Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Sep;48(3):325–330. doi: 10.1104/pp.48.3.325

Formation of Glycolate by a Reconstituted Spinach Chloroplast Preparation 1

Y Shain a,2, Martin Gibbs a
PMCID: PMC396859  PMID: 16657791

Abstract

A reconstituted preparation requiring fructose 6-phosphate, transketolase, triphosphopyridine nucleotide, ferredoxin, fragmented spinach chloroplasts, and light capable of forming glycolate at rates of about 10 micromoles per milligram of chlorophyll per hour has been characterized. The glycolaldehyde-transketolase addition product could be substituted for fructose 6-phosphate and transketolase. The stoichiometry of the reaction was: 1 mole of fructose 6-phosphate consumed for each mole of glycolate and of reduced triphosphopyridine nucleotide produced. Evidence was presented indicating that glycolate formation was coupled to the photosystems of the photosynthetic electron transport chain. Synthesis of glycolate is envisaged as the result of either (a) a reaction between the upper two carbon atoms derived from fructose 6-phosphate and an uncharacterized oxidant generated by photosystem 2 or (b) hydrogen peroxide produced by the reoxidation of reduced triphos-phopyridine nucleotide or reduced ferredoxin by molecular oxygen.

Full text

PDF
326

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVRON M., JAGENDORF A. T. A TPNH diaphorase from chloroplasts. Arch Biochem Biophys. 1956 Dec;65(2):475–490. doi: 10.1016/0003-9861(56)90207-7. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BASSHAM J. A., KIRK M. The effect of oxygen on the reduction of CO2 to glycolic acid and other products during photosynthesis by Chlorella. Biochem Biophys Res Commun. 1962 Nov 27;9:376–380. doi: 10.1016/0006-291x(62)90019-0. [DOI] [PubMed] [Google Scholar]
  4. Coombs J., Wittingham C. P. The mechanism of inhibition of photosynthesis by high partial pressures of oxygen in Chlorella. Proc R Soc Lond B Biol Sci. 1966 Apr 19;164(996):511–520. doi: 10.1098/rspb.1966.0046. [DOI] [PubMed] [Google Scholar]
  5. DATTA A. G., RACKER E. Mechanism of action of transketolase. II. The substrate-enzyme intermediate. J Biol Chem. 1961 Mar;236:624–628. [PubMed] [Google Scholar]
  6. DE LA HABA G., LEDER I. G., RACKER E. Crystalline transketolase from bakers' yeast: isolation and properties. J Biol Chem. 1955 May;214(1):409–426. [PubMed] [Google Scholar]
  7. Ellyard P. W., Gibbs M. Inhibition of photosynthesis by oxygen in isolated spinach chloroplasts. Plant Physiol. 1969 Aug;44(8):1115–1121. doi: 10.1104/pp.44.8.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HORECKER B. L., HURWITZ J., SMYRNIOTIS P. Z. The role of xylulose 5-phosphate in the transketolase reaction. J Biol Chem. 1956 Dec;223(2):1009–1019. [PubMed] [Google Scholar]
  9. Habermann H. M., Handel M. A., McKellar P. Kinetics of chloroplast-mediated photoxidation of diketogluonate. Photochem Photobiol. 1968 Feb;7(2):211–224. doi: 10.1111/j.1751-1097.1968.tb08007.x. [DOI] [PubMed] [Google Scholar]
  10. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Latzko E., Gibbs M. Level of photosynthetic intermediates in isolated spinach chloroplasts. Plant Physiol. 1969 Mar;44(3):396–402. doi: 10.1104/pp.44.3.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nelson N., Neumann J. Interaction between ferredoxin and ferredoxin nicotinamide adenine dinucleotide phosphate reductase in pyridine nucleotide photoreduction and some partial reactions. I. Inhibition of ferredoxin nicotinamide adenine dinucleotide phosphate reductase by ferredoxin. J Biol Chem. 1969 Apr 10;244(7):1926–1931. [PubMed] [Google Scholar]
  13. PROCHOROFF N. N., KATTERMANN R., HOLZER H. Formation of sedoheptulose-7-phosphate from enzymatically obtained "active glycolic aldehyde" and ribose-5-phosphate with transketolase. Biochem Biophys Res Commun. 1962 Nov 27;9:477–481. doi: 10.1016/0006-291x(62)90038-4. [DOI] [PubMed] [Google Scholar]
  14. Plaut Z., Gibbs M. Glycolate formation in intact spinach chloroplasts. Plant Physiol. 1970 Apr;45(4):470–474. doi: 10.1104/pp.45.4.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RICHARDSON K. E., TOLBERT N. E. Phosphoglycolic acid phosphatase. J Biol Chem. 1961 May;236:1285–1290. [PubMed] [Google Scholar]
  16. SHIN M., ARNON D. I. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS. J Biol Chem. 1965 Mar;240:1405–1411. [PubMed] [Google Scholar]
  17. SHIN M., TAGAWA K., ARNON D. I. CRYSTALLIZATION OF FERREDOXIN-TPN REDUCTASE AND ITS ROLE IN THE PHOTOSYNTHETIC APPARATUS OF CHLOROPLASTS. Biochem Z. 1963;338:84–96. [PubMed] [Google Scholar]
  18. TURNER J. F., BLACK C. C., GIBBS M. Studies on photosynthetic processes. I. The effect of light intensity on triphosphopyridine nucleotide reduction, adenosine triphosphate formation, and carbon dioxide assimilation in spinach chloroplasts. J Biol Chem. 1962 Feb;237:577–579. [PubMed] [Google Scholar]
  19. Telfer Alison, Cammack R., Evans M. C.W. Hydrogen peroxide as the product of autoxidation of ferredoxin: Reduced either chemically or by illuminated chloroplasts. FEBS Lett. 1970 Sep 18;10(1):21–24. doi: 10.1016/0014-5793(70)80406-9. [DOI] [PubMed] [Google Scholar]
  20. Tolbert N. E., Yamazaki R. K. Leaf peroxisomes and their relation to photorespiration and photosynthesis. Ann N Y Acad Sci. 1969 Dec 19;168(2):325–341. doi: 10.1111/j.1749-6632.1969.tb43119.x. [DOI] [PubMed] [Google Scholar]
  21. VERNON L. P., ZAUGG W. S. Photoreductions by fresh and aged chloropasts: requirement for ascorbate and 2, 6-dichlorophenolindophenol with aged chloroplasts. J Biol Chem. 1960 Sep;235:2728–2733. [PubMed] [Google Scholar]
  22. Yamashita T., Butler W. L. Photoreduction and photophosphorylation with tris-washed chloroplasts. Plant Physiol. 1968 Dec;43(12):1978–1986. doi: 10.1104/pp.43.12.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. ZELITCH I. THE RELATION OF GLYCOLIC ACID SYNTHESIS TO THE PRIMARY PHOTOSYNTHETIC CARBOXYLATION REACTION IN LEAVES. J Biol Chem. 1965 May;240:1869–1876. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES