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Abstract
Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR)
method that directly encodes tissue displacement into MR phase images. This technique has
successfully interrogated many forms of tissue motion, but is most commonly used to evaluate
cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually
delineated anatomical structures. An automated analysis would improve measurement throughput,
simplify data interpretation, and potentially access important physiological information during the
MR exam. In this article, we present the first fully automated solution for the estimation of tissue
motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac
cine DENSE data indicate good agreement between the automated algorithm and the standard
semi-manual analysis method.
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I. Introduction
Magnetic resonance (MR) is a safe and non-invasive imaging modality routinely used in
many studies of tissue motion. Most traditional MR techniques offer only gross motion
indicators derived from changes in anatomical borders. For example, conventional cine
imaging can assess the thickening of heart tissue during the systolic phase of the cardiac
cycle, but cannot describe the intricacies of intramyocardial motion and strain which are
useful for detecting many forms of cardiac disease.

Scientists interested in more detailed measurements of tissue motion have turned to MR
tissue tracking technologies capable of following individual tissue elements through space
and time. These methods have explored many types of tissue motion including skeletal
muscle [1] and pulsatile brain [2] dynamics, but are more commonly used to evaluate
cardiac mechanics. In many cardiovascular applications, these technologies have the
potential to reduce subjectivity and improve accuracy [3], already proving effective in the
evaluation of cardiac ischemia [4], [5], myocardial mechanics after surgery [6]–[8], and
cardiac dyssynchrony [9], [10].
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MR approaches to quantify tissue motion include tissue tagging with conventional or
harmonic phase (HARP) analysis, strain encoding (SENC), velocity-encoded phase contrast
imaging, and displacement encoding with stimulated echoes (DENSE). These leading
methods have been previously surveyed for cardiac motion [11], [12]. Here, we provide a
brief description of each as introductory material.

Tagging [13]–[17] spatially modulates the magnetization using radiofrequency and gradient
pulses, forming tag lines (regions of nulled magnetization) in the image magnitude. As
magnetization is a material property of tissue, we may track tag lines through time to
estimate motion and strain. This approach is the best established tissue tracking method, and
is still the subject of active research [18]–[20]. However, displacement resolution is
inherently limited to the tag spacing and automatic tag tracking remains difficult.

HARP analysis [21]–[23] isolates a single harmonic peak of tagged data, yielding images in
which each tissue element is characterized by a constant phase value that can be tracked
through time. Advanced HARP analyses exploiting active contours [24], shortest path
refinement [25], and multi-scale optical flow for sine-HARP data [26], [27] have shown
promising analysis automation. However, all HARP based approaches suffer an inherent
loss of resolution due to the k-space filter isolating the harmonic peak.

SENC [28] spatially modulates tissue magnetization in the through-plane direction to
directly recover through-plane strain from magnitude images. Advanced SENC techniques
are able to estimate high-resolution through-plane strain in real time [29], [30], and analysis
automation results are promising [31], [32]. However, SENC is unable to access vital
measurements such as in-plane strain, twist, or torsion.

Phase contrast imaging [33]–[36] encodes tissue velocity within the phase of the transverse
magnetization, and subsequently derives tissue displacement from these velocity
measurements. This approach is able to rapidly assess high resolution tissue motion, and
analysis automation results are promising [37], [38]. However, small errors in velocity
measurements can compound into larger errors during displacement recovery.

DENSE [39]–[42] directly encodes tissue displacement into the phase of the stimulated
echo, yielding accurate and precise measurements of tissue displacement at high spatial and
temporal resolutions. Current use of DENSE is limited, as data analysis relies on manual
anatomical delineation. Recent work has reduced this segmentation burden [43], [44], but
still requires some user defined anatomy. A fully automated analysis solution is critical to
the future success of the DENSE technology, with the potential to improve measurement
throughput, simplify data interpretation, and access important physiological information
during the MR exam.

In this article, we present the first fully automated solution for the estimation of tissue
motion and tissue strain from 2D cine DENSE MR data. Using cardiac magnetic resonance
(CMR) data, the described method is shown to achieve displacement and strain values
comparable to existing analysis techniques without the need for user intervention.

II. Background
This section reviews the acquisition and analysis of cine DENSE data; specifically cine
DENSE acquisition methods, tissue motion recovery, and strain estimation.

A. Cine DENSE Acquisition
Although MR signals are typically presented as magnitude-reconstructed images, they are in
fact complex with a potentially useful phase component. For example, the phase of the MR
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signal known as the stimulated echo [45] is well-suited to storing tissue motion information
over time periods on the order of the longitudinal relaxation time (which is typically around
1 second for soft tissues). DENSE exploits this property of stimulated echoes, directly
encoding the stimulated echo phase with tissue displacement. Ongoing development
continues to improve the accuracy and reliability of DENSE measurements [46]–[48].

