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Xenotransplantation, or the transplantation of cells, tissues, or organs between different
species, was proposed a long time ago as a possible solution to the worldwide shortage of
human organs and tissues for transplantation. In this setting, the pig is currently seen as the
most likely candidate species. In the last decade, progress in this field has been remarkable
and includes a better insight into the immunological mechanisms underlying the rejection
process. Several immunological hurdles nonetheless remain, such as the strong antibody-
mediated and innate or adaptive cellular immune responses linked to coagulation derange-
ments, precluding indefinite xenograft survival. This article reviews our current understand-
ing of the immunological mechanisms involved in xenograft rejection and the potential
strategies that may enable xenotransplantation to become a clinical reality in the not-too-
distant future.

By “xenotransplantation,” we conventional-
ly refer to the transplantation of cells, tis-

sues, or organs from one species to another.
Current interest in xenotransplantation stems
from the worldwide shortage of human organs,
tissues, and cells for use in clinical transplan-
tation. At least in theory, the imbalance be-
tween supply and demand could be wholly ad-
dressed if organs, tissues, or cells from other
species could be transplanted into humans.
The pig is currently considered the most ap-
propriate candidate species because of its ana-
tomical similarity, physiological compatibility,
breeding characteristics, and for ethical rea-
sons. Ongoing preclinical research in this field

is consequently based on the use of pigs as
donors and nonhuman primates as recipient
species.

By now, we have gained a significant insight
into the immunological processes underlying
the rejection of porcine xenografts transplanted
into primates. Considerable advances have also
been made to elucidate the dysregulated coag-
ulation occurring after porcine xenografts have
been transplanted into primates. Despite the
encouraging results obtained to date, especially
in the field of cell xenotransplantation, several
issues nonetheless remain to be addressed be-
fore any clinical application of xenotransplan-
tation can proceed.
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This review summarizes current knowledge
in this field, focusing exclusively on the immune
mechanisms underlying the rejection of cardi-
ac, renal, and islet xenografts, and on possible
strategies to overcome these obstacles. The main
emphasis is placed on the most clinically rele-
vant pig-to-primate models. A comprehensive,
accurate analysis of the coagulation derange-
ments associated with xenotransplantation
would be too lengthy for the format of this
monograph; thus, for the sake of brevity, the
reader is referred to other, excellent reviews re-
cently published on the subject (Lin et al. 2009;
Schmelzle et al. 2010; Cowan et al. 2011; Bulato
et al. 2012).

MECHANISMS UNDERLYING XENOGRAFT
REJECTION

Antibody-Mediated Xenograft Rejection

The rejection of a xenografted solid organ is
characterized primarily by a picture compatible
with a humorally driven immunological pro-
cess. The humoral component of the immune
response is a formidable barrier to short- and
long-term organ survival. Hyperacute rejection
(HAR) and acute humoral xenograft rejection
(AHXR), also termed delayed xenograft rejec-
tion, are the main features of the humorally me-
diated xenograft rejection occurring when pig
organs are transplanted into untreated primates.

HAR is a rapid, powerful process involv-
ing diffuse interstitial hemorrhage, edema, and
thrombosis of the small vessels (Stevens and
Platt 1992). This process is triggered by pre-
existing antibodies binding to xenograft an-
tigens and prompting complement activation,
graft endothelial cell activation and destruc-
tion, activation of the coagulation cascade, and
graft rejection within minutes or hours. Pre-
formed antipig antibodies are believed to be
directed primarily against the terminal a3-ga-
lactose of the N-acetyllactosamine in glycopro-
tein and glycolipid carbohydrate chains (Gal-
a3Galb4Glc-Nac-R or aGal epitope) (Galili et
al. 1988; Macher and Galili 2008). The synthesis
of aGal is catalyzed by the a1-3 galactosyltrans-
ferase (a1-3 GalT), an enzyme expressed in
nonprimate mammals, including the pig and

