age 18
among blacks and Hispanics (approximately 16%), the clinical utility of childhood obesity
assessment for identifying individuals who will go on to become obese adults is comparable
for blacks and Hispanics and for whites.

The analysis of adult obesity dynamics using the PSID suggests that being overweight or
obese at age 18 increases the risk of being obese in one’s early 40s (Odds Ratios for BMI
adjusted for smoking status and race/ethnicity: males: 1.3 [1.2–1.5]; females: 1.6 [1.4–1.8]).
Furthermore, overweight and obesity status in one’s early 40s predicts higher fasting plasma
glucose levels and HbA1c levels as well as higher systolic and diastolic blood pressure in
the NHANES adult data. For example, the interquartile range of fasting plasma glucose for
45 year-old white male, non-smokers without diabetes whose BMI was 20 was predicted to
be 93–102 mg/dl whereas, for a similar men with BMI 35, it was 101–111 mg/dl. The
interquartile range for systolic blood pressure for these two groups was predicted to be 108–
121 mmHg and 114–128 mmHg, respectively. (Appendix Tables B1, B2, B3, and B4).

Childhood obesity and links to adult obesity and health
Based on the examined datasets, we project that without intervention, by the time U.S.
children currently below age 5 reach their early 40s, substantial numbers will be overweight
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and obese, diabetic and hypertensive, especially among black individuals. Specifically, 42%
of whites and 52% of blacks will have BMIs ≥30. An additional 35% of white and 34% of
blacks will have BMIs between 25 and 30. In this age group, uncontrolled diabetes
prevalence is projected to be 5% among whites and 10% among blacks. Uncontrolled
hypertension prevalence is projected to be 49% for whites and 57% for blacks.

However, while the prevalence of these conditions is substantial, the relationship between
childhood and adult obesity patterns is complex. The ability to predict which children will
ultimately become obese adults and which children will have indicators of chronic disease
that will worsen in adulthood appears limited for children below age 10 (Table 3 and
Appendix Table C4). For example, in Table 3, 39.8% of white boys above the 85th

percentile at age 15 became obese in their mid-40s whereas 1.4% of those below the 85th

percentile became obese in their mid-40s (RR=28.4). In comparison, for 5 year-old white
males, 21.7% of those above the 85th percentile became obese in their mid-40s whereas
9.8% below the threshold became obese (RR=2.2). Similarly, 12.6% of those above the 85th

percentile at age 15 developed uncontrolled diabetes by their mid-40s whereas 2.8% below
the threshold developed diabetes (RR=4.5). For those above and below the threshold at age
5, 7.9% and 4.9% developed uncontrolled diabetes by their mid-40s, respectively (RR=1.6).

Most children have their obesity status assessed at multiple points of time during childhood.
Children who remain obese throughout childhood are at the highest risk of continued adult
obesity and future chronic disease risk. As current policies seek to initiate childhood obesity
assessment at earlier ages, we assessed the marginal increase in predictive utility of
beginning assessments in early childhood, finding that additional predictive power is low
(Table 4). Even considering obesity assessment conducted at only 3 points during childhood
(at ages 5, 10, and 15), relatively few current U.S. children who go on to become obese in
their early 40s have BMIs that are above the 85th percentile at age 5 but not above the 85th

percentile at age 10 or 15 (white males and females: 12% and 15%; black males and
females: 13% and 9%). As obesity assessment is currently often performed annually or
biennially, the actual proportions of children who would only test positive prior to age 10
and not afterwards (i.e., only be detected by obesity assessment at an age prior to 10) is
considerably smaller (data not shown).

Regardless of the chosen approach to childhood obesity, complementary strategies that
focus on obesity in early and middle adulthood appear warranted as well, given that many
individuals who are normal weight throughout childhood become obese in adulthood. Of
current U.S. children whose BMI is below the 85th percentile at age 15, we project that few
will be obese at age 18 (between 1.2% and 3.1% depending on sex and race/ethnicity).
However, even for this group, by their early 40s, between 28% and 46% are projected to
have BMI ≥30, between 2.6% and 7.3% to have uncontrolled diabetes, and 31% and 69% to
have uncontrolled hypertension (Table 3).