During the initial tissue configuration, a spatial magnetic field gradient pulse imparts a
location dependent phase shift to the stimulated echo. At later tissue configurations, a
similar gradient pulse is applied that will remove the initial phase shift if no tissue
displacement occurs. Any residual phase shift after application of the second pulse reflects
tissue displacement during the interval between the two pulses. A more detailed discussion
of cine DENSE acquisition is found in [40].

Fig. 1 illustrates a typical frame of short-axis cine DENSE CMR data, consisting of
magnitude [Fig. 1(b)] and phase [Fig. 1(c)-(d)] images. Each phase image interrogates tissue
displacement in a single direction only; thus two-dimensional displacement requires two
images to measure both horizontal [Fig. 1(c)] and vertical [Fig. 1(d)] motion. Phase
intensities stretch from black to white on the range [−π,π].

Each phase pixel occupied by tissue is proportional to a displacement value indicating the
location of the occupying tissue element when the DENSE encoding pulses were applied.
Large phase values caused by large displacements are wrapped to the intrinsic MR phase
range of [−π,π]. Phase wrapped pixels are visible in left ventricular tissue within the lateral
wall (2 o’clock) of Fig. 1(c) and the anteroseptal wall (10 o’clock) of Fig. 1(d).

Practical DENSE encoding frequencies make phase unwrapping inevitable. It is possible to
select a DENSE encoding frequency small enough so that no phase wrapping occurs;
however, a reduction in the encoding frequency also reduces the sensitivity to displacement.
Encoding frequencies in the region of 0.1 cycles/mm provide optimal results [41].

B. Motion Tracking
Tracking individual material points through time allows researchers and clinicians to easily
visualize, quantify, and interpret tissue motion. However, cine DENSE observes
displacement at fixed spatial locations through which the underlying tissue moves. Via the
method outlined in [41], we are able to estimate the more easily interpreted material point
trajectories from the observed DENSE displacements.

Horizontally and vertically encoded phase images are scaled and combined to produce a 2D
displacement field [Fig. 2(a)]. Anatomy is manually delineated, eliminating extraneous
displacement vectors [Fig. 2(b)]. Phase wrapping artifacts are corrected via a quality-guided
path following unwrapping algorithm [49], evaluating and adjusting displacement values
guided by the variance of local phase derivatives [Fig. 2(c)].

As illustrated in Fig. 2(c), the initial location of unwrapped DENSE displacement vectors
(circular markers) are scattered throughout the initial cardiac configuration. Moreover, each
frame of DENSE data refers to a unique set of tissue elements currently passing through the
fixed imaging locations. Thus, to track an individual material point through the cardiac
cycle, scattered displacements from each data frame must be interpolated for each material
point origin.

A set of material points to track are selected from the initial tissue configuration, typically
located at pixel centers. The location of each material point on every subsequent frame is
estimated as a distance-weighted linear combination of nearby unwrapped displacement
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observations. As successive non view-shared cine DENSE images are independent, the
accuracy of position estimates on each frame can be improved using estimates from other
frames. Material point trajectories are thus fit to a fifth order Fourier series, previously
shown to contain the majority of the energy of cardiac motion [50]. Fig. 3 illustrates a
typical set of cardiac trajectories.

C. Strain Estimation
To gain additional insight into anatomical deformation, tissue strain is extracted from the
tissue trajectories [51]. Tissue strain is a unit-less quantity defined as the relative change in
tissue dimension from an undeformed state (e.g. the end-diastolic cardiac phase) to a
deformed state (e.g. a phase in cardiac systole) [52], [53]. Positive strain indicates tissue
lengthening, while negative strain indicates tissue shortening.

A multidimensional strain tensor can be estimated at each suitable material point of interest.
Let t ∈ [0,1] represent time, ranging from the DENSE encoding pulse at t = 0 to the final

frame acquisition at t = 1. Let  represent a spatial location within a deforming
body at time t, where . The distance vector between point a and neighboring
point b at time t is given by

(1)

where  and b ≠ a. The deformation gradient tensor Fa(t) characterizes the local
deformation at point a as the body transforms through time. Provided tissue elements a and
b are sufficiently close, Fa(t) is well approximated by

(2)

where δab(0) and δab(t) respectively represent the original and current tissue configurations.
Given at least two suitable neighbors to point a, Fa(t) is determined via a least squares
analysis. The strain tensor Ea(t) is related to Fa(t) by

(3)

where I is the identity matrix.

To compare structures of arbitrary orientation, we perform an eigenvalue decomposition of
the strain tensor [54]. This evaluates principle lengthening strain and principle shortening
strain, defined as tissue strain in the directions of maximum and minimum dimensional
change, respectively.

Fig. 4 illustrates typical mid-plane end-systolic principle shortening strain patterns in a
healthy volunteer and patient with heart failure. A healthy subject’s heart typically has a
predictable strain pattern, featuring relatively consistent strain values within each
myocardial layer and a transmural strain gradient [55]. A patient’s heart can deviate from the
expected strain pattern, e.g. the abnormal strain values around the septum of the left-
ventricle (6 to 12 o’clock).

