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ABSTRACT

Motivation: Reverse phase protein arrays (RPPA) measure
the relative expression levels of a protein in many samples
simultaneously. A set of identically spotted arrays can be used to
measure the levels of more than one protein. Protein expression
within each sample on an array is estimated by borrowing strength
across all the samples, but using only within array information. When
comparing across slides, it is essential to account for sample loading,
the total amount of protein printed per sample. Currently, total protein
is estimated using either a housekeeping protein or the sample
median across all slides. When the variability in sample loading is
large, these methods are suboptimal because they do not account
for the fact that the protein expression for each slide is estimated
separately.
Results: We propose a new normalization method for RPPA data,
called variable slope (VS) normalization, that takes into account that
quantification of RPPA slides is performed separately. This method
is better able to remove loading bias and recover true correlation
structures between proteins.
Availability: Code to implement the method in the statistical
package R and anonymized data are available at http://
bioinformatics.mdanderson.org/supplements.html.
Contact: sneeley@stats.byu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Protein arrays have been used in many contexts to measure
protein expression in a high-throughput format (Becker et al.
2006; Grote et al. 2008; Hennessy et al. 2007; Herrmann et al.
2003; Kornblau et al. 2009; Kreutzberger 2006; Park et al. 2008).
Assays that measure protein are able to address questions about
post-translational modifications and protein pathway relationships
that genomic studies alone cannot answer (Nishizuka et al. 2003b).
Several different protein array formats have been developed, but
they can be dichotomized into forward and reverse phase assays
(Liotta et al. 2006). In forward phase arrays, numerous capture
antibodies are printed on the array, which is then exposed to a
single protein sample, allowing the simultaneous measurement of
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the level of multiple targets in a single sample. In reverse phase
arrays, numerous protein samples are printed in discrete spots on
the array, which is then probed with a single validated antibody,
simultaneously measuring the level of a single protein in multiple
samples. One reverse phase approach that uses lysed homogenized
samples is the protein lysate or reverse phase protein array (RPPA)
first described by Paweletz et al. (2001). Since then, RPPAs have
been used by several groups worldwide to study the protein behavior
in diseases (Chan et al. 2004; Herrmann et al. 2003; Jiang et al. 2006;
Korf et al. 2008; Kornblau et al. 2009; Mendes et al. 2007; Park
et al. 2008; Stevens et al. 2008; Zhang et al. 2009).

RPPAs have been used to address a number of biological
questions. For example, RPPAs were used to study proteomic
signatures of signaling pathways in various types of cancer including
prostate (Grubb et al., 2003; Paweletz et al., 2001), breast (Akkiprik
et al., 2006), glioma (Jiang et al., 2006), follicular lymphoma
(Gulmann et al., 2005) and leukemia (Kornblau et al., 2009). Calvert
et al. (2007), Nishizuka et al. (2003a) and Mendes et al. (2007)
all found protein signatures that were able to distinguish between
diseases or subtypes of disease. Other studies that use RPPAs to
study proteins relating to pathway disregulation or drug response
in cancer or other diseases include Ma et al. (2006); Wulfkuhle
et al. (2003), Nishizuka et al. (2003b), Chan et al. (2004), Zha et al.
(2004), Shankavaram et al. (2007) and Kim et al. (2008).

The RPPA assay is described in detail in Paweletz et al. (2001)
(see also Charboneau et al., 2002; Espina et al., 2004; Liotta et al.,
2006; Tibes et al., 2006). Briefly, biological samples are lysed,
resulting in solutions that contain the protein of interest in unknown
amounts. These sample lysates are spotted onto a nitrocellulose
backed array in a dilution series. The array is then hybridized
with a specific antibody validated to recognize only the protein of
interest. Next, the array is incubated with a biotinylated secondary
antibody that recognizes and binds to the primary antibody. Finally,
streptavadin-linked labels (such as dyes) are introduced and bound
to the biotin. When the array is processed, the labels can be observed
and measured. It is assumed that the amount of label corresponds
to the amount of protein at the spot. The processed arrays are
scanned and the resulting images are analyzed with array software
(we use MicroVigene®,VigeneTech, Carlisle, MA) that measures
the foreground and background intensities of the label at each spot.
RPPA ‘raw data’ consists of these measurements of foreground and
background intensity at each spot on the array. Figure 1 shows an
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Fig. 1. Image of an example RPPA with 1152 separate dilution series. Each
dilution series is printed in 5-spot 1/2 dilutions. The zoom-in box shows 12
dilution series on the array. The darker the spot, the higher the amount of
protein. Some of the spots do not appear on the array or in the zoom-in box
because there was no label (i.e. protein) at the spot.