in New World monkeys. The density of aGal
epitopes in pig organs goes from 1 to 3 � 107

epitopes per cell, in endothelial and epithelial
cells, respectively (Galili et al. 1988). TheseaGal
epitopes have been identified in decellularized
xenogeneic biological scaffolds, like the mam-
malian extracellular matrix used in surgical re-
constructions, even after treatments to remove
or mask antigenic epitopes (McPherson et al.
2000; Konakci et al. 2005; Stone et al. 2007).
In human beings, and in Old World monkeys
and apes, a1-3 GalT is inactive, the aGal epi-
tope is not expressed, and there are high titers of
anti-aGal antibodies due to exposure to similar
epitopes expressed by bacteria hosted in the gut
flora. A significant percentage of preformed to-
tal antibodies in human and nonhuman pri-
mates reacts with the aGal epitope (1%–8%
of total IgM and 1–2.4% of total IgG) (Parker
et al. 1994; McMorrow et al. 1997).

A detailed study to ascertain the nature and
residence of cells producing anti-aGal antibod-
ies found them located primarily in the spleen,
in both naı̈ve and immunized nonhuman pri-
mates, and to a lesser extent in the lymph nodes
(LN) and bone morrow (BM) (Xu et al. 2006).
Splenectomy does not seem to affect the num-
ber of cells secreting anti-aGal antibodies in the
LN and BM, except in the case of sensitized
animals, when exposure to aGal considerably
increases their number, but only in the BM.
The cells that produce anti-aGal IgM and IgG
are the surface Ig-positive B cells and mature
plasma cells, respectively. Six months after ex-
posure to porcine tissues or hematopoietic cells,
cells secreting anti-aGal antibodies mainly pro-
duce IgG and are found in the BM as long-lived
mature plasma cells.

The humoral response to sugars is primarily
T-cell independent, although evidence from
several lines of research suggests that natural
and elicited anti-aGal humoral response is pri-
marily T-cell dependent. First, a significantly
reduced natural and elicited anti-aGal IgM
were observed in an a1-3 GalT- and TCR-b-
deficient mouse model lacking any aGal epi-
tope expression and functional ab T cells, by
comparison with mice with normal ab T cells
(TCR-bþ) (Cretin et al. 2002). Second, blocking
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the CD40/CD154 pathway’s interaction be-
tween B and T cells with an anti-CD154 agent
inhibits the elicited anti-aGal IgM (Cretin
et al. 2002) and IgG (Tanemura et al. 2000)
response. Third, immunization with T-cell-in-
dependent agents expressing aGal epitopes,
such as an aGal multivalent polyacrylamide
polymer (Cretin et al. 2002) or glycolipids (Ta-
nemura et al. 2000), induces a mild increase
in IgM antibodies and no IgG. There is conse-
quently evidence of a limited amount of anti-
aGal IgM production occurring via T-cell-in-
dependent mechanisms (Tanemura et al. 2000;
Cretin et al. 2002). The demonstration that im-
munizing aGalT-KO mice with pig cell mem-
branes elicits anti-aGal IgM and IgG, induces
an expansion of the anti-aGal B cell clones, and
causes a strong in vitro T-cell stimulation even
after aGal expression has been suppressed leads
to the hypothesis that xenopeptides bearing
aGal epitopes are internalized, processed by B
cells, and presented to helper T cells. The result-
ing activation of helper T lymphocytes enables
the B cells to complete their activation process,
ultimately resulting in proliferation, isotype
switching, and the generation of plasma cells
and high-affinity anti-aGal antibodies (Tane-
mura et al. 2000). Finally, there are reports of
follicular dendritic cells expressing complement
receptors 1 and 2 being involved in the presen-
tation of immune complexes to aGal-reactive B
cells and being needed for antigen-specific anti-
aGal response (Shimizu et al. 2007).