Fig. 5 illustrates regional mid-plane shortening strain curves in a healthy volunteer and
patient with heart failure. Each curve represents the average strain within a specific region of
the 17-segment American Heart Association cardiac model [56]. A healthy subject’s heart
typically has predictable curve shapes that are consistent between regions. A patient’s heart
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can deviate from the typical curve shapes, e.g. the abnormal strain values in the anterior,
anteroseptal, and inferoseptal cardiac segments.

D. Discussion
Though the standard cine DENSE analysis delivers informative motion and strain
measurements, there are still opportunities for improvement:

– As manual segmentation requires several minutes of user interaction per dataset
(approximately 5 min per CMR slice), the analysis of multiple datasets quickly becomes
tedious, time-consuming, and expensive. Recent work has attempted to speed
segmentation, but still requires some user defined anatomy [43], [44].

– Manual segmentation is nearly impossible early in the cine, as blood affected by the
DENSE encoding pulse remains in the imaging plane and virtually eliminates tissue
contrast.

– Quality guided phase unwrapping has difficulty recovering true displacement values
from un-segmented images containing multiple anatomical structures and regions
devoid of tissue.

– Distance-weighted linear interpolation offers little noise compensation and can result
in unrealistic motion discontinuities.

The automated analysis solution presented in this article attempts to address and overcome
each of these challenges.

III. Methods
In this section, we present our innovative algorithm to automatically track individual
material points through space and time using noisy, wrapped, and un-segmented cine
DENSE displacement observations.

A. General Notation
Before detailing our automated algorithm, we must first discuss some basic notation
describing the problem. We then describe our problem in terms of this notation.

First, consider the cine DENSE acquisition space. Let t ∈ [0,1] represent time, ranging from
the DENSE encoding pulse at t = 0 to the final image acquisition at t = 1; let ti represent the

temporal location of the ith image frame, where ; and let  represent the

spatial location of the jth image pixel, where .

Next, consider the cine DENSE data. Let  represent the potentially wrapped
displacement vector observed at pixel j in frame i. Each component of the vector 

satisfies , where ke is the DENSE encoding frequency in cycles per unit
distance. The wrapped displacement  is related to the true displacement Δu by

(4)

where mod(a, b) is the remainder after division of a by b. Thus, tissue underlying pixel j on
frame i originated from the point uj[ti] = pj – Δuj[ti].

Finally, consider a set of candidate material points to be tracked. Let  represent the

spatial location of the nth material point at t = 0, where 
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represent the displacement of this material point away from the origin xn; and let αn
represent a Boolean value indicating the presence of underlying tissue at this material point.

We may now suitably articulate the DENSE analysis problem. We must estimate the tissue
extents {αn} and spatiotemporal displacements {Δxn(t)} of material points originating at
locations {xn} from the noisy, wrapped, and unsegmented DENSE displacement

observations  acquired at pixel locations {pj} and times {ti}.

Our solution to this problem is broken into two distinct stages. For each frame of data, we
first unwrap displacement observations guided by previous motion estimates. We then
estimate the displacement of material points occupied by tissue from the unwrapped
observations.

B. Phase Unwrapping
In the first stage of our automated analysis method we unwrap displacement observations,
predicting the current position of material points guided by prior material point motion, and
estimating the true displacement underlying wrapped displacement observations consistent
with these predictions.

Given a short interval between frame acquisitions, material points will likely experience
only a small displacement between frames. We approximate the velocity of material point n
on frame i according to

(5)

Assuming material points continue to move with an approximately constant velocity over a
small temporal interval, we may predict the displacement in frame i as

(6)

To safeguard against changes in material point topology (e.g. adjacent trajectories crossing
paths in a physiologically impossible manner), displacement predictions are replaced with
the median of themselves and immediate neighbors.

Informed by displacement predictions, we are able to correct phase wrapping artifacts. The
true displacement vector underlying a wrapped observation is given by

(7)

where ξj[ti] is a vector of unknown integers. To recover ξj[ti], we must locate the mth

prediction closest to pixel j, minimizing the Euclidian distance  over
values of  for which αm = 1. Assuming pixel j is occupied by tissue on frame
i, the unwrapped observation is approximately equal to the closest displacement prediction.
Thus, the vector ξj[ti] can be recovered via

(8)

where the round(·) operator rounds values to the nearest integer.

The final step in the unwrapping processes quantifies the likelihood of tissue presence at
each pixel. With respect to the DENSE phase data, pixels containing tissue typically observe
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an unwrapped displacement similar to the closest prediction. With respect to the DENSE
magnitude data, pixels containing tissue typically observe a high/bright magnitude value.
We quantify the likelihood that pixel j is occupied by tissue on frame i using both magnitude
and phase data according to

(9)

where L ∈ [0,1],  is the difference between observed and
predicted displacements, Bj[ti] is the DENSE magnitude value, and lA & lB are positive
scalars. Note this equation does not rely on magnitude data alone, as intravoxel dephasing
can cause a decrease in pixel intensity.