example of an RPPA slide with details of a few samples in their
dilution series. The darker spots contain more protein than the lighter
spots.

The reverse phase nature of RPPAs allows the levels of only one
protein to be measured per array. Thus, RPPA experiments involve
multiple arrays each printed identically with the same samples but
probed with different antibodies. Such a set of arrays allows for
estimation of sample effects that can go undetected with one array.

Similar to other array formats, this data undergoes a series
of preprocessing steps before a formal analysis. The three main
preprocessing steps are background subtraction, quantification and
normalization. RPPA processing steps are performed sequentially:

(1) Background correction: the background spot intensities are
used to subtract baseline or non-specific signal from the
foreground spot intensities.

(2) Quantification: the background adjusted spot intensities from
each dilution series are mapped into one number, the protein
expression, that represents the amount of protein in the sample
relative to the other samples on the array.

(3) Normalization: the estimated relative sample expressions are
adjusted to account for known sources of variation.

In this article, we focus on the normalization step. Specifically, we
discuss current practices for estimating and correcting array and
sample effects, with more focus on sample effects. We also propose
a new normalization model that corrects array and sample effects
based on the assumption that the protein expression estimates from
each array are potentially on slightly different scales due to random
variability in the quantification step.

Row and sample effects are assumed to be additive on the log
scale:

xjp =λj +δp +cjp (1)

where xjp is the estimated relative log expression in sample j on
array p, λj is the effect due to sample j, δp is the effect due array p
and cjp is the relative protein log expression with sample and array
effects removed. Array effects are due to the fact that each array is
quantified separately and protein expression is relative within slides.
Sample effects occur when different amounts of total protein are
unintentionally spotted on the array for different samples. Array and
sample effects are further discussed in the next section.

The model we propose is a slight variation. The following simple
modification to Equation (1) can improve normalized results when
there is large variation in the sample effects:

xjp = (λj +δp +cjp)γp. (2)

Here, the γp term refers to a protein specific quantity that helps to
account for error in estimating the sample protein expressions.

In order to motivate this model, we briefly discuss the
quantification step. This is the only step that has been explicitly
addressed in RPPA data (see Hu et al., 2007; Mircean et al., 2005;
Nishizuka et al., 2003b; Tabus et al., 2006; and Supplementary
Material).

The purpose of the quantification is to estimate the relative amount
of protein in a sample as compared with the other samples on
the same array using information from the dilution series and the
observed intensities. This is accomplished by establishing a model
relationship between the observed spot intensities and unknown
relative expressions. Various groups have developed methods
for RPPA quantification including models that use only sample
information (Mircean et al., 2005; Nishizuka et al., 2003b) and ‘joint
sample’ models that borrow strength from all samples on the array
(Hu et al., 2007; Tabus et al., 2006). We use a joint sample model
developed by our group at MD Anderson, called ‘SuperCurve’. This
model is explained in detail in the Supplementary Material. Briefly,
a three parameter logistic equation is used to model the dependency
of the observed intensity on the unknown protein expression. There
is one overall logistic curve estimated for the whole array and
individual protein expressions are estimated as offsets from the
overall curve. The logistic equation parameters and sample protein
expressions are estimated iteratively (see Supplementary Material).

Sample protein expressions are estimated relative to the other
samples on the array, and are reported without units. Since most
estimation models, including SuperCurve, compute log expression
values, in this article, we treat all expressions as on the log scale.