Discussion
Our findings suggest that developmental patterns of childhood obesity are dynamic and that
effective assessment and intervention strategies are likely to be complex. Most obese adults
were normal weight children, and many obese children become non-obese adults, consistent
with prior studies. (1, 9–13). Accordingly, the predictive utility of BMI assessment in young
childhood is relatively poor, even when maternal obesity status is also considered. However,
BMI becomes increasingly stable in pre-teen and teen years, so using childhood BMI as an
indicator of future obesity risk and as a target for screening programs may prove more useful
in older children.
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Calls for BMI-based assessment to target interventions in early childhood may need
reconsideration in light of these findings (8, 40). Early childhood obesity strategies would be
justified if they could accurately identify substantial numbers of children at-risk for adult
obesity and chronic diseases who would not otherwise have been identified later in life or if
interventions delivered in early childhood were substantially more effective than those
delivered later in life. For example, the emphasis on early versus later childhood and
adolescence may depend in part on what ages relevant health behaviors begin to become
more firmly entrenched, with counseling and focus on healthy lifestyles on the part of
physicians and public health professionals beginning prior to this.

The findings of this study may also suggest that a highly targeted approach to early
childhood obesity interventions may prove less useful than more universal strategies, such as
the “Let’s Move” campaign advocated by First Lady, Michele Obama (41–43). In either
case, interventions that target obesity in adults are necessary complements to childhood
obesity policies given the elevated risk present in even normal weight 18 year-olds (44).
Weighing the value of childhood obesity assessment relative to more universal strategies
depends on the relative costs and benefits of failing to intervene with a child who would
otherwise become obese as an adult and intervening with children who would not have
become obese even without intervention. The appropriate scope and mix of preventive and
therapeutic strategies for childhood obesity will require continued research, particularly as
new, more effective interventions are developed both in the United States and other
countries facing a high prevalence of childhood obesity (45).

This study has several limitations.

The SCOPE model projects future patterns of BMI change based on past trends derived
from particular data sources (the NLSY and PSID). Because of how the sample for the
NLSY is constructed (i.e., requiring observation on children through age 18 by a particular
calendar year based upon a cohort defined by women who were in a particular age range in
1979), we consider a sample of children that over-represents women who had their first
child at a younger age (mean age at first birth: 21.8 years [Interquartile Range: 19–25
years]) compared to mothers in the whole data set (mean age at first birth: 23.3 years [IQR:
19–27 years]). To the extent that earlier maternal age in the sample predicts differential BMI
and growth patterns of children, this could, in principle, bias results. Similarly, younger
maternal age could affect the observed BMI values of mothers and their predictive value as
well. Additionally, though substantially less common and less effective in the past, it is
possible that these sources may contain some individuals who received obesity
interventions. Changes in a range of determinants of obesity trends would alter model
projections. Historical increases in childhood obesity prevalence have slowed, though
extreme childhood obesity may be growing (3, 46). Our findings suggest that consistent
obesity throughout childhood, which likely implies BMI well-above the obesity threshold, is
highly predictive of adult obesity (Table 4). However, unless childhood obesity becomes
substantially less dynamic for a large percentage of children, the predictive utility of BMI
assessment in early childhood will likely remain relatively low. While adult BMIs and
chronic disease burdens are alarmingly high, these trends also appear to be flattening (2).

Another concern is that the weight and height data in the PSID and for older children in the
NLSY are self-reported and subject to potential reporting biases (47, 48). However, when
we restricted our analyses to only those children whose height and weight had been directly
measured, the general patterns of sensitivity and specificity that were found in the full
sample remained (Appendix Table C5). We also compared our BMI distributions in the late
teens and early 20s along with test characteristics of BMI measurements in earlier teen years
to identify individuals who would become overweight or obese in their late teens and early
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20s to those measured in the National Longitudinal Study of Adolescent Health (Add
Health), a more recent study of individual BMI patterns over time, finding reasonable
similarity and no strong evidence of cohort effects (Appendix Tables C6, C7, and C8).