Only displacement observations neighboring the current position of material points occupied
by tissue need be considered. lA is chosen to accommodate to the maximum expected change
in material point velocity. For example, we select lA = 1.0 for the human cardiac data
discussed in Section IV.B to accommodate the initial velocity shift from rest to motion early
in the cardiac cycle. When magnitude data is available, lB is automatically selected for each
DENSE magnitude image using Otsu’s method [57].

We consider pixel j to be likely devoid of tissue on frame i when Lj[ti] is smaller than a
threshold , typically determined through a training set of DENSE data. For
example,  successfully removes the majority of pixels unoccupied by tissue within
the human cardiac data discussed in Section IV.B. The set of unwrapped displacement
observations that survive the threshold are defined as {uk[ti]}, where . Further
discussion on parameter selection can be found in Section V.

C. Motion Estimation
In the second stage of our automated analysis method we estimate the true displacement of
material points occupied by tissue from unwrapped displacement observations. This is
accomplished via a well-established multivariate interpolation technique termed radial basis
function interpolation, which guarantees the existence and uniqueness of an interpolation
solution with only mild conditions on point geometry [58].

A radial basis function (RBF) ϕ(r) is a real-valued radially symmetric function depending
only on the Euclidian distance from the origin. Global RBFs, such as the thin-plate spline
[59], are real-valued within the entire interpolation space:

(10)

Local RBFs, such as the Gaussian RBF, shrink towards zero away from the origin:

(11)

Compact support RBFs, such Wendland’s C2 function [60], are equal to zero outside a
specified support radius:

(12)

A review of RBF choices for multivariate interpolation can be found in [61].
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The RBF interpolant approximates an unknown function via a weighted sum of RBFs

(13)

where g(x) is the function value at the point x, ϕ(∥x – ρk∥) is an RBF centered at the point
ρk, and ωk is the kth basis function weighting factor. In some cases such as the thin plate
spline, we add a first order polynomial to (13) to ensure a positive-definite solution.

RBF weights are determined through observations of the function g(·) at the points {ρk}
according to

(14)

where  is a vector of RBF weights,  is a vector of
function observations, and an element of the 2D matrix Φ at row  and column

 is given by Φrc = ϕ(∥ρr – ρc∥).

As the unwrapped displacement observations are in fact noisy, the exact interpolation
condition of (14) is unwarranted. The interpolation condition may be relaxed [62] by instead
minimizing the energy functional

(15)

where Φk is the kth row of the matrix Φ, and λ is a nonnegative scalar balancing functional
smoothing and data interpolation. The RBF weighting factors minimizing this energy
functional are defined by

(16)

where I is the identity matrix.

Through RBF interpolation we estimate material point displacement from the scattered
displacement observations. We center an RBF at each spatial location uk, and calculate RBF
weights for each direction of displacement through the unwrapped displacement
observations likely to contain tissue {Δuk[ti]} and (16). We then interpolate the
displacements {Δxn[ti] of material points originating from locations {xn} according to (13).

There are a number of factors to consider when selecting a specific RBF for interpolation.
Global RBFs are able to estimate function values in regions lacking observations. The thin
plate spline in particular is a popular RBF choice, featuring a rigorous mathematical
underpinning as the fundamental solution to the biharmonic equation. Local RBFs more
appropriately describe the local character of tissue motion, as observations have little effect
on function estimates far from the observation. Compact support RBFs take the local
operator to the logical extreme, as observations have no effect on function estimates outside
the support region. Additionally, the limited extent of compact support RBFs generally
results in a sparse constraint matrix Φ populated primarily with zeros, allowing for an
efficient computation of RBF weights. For more information, a comprehensive analysis of
RBF performance for general multivariate interpolation can be found in [61]. In Section IV,
we will consider basis function and parameter selection in more detail.
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Following interpolation, we determine if candidate material points are likely devoid of
tissue. We average the current material point likelihood (initially set to one) and closest
observation likelihood to obtain a new likelihood estimate. When this estimate drops below
the threshold  discussed in the previous section, we consider the point likely devoid of
tissue. Candidate material points not surviving the threshold are eliminated from further
analysis by setting αn to false.

D. Algorithm Summary
We may now summarize our algorithm for automatically tracking individual material points
through space and time using noisy, wrapped, and un-segmented cine DENSE displacement
observations.

We first initialize the material point origins {xn} within the field of view, typically at the
center of each pixel. Material point displacements and velocities are initially set to zero, i.e.
Δxn(0) = νn(0) = 0 for all n. As the tissue extents are initially unknown, we the likelihood of
tissue presence to one and αn to true for all n.

For each subsequent frame, we predict material point displacements  for all points
where αn is true, assuming a constant velocity between frames. We then estimate the true

displacements {uj[ti]} from potentially wrapped observations  guided by the
predicted displacements.