Array quantification is performed individually for each array.
We have observed that this separate estimation of protein expression
can result in unexpected multiplicative effects. For example, one
experiment that we ran involved more samples than could be printed
on a single array. We randomly allocated each sample to one of
two groups, balancing for all potentially explanatory covariates that
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we could identify in advance. These two groups of samples were
then printed on two parallel sets of arrays, which were interrogated
with the same sets of antibodies. Due to the randomization, we knew
that the distributions of protein expression for a given antibody
should be the same for Groups 1 and 2. However, comparison of the
expression distributions showed an unexpected shift in scale due to
slightly different estimates of the slopes in the logistic curves used
in the quantification of these arrays. These small differences are a
result of error in the estimates of the logistic parameters. However,
while the differences in slope estimates were slight, the range of
sample loadings was broad, so the final expression estimates (and
the protein clusters) were quite different. It is important to note that
while this experiment (with samples split across arrays) first led us
to identify the problem, these shifts in logistic slope are also present
[and can be fixed with variable slope (VS) normalization] in the
more common design context where all samples are printed on one
array.

The usual normalization model in Equation (1) fails to capture the
fact that protein expression is estimated separately for each slide and
each array can have slightly different slopes in the overall logistic
curve. Small errors in the slope parameter of the logistic curve can
result in large variation if not properly accounted for.

The proposed model, Equation (2), adjusts for variability in slide-
to-slide expression estimates when adjusting for sample loading.
The γp term refers to a protein-specific quantity that accounts for
potentially differing slopes in the sigmoidal slope from the curve
estimated with quantification methods described in Tabus et al.
(2006), Hu et al. (2007) and the Supplementary Material. We call the
new approach VS normalization because it accounts for variation in
the estimated slope parameters from the calibration curve estimated
in the quantification step.

2 METHODS
Normalization, using either Equations (1) or (2), requires estimation of
both array and sample effects. Equation (2) additionally requires estimating
multiplicative array effects. We first address additive array and sample effects
and then the multiplicative array effects.

2.1 Array and sample effects
Array effects, δp in Equations (1) and (2), are actually common and even
expected since each slide is quantified separately and expression estimates are
relative within slides. These effects are corrected by normalizing expression
to the median slide expression estimate so that each array has the same
median expression.

Sample effects, λj , occur when the amount of total protein that is spotted on
the array, the sample loading, varies from sample to sample. Unintentionally
printing differing amounts of total protein for each sample can result in false
conclusions of differential expression. Although efforts are made when the
array is being printed to equalize total protein, this is often an unavoidable
problem. For example, the same number of cells can be used in each
biological sample, but if the size of the cells differs, then samples with
larger cells will have more protein.

Sample loading has been estimated with a ‘housekeeping’ (HK) protein,
such as β-Actin, as in Jiang et al. (2006) and Mendes et al. (2007). A HK
protein is a protein that should be present in the same amount for all samples
so differences in expression reflect differences in sample loading. However,
in reality there is no protein that meets this expectation, and the expression
levels of HK proteins can be quite variable. We refer to normalization with
Equation (1), estimating λj with a HK protein, as HK normalization.

Another method that is used to estimate sample loading for the j-th sample
is to use the median protein expression estimate for sample j across all
the arrays, λj =medianj(xjp). This method assumes, first, that all the arrays
were printed in a similar manner and, second, that most proteins will not
be abnormally expressed but the few that are will still be noticed after
normalization to the median. It is important to note that this method requires
a set of arrays with the same samples. Normalization with Equation (1) but
estimating λj with the median is called median loading (ML) normalization.

2.2 Multiplicative protein effects
The array-specific multiplicative effects, γp, in model 2 are partially
confounded with the additive protein effects, δp. We outline a method that we
have found to be effective in estimating parameters and performing sample
loading normalization according to the VS normalization model.