The use of different datasets to create predictive models could introduce inaccuracies in risk
assessment because of cohort effects or because complex relationships may not be captured
via statistical matching. We assessed the sensitivity of our projections to the particular
datasets used and to the particular parameters of statistical matching, finding that they were
largely consistent (Appendix Tables C7, C8, and C9). Of some additional reassurance, a
recently published article examining the longitudinal disease risks of over 30,000 Israeli
males from later teenage years through age 45 finds similar teen BMI-related gradients of
middle age BMI, blood pressure, fasting plasma glucose, and, importantly, elevated relative
risks of type 2 diabetes to those we report here (49). Though chronic diseases impact adult
health into old age, our projections end in individuals’ early 40s due to a lack of longitudinal
data from the PSID or other studies for the U.S. that link BMI to chronic diseases in old age.

Due to sample size limitations, our analyses could not assess the relationship between
childhood and adult obesity for Hispanic and other minority populations. Patterns of obesity
and chronic diseases are known to differ by race and ethnicity, by urban and rural location,
and by socioeconomic status (31, 50, 51). Therefore, applying the model’s projections to
unexamined minority or other subgroups may not be appropriate.

Addressing obesity in U.S. children and adults is a public health priority. However, the
findings of this study underscore the dynamic relationship between early childhood growth
patterns and the prevalence of adult obesity and related health conditions. This complex
relationship suggests that any targeted screening strategies in childhood may also need to be
coupled with more universal risk reduction approaches designed to effectively reduce risk
among all children in the United States. Such comprehensive strategies would respond to the
dynamic character of weight gain during childhood and help to ensure that continued
improvements in both preventive and therapeutic interventions are effectively implemented
over the life-course.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
Funding sources: This work was supported in part by a Pediatric Research Fund Award from the Lucile Packard
Foundation for Children’s Health (PI: Goldhaber-Fiebert). It was also supported in part by the NIH/NIA (K01
AG037593; PI: Goldhaber-Fiebert). The funder played no role in the design and conduct of the study; collection,
management, analysis, and interpretation of the data; or the preparation, review, or approval of the manuscript.

Abbreviations

BP Blood Pressure

BMI Body Mass Index

FPG Fasting Plasma Glucose

HbA1c Glycosylated Hemoglobin

Goldhaber-Fiebert et al. Page 10

Med Decis Making. Author manuscript; available in PMC 2014 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
1. Cleave JV, Gortmaker SL, Perrin JM. Dynamics of Obesity and Chronic Health Conditions Among

Children and Youth. JAMA. 2010; 303(7):623–30. [PubMed: 20159870]

2. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and Trends in Obesity Among US
Adults, 1999–2008. JAMA. 2010; 303(3):235–41. [PubMed: 20071471]

3. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of High Body Mass Index in
US Children and Adolescents, 2007–2008. JAMA. 2010; 303(3):242–9. [PubMed: 20071470]

4. Screening for Obesity in Children and Adolescents: US Preventive Services Task Force
Recommendation Statement: US Preventive Services Task Force Description Update of the 2005
US Preventive Services Task Force (USPSTF) statement about screening for overweight in children
and adolescents. Pediatrics. 2010; 125(2):361–7. [PubMed: 20083515]

5. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood Obesity,
Other Cardiovascular Risk Factors, and Premature Death. New England Journal of Medicine. 2010;
362(6):485–93. [PubMed: 20147714]

6. Pletcher MJ, Bibbins-Domingo K, Liu K, Sidney S, Lin F, Vittinghoff E, et al. Nonoptimal Lipids
Commonly Present in Young Adults and Coronary Calcium Later in Life: The CARDIA (Coronary
Artery Risk Development in Young Adults) Study. Annals of Internal Medicine. 2010 Aug 3;
153(3):137–46. [PubMed: 20679558]

7. Bloom, B.; Cohen, RA. G F Summary Health Statistics for US Children: National Health Interview
Survey, 2008. Hyattsville, Maryland: National Center for Health Statistics; 2009. Contract No.:
362.1’0973’021s—dc21

8. Epstein LH, Myers MD, Raynor HA, Saelens BE. Treatment of Pediatric Obesity. Pediatrics. 1998;
101(3 Suppl):554–70. [PubMed: 12224662]