We determine the likelihood of tissue presence {Lj[ti]} for all observations using magnitude
and phase data, selecting the magnitude parameter lA via Otsu’s method [57] and the phase
parameter lB via the maximum expected change in material point velocity. Pixels with a
likelihood smaller than the threshold , selected through training data, are likely devoid of
tissue and are discarded. The set of unwrapped observations surviving the threshold is
{uk[ti]}.

Through RBF interpolation, we estimate the true material point displacements {Δxn[ti]}
from the unwrapped observations likely to contain tissue {uk[ti]}. Section IV.C provides
details regarding the choice of basis function and interpolation parameters.

The current likelihood of tissue presence at each material point is averaged with the
likelihood of tissue presence at the closest observation. Candidate material points not
surviving the likelihood threshold  are considered devoid of tissue and are eliminated
from further analysis by setting αn to false.

After evaluating motion on all frames, we fit each surviving material point trajectory
through time to a fifth order Fourier series. The entire process is repeated to refine motion
estimates, making no further changes to the tissue extents {αn} and replacing material point

displacement predictions  with current displacement estimates {Δxn[ti]}.

Following motion estimation, principle strain patterns are calculated as per Section II.C and
reported to the user.

IV. Results
In this section, we demonstrate the effectiveness of our fully automated algorithm for cine
DENSE analysis using simulated and human CMR data. We first consider the selection of
an appropriate radial basis function. We then validate the automated algorithm against the
standard analysis method of Section II.B.
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A. Simulated Data for Validation
100 normal and 100 abnormal short-axis cine DENSE CMR simulations were generated of
an isolated left ventricle contracting in space. These simulations allowed for a direct
evaluation of algorithm performance against exact knowledge of anatomical extents and
tissue displacement.

1) Notation—Let t ∈ [0,1] represent time, ranging from the beginning to the end of the
cardiac cycle. Let r = [r, θ]T represent the polar coordinates of a material element in 2D
space. This spatial transformation T(·) is given by

(17)

where d and φ represent radial and angular displacement with respect to the polar origin r0 =
[0,0]T.

2) Healthy data—The end-diastolic epicardial border and endocardial border are defined
as concentric circles with constant radii Rep and Ren centered on the polar origin r0. These
borders undergo a transformation to end-systole according to (17) via the parameters [dep,
φep] and [den,φen], respectively.

The end-systolic location of a left-ventricular material point originating from  is given
by

(18)

where σ ∈ [0,∞) skews material point motion towards epicardial (σ > 1) or endocardial (σ <
1) motion. The displacement of this material point from its origin as a function of time is
given by

(19)

where Γ(t) ∈ [0,1] is the piece-wise continuous function illustrated in Fig. 6 derived from
the standard left-ventricular volume diagram [63].

3) Patient data—Abnormalities are introduced into a healthy motion field via

(20)

where the weighting function Ψ(θ) reduces tissue motion in the direction ψ ∈ [0,2π] by a
factor χ ∈ [0,1].

End-systolic principle strain patterns derived from healthy and patient motion fields are
shown in Fig. 7. Both simulations use identical simulation parameters, with the exception of
the anterior defect in the patient simulation. Note the expected strain gradient in the healthy
simulation, and a significant deviation from the expected strain pattern in the anterior region
of the patient simulation.
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4) DENSE data—To simulate DENSE phase data for a given frame, we first sample left-
ventricular displacement for that frame at a very high spatial resolution. The displacement
observed at each pixel occupied by tissue is given by the average displacement of material
points currently within the pixel bounds. Displacement observations are wrapped according
to (4), scaled by the DENSE displacement encoding parameter, and split into separate phase
images representing displacements in orthogonal directions.

Normally distributed phase noise is added to pixels occupied by tissue prior to wrapping.
Tissue noise is increased with time, mimicking the time-dependent decrease in the signal-to-
noise ratio (SNR) that is inherent to cine DENSE MRI. Pixels not occupied by tissue are
given phase values of zero early in the cardiac cycle, mimicking blood affected by the
DENSE encoding pulse within the imaging plane. These unoccupied pixels are given phase
values uniformly distributed on the range [−π,π] later in the cardiac cycle. Fig. 8 illustrates a
typical frame of simulated DENSE CMR data.

5) Parameters—100 normal and 100 abnormal short-axis cine DENSE CMR simulations
were generated. Each simulation utilized a unique set of physiological parameters:

– End-diastolic endo. radius ........... Ren~U(10, 30)mm

– End-diastolic wall thickness ........  τ~U(7.5, 12.5)mm

– End-systolic endo. scaling ........... Sen~U(0.6, 0.8)

– End-systolic area scaling ............. Sar~U(0.9, 1.1)

– End-systolic endo. twist .............. φen~U( − 10∘, + 10∘)
– End-systolic epi. twist ................. φep = 0°

– Γ(t) parameters (Fig. 6) ..............  tA ∼ U(0.05, 0.15)
 tB ∼ U(0.35, 0.45)
 tC ∼ U(0.50, 0.60)

– Abnormal angle (if present) .......  ψ ∼ U(0∘, 360∘)
– Abnormal scale (if present) .........  χ = 0.5

where  indicates a random value was selected for the variable  for each
simulation from a uniform distribution on the range [a, b], Rep = Ren + τ, den = (1 – Sen) Ren,
and dep was calculated to achieve the requested change in left-ventricular area defined by
sar. Imaging parameters included a [100×100] mm field-of-view at 3.0 mm/pixel, a 0.1
cycle/mm DENSE encoding frequency, and a 30 frame cine. Normally-distributed tissue
noise increased linearly with respect to time, from a standard deviation value of 0.10 to 0.25
radians.