First, write (2) as
xjp = (λj +cjp)γp +δpγp. (3)

The confounded term, δpγp, is lumped together as the overall protein effect
and estimated with the median of protein p across all samples [γ̂pδp =
medianp(xjp)]. Moving this term to the left-hand side, (3) can be written as

xjp − γ̂pδp =γp(λj +cjp). (4)

We will not be able to estimate the exact γp’s, but taking the ratio of (4) for
two values of p will allow estimation of the relative γp’s. This ratio will be

xjp1 − γ̂p1 δp1

xjp2 − γ̂p2 δp2

= γp1 (λj +cjp1 )

γp2 (λj +cjp2 )
�

γp1

γp2

(5)

where
(λj +cjp1 )

(λj +cjp2 )
�1

since we assume that most cjp’s will be small relative to λj . We also assume
that the γp’s have an expected value of 1 and a small variance. They should
realistically have a range of around 0.5–1.5 so that there should not be a
danger of ratios behaving badly as the denominator gets close to 0. We define
x̂jp ≡xjp − γ̂pδp, hence Equation (5) implies that x̂jp1 /x̂jp2 estimates the ratio
γp1 /γp2 . This ratio can be estimated by regressing x̂jp1 on x̂jp2 . Since there
is no preferred direction (we could just as easily regress x̂jp2 on x̂jp1 ) we use
perpendicular least squares (de Groen, 1996; Rencher, 1995). The logs of
these ratios are used to set up a system of equations whose solution yields
estimates of the logγ̂p’s: the system is made non-singular by setting

1

K

K∑
p

logγp =0.

VS normalization is the process of adjusting the matrix x̂jp by dividing each
column by the appropriate γ̂p, and subtracting from each row the appropriate
λ̂j =medianj(xjp) to obtain the estimate of cjp.

3 SIMULATIONS
We ran simulations to compare VS, ML and HK normalization.
We randomly generated 30 proteins, each with 200 samples, from
independent standard normal distributions. Array and samples
effects were generated according to the following distributions,
based on empirical data:

λj ∼ N(−2,16) (6)

δp ∼ N(−1,4) (7)

logγp ∼ N(0,0.01) (8)

The ‘HK protein’ was modeled as:

xjphouse
=λj +εj ∼N(0,0.5). (9)
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Table 1. Results of the simulation comparing the M̂SEs of HK, ML and VS
normalization

Contrast HK MSE ML MSE VS MSE Low MSE

1 Correlated columns 0.023 0.029 0.005 0.002
2 Differential expression 3.429 3.506 2.431 2.000

The theoretical minimum (Low) is also shown. We looked at two contrasts: (i) the
correlation between two columns that should have a correlation of 0.6 and (ii) the
difference between an unexpressed sample and a sample with spiked in expression
(with a value of 5) within the same protein.

In comparing the three methods, we wanted to assess the ability
of each (i) to recover true protein correlation and (ii) to detect
differential expression. To this end, two protein expression vectors
were generated to have a correlation of 0.6, and another was ‘spiked’
with expression by adding a constant to one of the samples.

After each simulation, we performed normalization with the three
methods and computed (i) correlation between correlated proteins
and (ii) differential expression. Each target was compared with the
truth using an estimated mean squared error (̂MSE) defined as

̂MSE=var(θ̂i)+(θ − 1

n

∑
θ̂i)

2 (10)

where θ is the true value of the contrast (i.e. true correlation or true
differential expression), and θ̂i is the value of the contrast for the
i-th simulation.

Table 1 shows the ̂MSE of the contrasts after 1000 simulations.
The ̂MSE for VS normalization is better than both the other methods
in every case and is good at maintaining correlation between proteins
with known correlation.

The last column of the table shows the ‘Lowest’ ̂MSE or what the
̂MSE would be if the parameters were known. This number is not 0
because of randomness in the data.

We performed a second set of simulations in which we varied the
simulation parameters, including the number of proteins, the number
of samples and the SDs of λj , δp and γp in Equations (6–8). The
results of this simulations (shown in the Supplementary Material)
similarly show that VS normalization performs as well or better
than the other methods in all situations. The differences are most
dramatic, however, when the variability in the sample loadings is
large.