9. Deshmukh-Taskar P, Nicklas TA, Morales M, Yang S-J, Zakeri I, Berenson GS. Tracking of
Overweight Status from Childhood to Young Adulthood: The Bogalusa Heart Study. European
Journal of Clinical Nutrition. 2006; 60(1):48–57. [PubMed: 16132057]

10. Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of Childhood
Obesity to Coronary Heart Disease Risk Factors in Adulthood: The Bogalusa Heart Study.
Pediatrics. 2001; 108(3):712–8. [PubMed: 11533341]

11. Guo S, Roche A, Chumlea W, Gardner J, Siervogel R. The Predictive Value of Childhood Body
Mass Index Values for Overweight at Age 35 y. American Journal of Clinical Nutrition. 1994;
59(4):810–9. [PubMed: 8147324]

12. Rosengren A, Wedel H, Wilhelmsen L. Body Weight and Weight Gain During Adult Life in Men
in Relation to Coronary Heart Disease and Mortality. A Prospective Population Study. European
Heart Journal. 1999; 20(4):269–77. [PubMed: 10099921]

13. Ylihärsilä H, Kajantie E, Osmond C, Forsén T, Barker DJ, Eriksson JG. Body Mass Index During
Childhood and Adult Body Composition in Men and Women Aged 56–70 y. American Journal of
Clinical Nutrition. 2008; 87(6):1769–75. [PubMed: 18541567]

14. Guo SS, Huang C, Maynard LM, Demerath E, Towne B, Chumlea WC, et al. Body mass index
during childhood, adolescence and young adulthood in relation to adult overweight and adiposity:
the Fels Longitudinal Study. International Journal of Obesity and Related Metabolic Disorders.
2000 Dec; 24(12):1628–35. [PubMed: 11126216]

15. Guo SS, Wu W, Chumlea WC, Roche AF. Predicting overweight and obesity in adulthood from
body mass index values in childhood and adolescence. American Journal of Clinical Nutrition.
2002 Sep; 76(3):653–8. [PubMed: 12198014]

16. Whitlock EP, O’Connor EA, Williams SB, Beil TL, Lutz KW. Effectiveness of Weight
Management Interventions in Children: A Targeted Systematic Review for the USPSTF.
Pediatrics. 2010; 125(2):e396–3418. [PubMed: 20083531]

17. Bluford DAA, Sherry B, Scanlon KS. Interventions to Prevent or Treat Obesity in Preschool
Children: A Review of Evaluated Programs. Obesity. 2007; 15(6):1356–72. [PubMed: 17557972]

18. Campbell K, Waters E, O’Meara S, Summerbell C. Interventions for Preventing Obesity in
Childhood. A Systematic Review. Obesity Reviews. 2001; 2(3):149–57. [PubMed: 12120100]

Goldhaber-Fiebert et al. Page 11

Med Decis Making. Author manuscript; available in PMC 2014 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



19. Doak CM, Visscher TLS, Renders CM, Seidell JC. The Prevention of Overweight and Obesity in
Children and Adolescents: A Review of Interventions and Programmes. Obesity Reviews. 2006;
7(1):111–36. [PubMed: 16436107]

20. Economos CD, Hyatt RR, Goldberg JP, Must A, Naumova EN, Collins JJ, et al. A Community
Intervention Reduces BMI z-score in Children: Shape Up Somerville First Year Results. Obesity.
2007; 15(5):1325–36. [PubMed: 17495210]

21. Gortmaker SL, Peterson K, Wiecha J, Sobol AM, Dixit S, Fox MK, et al. Reducing Obesity via a
School-Based Interdisciplinary Intervention Among Youth. Archives of Pediatrics and Adolescent
Medicine. 1999; 153(4):409–18. [PubMed: 10201726]

22. Sanigorski A, Bell A, Kremer P, Cuttler R, Swinburn B. Reducing Unhealthy Weight Gain in
Children Through Community Capacity-building: Results of a Quasi-experimental Intervention
Program, Be Active Eat Well. International Journal of Obesity. 2008; 32(7):1060–7. [PubMed:
18542082]

23. Silva-Sanigorski, AMd; Bell, AC.; Kremer, P.; Nichols, M.; Crellin, M.; Smith, M., et al. Reducing
Obesity in Early Childhood: Results from Romp & Chomp, an Australian Community-wide
Intervention Program. American Journal of Clinical Nutrition. 2010; 91(4):831–40. [PubMed:
20147472]

24. Summerbell C, Waters E, Edmunds L, Kelly S, Brown T, Campbell K. Interventions for
Preventing Obesity in Children. Cochrane Database of Sysytematic Reviews. 2005;
20(3):CD001871.