At this stage, thanks to the many approaches
pursued with a view to removing preexisting
anti-aGal antibodies and controlling their ef-
fector functions, HAR of a solid organ xenograft
has become a rare event. Solid organ xenografts
are nonetheless still rejected within days or
months as a result of AHXR, even when the
donor has been genetically engineered and ex-
presses no aGal epitope (GalT-KO pigs). After
the transplantation of GalT-KO kidneys, AHXR
is characterized histologically by a thrombotic
microangiopathic glomerulopathy with in-
creasing IgM, IgG, C4d, and C5b-9 deposition
in the glomeruli, with thrombi forming inside
the injured glomeruli, loss of capillaries, and
endothelial cell death (Shimizu et al. 2012). A

similar picture can be seen after heart xeno-
transplantation (Shimizu et al. 2008), in which
case, AHXR is characterized by antibody and
complement deposition on the capillary walls,
multiple microthrombi in the capillaries, myo-
cardial ischemia, and necrosis. The pathogene-
sis of AHXR is assumed to be multifactorial,
but preformed and induced antibodies directed
against the endothelium are believed to be the
primary factors triggering AHXR, resulting in
endothelial activation and orienting the antico-
agulative properties of the endothelium toward
a procoagulative phenotype favoring thrombo-
sis (Crikis et al. 2006).

The damage seen in the AHXR process, and
in the thrombotic microangiopathy (TM) oc-
curring even when porcine GalT-KO organs are
used, gives the impression that aGal epitopes
may still be expressed by GalT-KO organs, or
else that other antibodies not directed against
aGal are involved. It has now been shown, in
fact, that another enzyme called iGb3 synthase
leads to aGal epitope production in GalT-KO
animals (Sharma et al. 2003), although this has
not been confirmed by other investigators (Dis-
wall et al. 2010, 2011; Fang et al. 2012; Puga
Yung et al. 2012; Tahiri et al. 2013). In any
case, the levels of both IgM and IgG anti-aGal
antibodies remain stable after GalT-KO xeno-
grafts have been transplanted into nonhuman
primates (Chen et al. 2005; Kuwaki et al.
2005), suggesting that—with the coverage af-
forded by current immunosuppression—any
remaining aGal epitopes are poorly immuno-
genic and may not be responsible for any graft
damage. In this light, much attention has been
paid to the influence of antibodies against non-
aGal epitopes on humoral rejection. High levels
of natural and elicited IgM and IgG against non-
aGal are detected in xenografted primates and
associated with the onset of AHXR, even when
the potentially detrimental role of aGal anti-
bodies is averted by absorption (Lam et al.
2004; Chen et al. 2006).

In healthy humans, albeit with some inter-
individual variability, it has been reported that
13% of IgM and 36% of IgG binding to pig
endothelial cells are directed against non-aGal
epitopes, and these antibodies can cause cell
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damage via complement fixation and antibody-
dependent cell-mediated cytotoxicity (ADCC)
(Baumann et al. 2007). Little is known about
the kinetics of the anti-aGal and anti-non-
aGal antibody response elicited in humans.
When mouse fibroblasts were injected into hu-
mans as part of a gene therapy approach, there
was a very rapid and sustained anti-aGal anti-
body response, with a 100-fold increase in an-
tibody titers that dropped back within the sec-
ond month, possibly as a consequence of the
immunizing fibroblasts being eliminated. As
for non-aGal antibodies, the immune response
elicited took longer and never reached the same
levels as the anti-aGal antibodies. In another
study, pig ligaments lacking any aGal epitopes
implanted into humans elicited an anti-non-
aGal antibody response directed against both
carbohydrate and protein structures (Breimer
2011; Galili 2012). Two months after the liga-
ments were implanted, there was a rise in non-
aGal IgG that peaked at 6 mo and decreased
thereafter (coinciding with the pig tissue being
gradually replaced by recipient collagen), re-
turning to pretransplant levels within 2 yr.
Like the anti-aGal antibody response, the nat-
ural and elicited response against anti-non-
aGal also appears to be T-cell dependent. This
hypothesis is supported by the fact that there
was no evidence of any elicited anti-non-aGal
antibody response after blockade of the CD40–
CD154 activation pathway and no subsequent
T-cell help to B lymphocytes (Buhler et al. 2000).
Similarly to what happens following the xeno-
grafting of wild-type organs, humoral response
to GalT-KO pigs is not polyclonal—it is restrict-
ed. It is encoded, in this case, by V3-21 germline
progenitors in the VH3 family (Kiernan et al.
2008), an observation that may have therapeutic
implications.