We ran a third simulation to compare only VS normalization
with ML normalization when clustering proteins. We generated 30
proteins with 200 samples from a multivariate normal distribution
with a covariance structure that allowed for five correlated groups as
follows: Group 1, N = 3, r = 0.4; Group 2, N = 10, r = 0.2; Group 3,
N = 5, r = 0.2; Group 4, N = 5, r = 0.5; and Group 5, N = 7, r = 0.3.
The column, row and slope effects were generated according to
Equations (6–8). Figure 2 shows a plot of the ‘true’, observed and
normalized data matrices from a typical simulation.

It is easy to distinguish between groups for the true data, but
grouping becomes scrambled after the row and column effects are
introduced. ML normalization is able to separate some of the groups
but still leaves many proteins scrambled. VS normalization is able
to recover and separate all the groups present in the ‘true’ matrix.
This example illustrates the strength of VS normalization to recover
true correlation structure between proteins in the presence of high
sample loading variability.

Fig. 2. The first two principal components plotted against each other for
the true data matrix (A), the observed data matrix (B), the data matrix
after ML normalization (C) and the data matrix after VS normalization (D).
There are five groups each plotted in a different shade and symbol (every
point represents a different protein/array). Each panel is shown in principal
component space so rotation of axes is arbitrary; it is only important how the
points group together. VS normalization is able to recover the group structure
observed in the ‘true’ matrix, while ML normalization only recovers one of
the groups.

4 EXAMPLE WITH LEUKEMIA DATA
We applied the normalization methods to an RPPA experiment
studying protein signatures in leukemia. A series of 138 lysate
arrays were printed with either blood or marrow samples from 360
patients with acute lymphoblastic leukemia (ALL). Each sample was
printed in duplicate on the array; each replicate was printed in a five
spot, 2-fold dilution series. We used SuperCurve (see supplementary
Material) to estimate protein expression for each dilution series.

The sample loadings for this data are quite variable. Figure 3
shows the protein expression for two extreme samples across all
of the arrays. Figure 3A plots the expression before any loading
normalization, showing that two samples can differ by nearly 8 U
on a log 2 scale (a 256-fold difference) just due to sample loading.
Figure (3B–D) plots protein expression for the same two samples
after HK , ML and VS normalizations. There is still a slight loading
bias after HK normalization, but the other two methods are able to
correct this.

We performed hierarchical clustering of the 138 proteins,
using average linkage for the linkage method and Pearson’s
correlation coefficient for the distance metric. For both VS and
ML normalization methods, we checked the robustness of the
protein clusters using bootstrap clustering (Kerr and Churchill, 2001;
Pollard and van der Laan, 2005). HK normalization is excluded
here because it did not remove all sample loading bias (Fig. 3).
The idea behind bootstrap clustering is to see how often each
pair of proteins clusters together in a set of bootstrapped samples.
Based on the median split silhouette statistic (see Pollard and
van der Laan 2005), we assumed nine clusters. Figure 4 shows the
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A B C D

Fig. 3. Protein expression for two extreme samples (a low expressed sample in black and a high expressed sample in gray) from an RPPA experiment with
138 slides. (A–D) The expression for the two samples across all arrays in the set. The array index is plotted on the x-axis and the estimated log expression is
plotted on the y-axis. When there is no normalization, there is nearly an 8 log2 unit difference in expression (256-fold) between these samples primarily due
to sample loading effects. HK normalization mostly corrects for sample loading, but there is still a 4-fold sample loading bias that the HK protein does not fix.
Both median and VS normalization completely correct this level of observed sample loading bias. Note that there are differences in scale in each of the plots.