25. Coleman KJ, Tiller CL, Sanchez J, Heath EM, Sy O, Milliken G, et al. Prevention of the Epidemic
Increase in Child Risk of Overweight in Low-Income Schools: The El Paso Coordinated Approach
to Child Health. Archives of Pediatric and Adolescent Medicine. 2005; 159:217–24.

26. Foster GD, Linder B, Baranowski T, Cooper DM, Goldberg L, Harrell JS, et al. A school-based
intervention for diabetes risk reduction. New England Journal of Medicine. 2010 Jul 29; 363(5):
443–53. [PubMed: 20581420]

27. Rose G. Strategy of Prevention: Lessons from Cardiovascular Disease. British Medical Journal.
1981; 282(6279):1847–51. [PubMed: 6786649]

28. Kuczmarski R, CLCO, Guo S, Grummer-Strawn L, Flegal K, Mei Z, et al. 2000 CDC Growth
Charts for the United States: Methods and Development. Vital Health Statistics. 2002; 11(246):1–
190. [PubMed: 12043359]

29. Harris R, Donahue K, Rathore SS, Frame P, Woolf SH, Lohr KN. Screening adults for type 2
diabetes: a review of the evidence for the U.S. Preventive Services Task Force. Annals of Internal
Medicine. 2003 Feb 4; 138(3):215–29. [PubMed: 12558362]

30. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report
of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High
Blood Pressure. Hypertension. 2003 Dec; 42(6):1206–52. [PubMed: 14656957]

31. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. Racial differences
in the tracking of childhood BMI to adulthood. Obes Res. 2005 May; 13(5):928–35. [PubMed:
15919847]

32. 1998 Child and Young Adult Data: Users’ Guide. Columbus: Center for Human Resource
Research, Ohio State University; 2000.

33. Strauss RS, Pollack HA. Epidemic increase in childhood overweight, 1986–1998. JAMA. 2001
Dec 12; 286(22):2845–8. [PubMed: 11735760]

34. Goldhaber-Fiebert JD, Stout NK, Salomon JA, Kuntz KM, Goldie SJ. Cost-effectiveness of
cervical cancer screening with human papillomavirus DNA testing and HPV-16,18 vaccination. J
Natl Cancer Inst. 2008 Mar 5; 100(5):308–20. [PubMed: 18314477]

35. Deaton, A. The analysis of household surveys: a microeconometric approach to development
policy. Baltimore, MD: Published for the World Bank [by] Johns Hopkins University Press; 1997.

36. Rutter CM, Zaslavsky AM, Feuer EJ. Dynamic microsimulation models for health outcomes: a
review. Medical Decision Making. 2011 Jan-Feb;31(1):10–8. [PubMed: 20484091]

37. Schirm, AL.; Zaslavsky, AM. Reweighting households to develop microsimulation models for
states. Proceedings of the Survey Research Methods Section: American Statistical Association;
1997. p. 306-11.

Goldhaber-Fiebert et al. Page 12

Med Decis Making. Author manuscript; available in PMC 2014 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



38. Garber AM, MaCurdy TE. Nursing Home Discharges and Exhaustion of Medicare Benefits.
Journal of the American Statistical Association. 1993; 88(423):727–36.

39. Koenker R, Hallock KF. Quantile Regression. Journal of Economic Perspectives. 2001; 15(4):143–
56.

40. Nichols MS, Swinburn BA. Selection of priority groups for obesity prevention: current approaches
and development of an evidence-informed framework. Obesity Reviews. 2010 Jan 6.

41. Jeffrey, P.; Koplan, CTL.; Kraak, Vivica A. Preventing Childhood Obesity: Health in the Balance.
Washington, DC: Academic Press; 2005.