With regard to the specificity of anti-non-
aGal antibodies, recent studies have reported
that they are directed against carbohydrates
(that are distinct from aGal, although they are
structurally related) or proteins. When Yeh et al.
(2010) analyzed naı̈ve human or immunized
baboon sera, reactivity against a panel of se-
lected synthetic non-aGal saccharides showed
that human and baboon sera contain antisac-

charide antibodies directed against several spe-
cific entities including aGal-penta, a-LacNAc,
Forssman antigen, P1, Pk, and Neu5Gc. There
was only a minimal presence of anti-b-LacNAc
antibodies, and this is a very important find-
ing because GalT-KO animals express large
amounts of this carbohydrate, appearing de no-
vo as a consequence of aGal epitope removal.
Such studies were also able to show that pigs do
not express the Forssman antigen (a glycolipid
against which humans have several antibodies),
as shown by the presence of the high levels of
anti-Forssman antibodies and the absence of
Forssman antigens in pig tissues. Unexpectedly,
the same study found that baboons immunized
with GalT-KO pig cells had no significantly in-
creased IgM and IgG binding to aGal-tri, or
any of the saccharides in the panel considered,
a finding that contrasts with the report from
Diswall et al. (2010), who identified a different
pattern of glycolipid expression in organs from
GalT-KO pigs. The P1 antigen (not seen in wild-
type kidneys) was detected in the GalT-KO line,
for instance. Similarly, the X2 antigen was found
expressed in the heart from the GalT-KO line,
but not in the wild-type line analyzed. These
antigens should not be seen as novel antigens
appearing ex novo in the GalT-KO line, how-
ever, because the glycosyltransferases involved
(namely, a1-4 galactosyltransferase and b1,
3GalNacT) occur naturally in the wild-type
line. Deletion of the a1-3 GalT enzyme may,
however, have diverted the sugar metabolism
toward an increased or de novo expression of
these glycolipids in some tissues.

Another set of particularly important target
epitopes includes the glycans carrying N-gly-
colylneuraminic acid (Neu5GC), or the so-
called Hanganutziu–Deicher antigen, which is
abundantly present in many mammals, includ-
ing pigs and monkeys, but not in humans (Varki
2010). Healthy humans consequently have a
highly variable polyclonal antibody profile
against Neu5GC. Natural anti-Neu5GC anti-
bodies are predominantly IgG (Padler-Karavani
et al. 2008), but may be IgM and IgA too, albeit
to a lesser extent. Anti-Neu5GC can be induced
in humans after exposure to porcine tissues
(Blixt et al. 2009; Scobie et al. 2013). Nonhuman
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primates express Neu5GC antigens, however,
and are unable to elicit a humoral response
against this epitope, making their use in rele-
vant preclinical studies unfeasible; hence the
development of surrogate rodent models, such
as double-KO mice that lack both aGal and
Neu5GC epitopes as a consequence of GalT
and cytidine monophospho-N-acetylneurami-
nic acid hydrolase (CMAH) inactivation (Bas-
net et al. 2010). Extensive investigations have
shown that anti-Neu5GC antibodies can induce
complement-mediated cytotoxicity, albeit to a
lesser extent than anti-aGal antibodies (Basnet
et al. 2010), suggesting that anti-Neu5GC anti-
bodies may be important in eliciting AHXR of
GalT-KO organs. This hypothesis is further sup-
ported by the recent finding that GalT-KO pigs
have an increased Neu5GC production (Park
et al. 2011, 2012).