Fig. 4. Bootstrap Cluster results after ML (A) and VS normalization (B).
The colors on the margin were assigned based on group membership after
clustering the VS normalized data matrix. The marginal colors are present
only to show that there is some shift in group membership depending on the
normalization method. The clusters found after VS normalization seem to be
more robust.

results of a bootstrap cluster test with 500 bootstrapped samples
after ML and VS normalizations. The figure ranges from perfectly
yellow, meaning the proteins always cluster in the same group,
to perfectly blue meaning the proteins never cluster in the same
group (color version online). There are nine marginal colors that
were assigned based on group membership of the proteins after the
hierarchical cluster of the VS normalized data matrix. The colors
in the margins of the plot are arbitrary, only used to illustrate
change in group membership. The figure demonstrates that there is
change in protein group membership depending on the normalization
method used, confirming that the normalization approach is an
important consideration. Although it is not possible to say which
grouping is correct, the clusters found after VS normalization appear
more robust, as seen by the tighter yellow squares along the diagonal.

We attempted to determine which normalization method is most
consistently correct. TheALL samples were each printed in duplicate
on the array, so we performed hierarchical clustering with each set of
replicates separately after both VS and ML normalization methods.
Clustering with each replicate set should produce the same clusters,

since the same set of samples is used. We counted the number of
protein pairs that clustered together using the samples from one
replicate but did not cluster together using the samples from the
other replicate and divided this count by the total number of protein
pairs. The count is interpreted as the percentage of protein pairs that
did not cluster consistently. For the ALL samples from the set of
138 arrays, ML normalization inconsistently clustered 24% of the
protein pairs while VS normalization inconsistently clustered 17%
of the protein pairs. After filtering out non-informative samples, ML
normalization inconsistency dropped to 18% and VS normalization
inconsistency dropped to 12%. Both results are consistent with VS
normalization as the preferred method.

5 DISCUSSION
Protein arrays are not currently in as widescale use as genomic arrays
or other proteomic techniques; however, they are becoming more
common. Several different groups have published analyses using
RPPA technology (Gulmann et al. 2005; Hennessy et al. 2007; Jiang
et al. 2006; Korf et al. 2008; Kornblau et al. 2009; Park et al.
2008; Tibes et al. 2006). Furthermore, RPPAs can be produced
with common laboratory materials and techniques, making them
more accessible than genomic arrays or mass spectrometry. As this
technology becomes more common, appropriate preprocessing of
the data will be even more important.

It is not a trivial problem to determine the best way or ways to
normalize RPPA data. We have presented a traditional framework
for correcting sample and array effects. We further introduced a
slight modification to the standard procedure, the VS normalization
method, which normalizes for total protein while taking into
account error that can be introduced during the quantification
step. Namely, since each array is quantified separately, slight
variations in the estimated logistic slope of the dose response curve
can create problems if ignored. The VS model better explains
observed behavior and matches our knowledge of protein expression
estimation. We have shown through simulation and an example with
real data that how the VS method can recover true group correlations
better than simply normalizing to the median of the samples or to
a HK protein. We have also pointed out that the usual practice of
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normalization to a HK protein can be problematic both because of
difficulties in finding a true HK protein and failures to remove all
sample loading bias.

The impact of the multiplicative protein effect, γp in Equation
(2), depends on variability in the sample loadings. Since the γp’s
are centered close to one, when the sample loadings have small
variability, the impact of γp will also be small. However, the
relatively small values of γp can have a large impact when variability
in the sample loadings is large, as for example in the ALL data
cited here. In these cases, it is especially important to correct for
both additive and multiplicative protein effects. The type of sample
contributes to how big the sample loading problem can be. Cell
lines, for example, are not nearly as variable as tissue samples and
usually do not have such large variations in sample loading across
the samples.

The problem of sample loading is not something that can be
resolved or even seen with just one array. Simulations not shown
here suggest that at least 20 arrays (proteins) are adequate to provide
good estimates of total protein, though fewer arrays can indicate a
sample loading problem.

This is the first attempt that we know of to combine information
across arrays in an RPPA study instead of focusing on each arrays
individually.

Better estimation of the VS model parameters might be achieved
with other estimation methods, such as with an iterative approach.
In the future, we will investigate this possibility and how better
estimates can improve results more. Although this procedure was
developed for RPPAs, it can have application to any array assay in
which different samples are printed together on the same array.

Conflict of Interest: none declared.
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