42. The White House. First Lady Michelle Obama Launches Let’s Move: America’s Move to Raise a
Healthier Generation of Kids. 2010. Available from: http://www.whitehouse.gov/the-press-office/
first-lady-michelle-obama-launches-lets-move-americas-move-raise-a-healthier-genera

43. Brownell KD, Farley T, Willett WC, Popkin BM, Chaloupka FJ, Thompson JW, et al. The public
health and economic benefits of taxing sugar-sweetened beverages. New England Journal of
Medicine. 2009 Oct 15; 361(16):1599–605. [PubMed: 19759377]

44. Curioni CC, Lourenco PM. Long-term weight loss after diet and exercise: a systematic review.
International Journal of Obesity. 2005 Oct; 29(10):1168–74. [PubMed: 15925949]

45. Butland, B.; Jebb, S.; Kopelman, P.; McPherson, K.; Thomas, S.; Mardell, J., et al. Tackling
Obesities: Future Choices - Project Report. 2. London: UK Government Office for Science; 2007.

46. Koebnick C, Smith N, Coleman KJ, Getahun D, Reynolds K, Quinn VP, et al. Prevalence of
extreme obesity in a multiethnic cohort of children and adolescents. Journal of Pediatrics. 2010
Jul; 157(1):26–31. e2. [PubMed: 20303506]

47. Gorber SC, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report measures for
assessing height, weight and body mass index: a systematic review. Obesity Reviews. 2007 Jul;
8(4):307–26. [PubMed: 17578381]

48. Yanovski SZ, Yanovski JA. Obesity prevalence in the United States--up, down, or sideways? New
England Journal of Medicine. 2011 Mar 17; 364(11):987–9. [PubMed: 21410367]

49. Tirosh A, Shai I, Afek A, Dubnov-Raz G, Ayalon N, Gordon B, et al. Adolescent BMI trajectory
and risk of diabetes versus coronary disease. New England Journal of Medicine. 2011 Apr 7;
364(14):1315–25. [PubMed: 21470009]

50. Fryar CD, Hirsch R, Eberhardt MS, Yoon SS, Wright JD. Hypertension, high serum total
cholesterol, and diabetes: racial and ethnic prevalence differences in U.S. adults, 1999–2006.
NCHS Data Brief. 2010 Apr.(36):1–8. [PubMed: 20423605]

51. Murray ET, Roux AVD, Carnethon M, Lutsey PL, Ni H, O’Meara ES. Trajectories of
Neighborhood Poverty and Associations With Subclinical Atherosclerosis and Associated Risk
Factors. American Journal of Epidemiology. 2010; 171(10):1009–108.

Goldhaber-Fiebert et al. Page 13

Med Decis Making. Author manuscript; available in PMC 2014 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.whitehouse.gov/the-press-office/first-lady-michelle-obama-launches-lets-move-americas-move-raise-a-healthier-genera
http://www.whitehouse.gov/the-press-office/first-lady-michelle-obama-launches-lets-move-americas-move-raise-a-healthier-genera


Figure 1. Receiver Operating Characteristic curves for detecting obesity at age 18 at various age-
and sex-specific BMI percentile thresholds
Panel A (males) and Panel B (females) show Receiver Operating Characteristic (ROC)
curves comparing the true positive rate (sensitivity) and false positive rate (1 - specificity)
for various cutoffs based on CDC standardized sex-specific BMI percentiles at ages 5 and
15 years. Thresholds used to generate the ROC curves include the 3rd, 5th, 25th, 50th, 75th,
85th, 95th, and 97th percentiles.
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Figure 2. The ability of child and maternal obesity assessment to discriminate future obese 18
year-olds from those who will not become obese
Panels A and B show the proportion of obese 18 year-old males and females, respectively,
whose BMIs were above the 85th percentile (black filled bars) at ages 2–17 years and whose
BMIs were above the 85th percentile or had mothers who were overweight or obese (white
filled bars). Panels C and D show the proportion of males and females, respectively, testing
positive on childhood obesity screening at ages 2–17 who become obese 18 year-olds (black
filled bars: BMI above the 85th percentile; white filled bars: BMI above the 85th percentile
or had a mother who was overweight or obese). (Note that for comparability, all panels in
Figure 2 include only the subsample of children who also had maternal BMI measurements).
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