On the matter of xenogeneic proteins, two
recent reports have identified several membrane
proteins that are recognized by primates reject-
ing porcine cardiac xenografts. In particular,
most recipients’ elicited antixenograft reper-
toire included antibodies directed against fi-
bronectin, several stress response and inflam-
mation proteins, and also proteins involved in
key endothelial cell functions (Byrne et al. 2008,
2011). These included proteins involved in reg-
ulating inflammation (e.g., annexin A2), he-
mostasis (e.g., CD9 and endothelial cell protein
C receptor), or the complement cascade (e.g.,
CD46 and CD59), all potentially important
functions in the context of AHXR. In theory
at least, such elicited antibodies could block im-
portant cell functions, and the researchers spec-
ulated that it may be necessary to substitute
these key porcine proteins with their human
counterpart, instead of eliminating them, if
porcine endothelial function needs to remain
intact. A recent proteomic analysis identified
several immunoreactive membrane proteins on
GalT-KO pig liver endothelial cells recognized
by natural human IgM and IgG (Burlak et al.
2012), and the investigators suggested that
more than 800 different proteins may be recog-
nized by preexisting IgG and/or IgM in human
sera. However, they were unable to establish un-
equivocally whether antibodies bind to different

proteins or to a limited number of carbohydrate
epitopes expressed by a large number of differ-
ent proteins.

Many groups have shown that the swine ma-
jor histocompatibility complex (SLA) is recog-
nized by anti-HLA antibodies in the sera of sen-
sitized patients (Naziruddin et al. 1998; Diaz
Varela et al. 2003), and that these antibodies
may be cytotoxic to pig cells (Taylor et al. 1998;
Mulderet al. 2010). The cross-reactivity between
human and pig anti-MHC antibodies may be
due to MHC epitopes conserved between the
two species (Mulder et al. 2010). For a future
clinical application of xenotransplantation, it
may therefore be essential to select the most ap-
propriate, matched donor pig haplotype.

Cell-Mediated Xenograft Rejection

The Role of T Lymphocytes

Although natural and elicited antibody respons-
es have so far been considered the main barrier
to successful xenotransplantation, the involve-
ment of T cells in xenograft rejection has yet to
be fully clarified. T cells contribute to the induc-
tion of antidonor antibodies, but it has not yet
been unequivocally shown whether T cells alone
are capable of mediating xenograft rejection.

T-cell antixenograft immune response was
studied first in vitro (Yamada et al. 1995; Dor-
ling et al. 1996), and it was found that T-cell
responses against pig xenografts could be at least
as strong as in the allotransplantation setting
(Yamada et al. 1995; Lin et al. 2008). These stud-
ies showed that, as in the allogeneic response,
human T cells are able to recognize porcine
MHC molecules via direct and indirect recog-
nition pathways (Yamada et al. 1995; Dorling
et al. 1996). Direct T-cell xenoresponses ac-
counted for .75% of the xenodirected lympho-
cyte response observed in mixed lymphocyte
reaction (MLR) studies (Yamada et al. 1995;
Tahara et al. 2010) and were mediated mainly
by CD4þ cells directed primarily against SLA-
DR, but also against SLA-DQ molecules (Ya-
mada et al. 1995; Dorling et al. 1996). In contrast,
the same researchers reported little to no direct
recognition of SLA class I antigens by CD8þ hu-
man T cells. The strong direct T-cell reaction is
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not due to a higher frequency of human xeno-
reactive CD4þ T cells than in the allogeneic
counterpart, and there was no evidence of any
differences in CD8þT-cell content between allo-
and xenorelated direct reactions (Tahara et al.
2010). These studies also suggest that the CD4þ

helper function is needed for xenoreactive
CD8þ T cells to proliferate (Tahara et al. 2010).
Indirect antipig T-cell responses appear to be
mediated primarily by CD4þ T cells (Dorling
et al. 1996). The indirect antixenograft response
is stronger than in the allogeneic counterpart,
possibly because of the larger number of xeno-
geneic peptides presented by human antigen-
presenting cells (Dorling et al. 1996).