B. Human Data for Validation
2D cine DENSE CMR data were acquired in five healthy volunteers and five patients with
heart failure using a 1.5T MR system (Avanto, Siemens). All subjects provided informed
consent and all human studies were performed in compliance with protocols approved by
our Institutional Review Board.

Healthy volunteers consisted of five male subjects ranging in age from 21 to 45, and patients
consisted of two female and three male subjects ranging in age from 48 to 72. All five
patients were diagnosed with heart failure, including conduction abnormalities such as left
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or right bundle branch block. Three patients had ischemic cardiomyopathy, and two had
non-ischemic cardiomyopathy.

Each subject yielded three to four short-axis DENSE sequences extending from base to
apex, totaling 32 unique short-axis sequences. Each healthy subject also yielded a two-
chamber and four-chamber long-axis DENSE sequence, totaling 10 unique long-axis
sequences.

Healthy subject imaging parameters included a [360×360] mm field-of-view at 2.8 mm/
pixel, 8 mm slice thickness, 20° flip angle, 16 ms repetition time, 1.3 ms echo time, and a
0.1 cycle/mm DENSE encoding frequency [42]. Patient imaging parameters were identical
except for a [350×350] mm field-of-view at 2.7 mm/pixel, 17 ms repetition time, and 1.08
ms echo time.

For comparison, tissue motion was estimated for each DENSE sequence using a semi-
manual analysis technique described in [41] and outlined in Section II.B. Left-ventricular
anatomy was manually delineated on one frame of each sequence by a trained technician
and propagated to the remaining cine frames [43]. Anatomical outlines were fine-tuned by
hand to ensure success of the quality-guided phase unwrapping algorithm. Material point
trajectories originated from each pixel within the left-ventricular anatomy on the first frame
of each sequence. As the distance-weighted linear (DWL) interpolation procedure has
difficulty recovering tissue motion late in the cardiac cycle, motion estimates were not made
for the last quarter of each sequence. Material point trajectories were fit to a fifth order
Fourier series.

Principle strain maps were calculated from material point trajectories as described in Section
II.C. Segmental strain-time curves were determined from these strain maps, averaging strain
values on each frame within the standard 17-segment left-ventricular model of the American
Heart Association [56]. Basal and mid-plane short-axis sequences were divided into six
segments, apical short-axis sequences into four segments, and long-axis sequences into
seven segments. Cardiac segments were delineated by hand.

C. Radial Basis Functions
In our first study, we considered the ability of radial basis functions to accurately estimate
tissue motion and tissue strain. For this study we replicated the standard semi-manual
analysis method of Section II.B, replacing DWL interpolation with RBF interpolation. To
ensure a fair comparison, the same left-ventricular regions, unwrapped displacement vectors,
and temporal fit orders were used for each interpolation technique.

We considered the three RBFs described in Section III.C: the thin-plate spline (10),
Gaussian (11), and Wendland’s C2 (12) function. RBF interpolation parameters were
optimized with respect to human data, performing a global search of the parameter space for
the best match of RBF to DWL motion estimates. The respective parameters for thin-plate
spline, Gaussian, and Wendland’s C2 interpolation were λ = 9.0, λ = 0.18 & β = 4 pixels,
and λ = 0.18 & β = 11 pixels.

Fig. 9 and Fig. 11 illustrate typical end-systolic principle shortening strain maps in simulated
and human datasets, respectively, derived using different interpolation methods. Simulated
results are compared to the known strain pattern of Fig. 7, while human results are compared
to DWL interpolation in Fig. 11.

For both simulated and human data, we report the root mean squared error (RMSE) between
estimated and gold-standard material point positions. For human data, we also report linear
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regression and Bland-Altman analyses comparing estimated left-ventricular segmental strain
estimates to the gold standard. When estimates are similar to the gold standard, the RMSE is
low, linear regression reveals a slope and R2 value near one, and Bland-Altman analysis
reveals an average difference near zero with minimal spread.

We first evaluated RBF interpolation with respect to simulated data, comparing estimated to
known material point positions. DWL, thin-plate spline, Gaussian, and Wendland’s C2

interpolation respectively achieved an RMSE of 0.24 mm, 0.17 mm, 0.19 mm, and 019 mm
(with respect to a maximum material point displacement of 11.3 mm).

We then evaluated RBF interpolation with respect to human data, comparing estimated to
gold standard motion and segmental strain. The values herein respectively compare thin-
plate spline, Gaussian, and Wendland’s C2 RBF interpolation to DWL interpolation across
all datasets. The RMSE of all material point positions was 0.24 mm, 0.33 mm, and 0.30 mm
(with respect to a maximum material point displacement of 18.4 mm). Fig. 13, columns 1-3,
illustrates the comparison of segmental strain values. For principle shortening strain, linear
regression revealed slopes of 1.05 (R2=0.95), 1.03 (R2=0.94) and 1.02 (R2=0.95); and
Bland-Altman analysis revealed differences of 0.01±0.02, 0.01±0.03, and 0.01±0.03. For
principle lengthening strain, linear regression revealed slopes of 1.17 (R2=0.95), 1.07
(R2=0.93), and 1.08 (R2=0.94); and Bland-Altman analysis revealed differences of
0.00±0.08, −0.01±0.08, and −0.01±0.08.

D. Automated Analysis
In our second study, we considered the ability of the proposed fully automated algorithm to
accurately estimate tissue motion and tissue strain. The automated algorithm follows the
procedure summarized in Section III.D. Material point trajectories were initialized at all
pixel locations. Wendland’s C2 function was selected for RBF interpolation as it provides
both accurate interpolation results and an efficient implementation. Interpolation parameters
were λ = 0.18 & β = 11 pixels, as determined in the previous section. Consider next the
likelihood parameters of (9). For all data, we selected lA = 1.0 to accommodate the initial
velocity shift from rest to motion. For human data, lB was automatically selected for each
DENSE magnitude image via Otsu’s method [57], and we selected  through training
experiments. As simulated data included no DENSE magnitude images,  was set to zero
and  was increased to 0.2.

Fig. 10 and Fig. 12 illustrate typical end-systolic principle shortening strain maps in
simulated and human datasets, respectively, derived using the automated analysis. For
improved visualization of cardiac function, the lower panels of these figures additionally
highlight strain values within cardiac anatomy. Simulated results are compared to the known
strain pattern of Fig. 7, while human results are compared to DWL interpolation in Fig. 11.

We first evaluated the proposed technique with respect to simulated data, comparing
estimated to known material point positions within the left ventricle. The automated
algorithm achieved an RMSE of 0.20 mm (with respect to a maximum material point
displacement of 11.3 mm), which is comparable to motion estimation methods that employ
manual segmentation.

We next evaluated the proposed automated algorithm with respect to human data, comparing
estimated to gold standard motion and segmental strain within the manually delineated left
ventricle. The values herein compare the automated algorithm to semi-manual analysis using
DWL interpolation across all datasets. The RMSE of all material point positions was 0.35
mm (with respect to a maximum material point displacement of 18.4 mm). Fig. 13, column
4, illustrates the comparison of segmental strain values. Linear regression and Bland-Altman
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analysis revealed a slope of 1.00 (R2=0.90), and difference of 0.01±0.03 for principle
shortening strain and a slope of 1.10 (R2=0.84), and difference of 0.01±0.12 for principle
lengthening strain.

V. Discussion
Results indicated good performance of RBF interpolation techniques, as discussed in
Section IV.C. Simulated results showed good agreement between RBF interpolation and
known tissue motion, and human results showed good agreement between RBF interpolation
and the standard DWL interpolation technique. As evident in Fig. 9 and Fig. 11, strain
patterns derived using RBF interpolation were similar overall to DWL interpolation, but
were also smoother with a higher signal-to-noise ratio and no pixel discontinuities. RBF
interpolation additionally clarified the expected transmural strain gradient in healthy
subjects [55] as well as dysfunctional regions in patients with heart failure.

Results further indicated good performance of the proposed automated algorithm, as
discussed in Section IV.D. Simulated results showed good agreement between the
automated analysis and known tissue motion, and human results showed good agreement
between the automated analysis and the standard semi-manual analysis technique. As
evident in Fig. 10 and Fig. 12, the automated analysis maintained the expected transmural
strain gradient in healthy subjects [55] and detected the dysfunctional regions in patient with
heart failure. Most importantly, the automated algorithm provided access to high resolution
tissue motion and tissue strain without the need for any user intervention. In both the clinical
and research settings, this automation is critical to the future success of DENSE technology.

The automated algorithm incorporates several assumptions and parameter choices that must
be addressed. Temporal resolution must be sufficient for the constant velocity motion model
to provide acceptable estimates of frame-to-frame displacement. RBF parameters must be
tuned to specific imaging conditions through representative training data, ensuring we
maintain the ability to resolve small details in tissue function. Likelihood parameters must
also be tuned through training data, as overly generous or overly conservative parameters
may result in poor indications of tissue presence. It should be noted if improved knowledge
of tissue presence is available, e.g. through another registered anatomical scan, this
information could replace or be incorporated into the likelihood estimate. Finally, we must
note the close coupling between likelihood estimates and RBF interpolation; a failure in one
due to poor parameter choice will not likely be resolved by the other.

The automated algorithm does exhibit several limitations. Tissue bounds are often
overestimated. For example, the endocardial and epicardial extents of simulated datasets
were overestimated on the order of one pixel. Additionally, strain values can be
misestimated at tissue-to-tissue interfaces. For example, principle lengthening strain can be
overestimated within the inferior left-ventricular segments of short-axis human data due to
neighboring stationary tissue. Finally, to compute regional strain versus time curves or to
compute certain strain patterns such as radial and circumferential strain, users are still
required to delineate anatomical extents from at least a single cine frame. Work is ongoing
to improve tissue localization and automatically identify distinct anatomical structures.

The current implementation of the automated algorithm takes 2-4 minutes of processing
time to complete a 20 frame sequence spanning [128×128] pixels. The most computationally
consuming aspect of the algorithm is RBF interpolation, including both the computation of
RBF weights and the interpolation of material point motion. Compact support RBFs offer
the most efficient computation of RBF weights; in fact, computing global and local RBF
weighting coefficients across the entire image is computationally prohibitive.
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The speed of the automated algorithm is directly tied to the size of the assessed image
region. The use of outer volume suppression (OVS) [30] to eliminate irrelevant image
information far from anatomy of interest may prove very useful. OVS provides users the
ability to quickly select a general image region containing the appropriate anatomy during
scan setup, the preferred stage of acquisition and analysis for user input. Initial tests with
OVS datasets have decreased execution time for a 20 frame sequence spanning [128×128]
pixels to approximately 25 seconds.

Though far from trivial, an extension of the automated algorithm to recover 3D tissue
motion from 3D cine DENSE data is fairly straightforward. The biggest obstacle is
computational, as the number of DENSE observations increases exponentially from 2D to
3D. To recover 3D displacement in a reasonable timeframe, we will likely require additional
automated analyses or user intervention to select a smaller volume containing structures of
interest from the full field-of-view.

The automated algorithm has potential value to other tissue tracking technologies. Consider
cine HARP, where tissue elements maintain invariant phase values which can be tracked
through time. The proposed algorithm could be adapted to this technology to eliminate user
intervention and improve error compensation, employing a similar strategy to predict
material point displacement, locate suitable HARP observations, and interpolate true
material point motion.

Future work will likely necessitate a comparison of the proposed algorithm with other
automated analysis techniques across the spectrum of MR tissue tracking methods. Such a
comparison, considering both the speed and accuracy of automated motion and strain
recovery, is critical to the future success and acceptance of MR tissue tracking.

VI. Conclusion
Cine DENSE provides detailed measurements of tissue motion and tissue strain. Currently,
motion analysis for these images relies on manually delineated anatomy. An automated
analysis solution could improve measurement throughput, simplify data interpretation, and
potentially access important physiological information during the imaging exam.

In this article, we presented the first fully automated solution for the estimation of tissue
displacement and tissue strain from 2D cine DENSE data. Results using CMR data indicate
good agreement between the automated algorithm and standard analysis methods. In a study
of 42 unique cine DENSE CMR sequences from ten human subjects, Bland-Altman analyses
revealed respective differences of 0.01±0.03 and 0.01±0.12 in principle shortening and
lengthening strains between automated and standard analyses. This innovative and
promising technique is an important step toward an automated cine DENSE analysis
available for routine clinical use.
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Fig. 1.
Short-axis DENSE CMR frame during contraction in a healthy human subject. (a) Anatomy,
(b) magnitude, (c) horizontally encoded phase, and (d) vertically encoded phase.
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Fig. 2.
DENSE CMR displacement recovery. (a) Wrapped and un-segmented displacement vectors;
cardiac displacement (b) before and (c) after unwrapping.
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Fig. 3.
Cardiac trajectories in a healthy subject.

Gilliam and Epstein Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Human end-systolic principle strain patterns.
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Fig. 5.
Human principle shortening strain versus time curves.
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Fig. 6.
Simulated cardiac cycle weighting function.

Gilliam and Epstein Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Simulated end-systolic principle strain patterns.
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Fig. 8.
Simulated frame of DENSE CMR data; (left) horizontally and (right) vertically encoded
phase.
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Fig. 9.
End-systolic principle shortening strain patterns in simulated data using various
interpolation methods.
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Fig. 10.
Automated end-systolic principle shortening strain patterns in simulated data, (top) without
and (bottom) with highlighted anatomy.
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Fig. 11.
End-systolic principle shortening strain patterns in human subjects using various
interpolation methods.
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Fig. 12.
Automated end-systolic principle shortening strain patterns in human subjects, (top) without
and (bottom) with highlighted anatomy.
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Fig. 13.
Comparison of segmental principle shortening strain (PSS) and principle lengthening strain
(PLS) within human subjects.
All methods are compared to a standard semi-manual analysis using distance-weighted
linear (DWL) interpolation.
Columns 1-3 consider semi-manual analyses using thin-plate spline (TPS), Gaussian, and
Wendland’s C2 radial basis function interpolation.
Column 4 considers the fully automated analysis presented within this article.
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