As in allotransplantation, costimulatory
signals are needed to fully activate the antixe-
nograft T-cell responses via both direct and in-
direct pathways. In particular, CD40 and CD80/
CD86 on antigen-presenting cells must interact
with CD154 (CD40 L) and CD28 orcytotoxic T-
lymphocyte antigen-4 (CTLA-4) on T cells. Ex-
tensive studies conducted by Rogers et al. (2003)
have shown that porcine CD40, CD80, and
CD86 are independently capable of costimulat-
ing human CD4þ cells efficiently, albeit via dif-
ferent kinetics. In particular, porcine endothe-
lial cells constitutively express CD80/CD86
(Koshika et al. 2011) and SLA class I, and possi-
bly class II molecules as well (Choo et al. 1997).
Porcine endothelial cells also trigger a direct,
MHC-restricted CD8þ T- and CD4þ T-cell ac-
tivation (Yamada et al. 1995; Dorling and Lech-
ler 1998; Kim et al. 2010; Koshika et al. 2011;
Wilhite et al. 2012). High levels of cytotoxicity
have also been detected, mediated mainly by
CD4þ T cells, but also by CD8þ T cells.

Analyzing in vitro lymphocyte proliferation
induced by wild-type or GalT-KO endothelial
cell shows that aGal epitope expression on the
endothelium is associated with a greater prolif-
eration of CD4þ and CD8þ T cells (Lin et al.
2008; Wilhite et al. 2012), suggesting an as-yet-
unidentified role of aGal epitopes in sustain-
ing T cell response. The absence of aGal is also
associated with a significantly reduced secretion
of INF-g, TNF-a, IL-17A by CD4þ T cells, and
of INF-g, granzyme-B, and the chemokine IP-
10 by CD8þ T cells (Wilhite et al. 2012), par-

tially confirming earlier findings reported by
Saethre et al. (2008), who showed that exposure
to Galþ/þ endothelial cells was associated with
a significant release of human INF-g, human
and porcine proinflammatory IL-6 and IL-8,
and several human b chemokines, whereas
this picture was not seen after exposure to
Gal2/2 cells (Saethre et al. 2008). Unlike the
report from Wilhite et al. (2012), however,
the T-cell-recruiting a-chemokine IP-10 in the
Saethre study was induced in cells lacking the
aGal epitopes. Complement inhibition with
Compstatin (a C3 inhibitor) or C5aR (a C5a
antagonist) was able to abolish the production
of human cytokines and chemokines, with the
exception of the a-chemokine IP-10. Following
exposure to human whole blood, Galþ/þ (but
not Gal2/2) endothelial cells release porcine
IL-6 and IL-8, a phenomenon that could be
abolished by Compstatin. Taken together, these
findings show the important role of the aGal
epitope in the production of proinflammatory
cytokines by human blood cells, as well as the
central role of complement in mediating human
immune effector functions and porcine cell ac-
tivation. Recent evidence of a complement-in-
duced T-cell and APC activation should also be
borne in mind and warrants further analysis
(Kwan et al. 2012).

Different cell infiltration patterns have been
described after pig-to-primate solid organ xe-
notransplantation. In most cases, CD8þ T cells
with monocytes/macrophages, B cells, and
some NK cells were the predominant cells de-
tected in the graft at euthanasia (Ashton-Chess
et al. 2003; Cozzi et al. 2003; Shimizu et al.
2012). CD4þ T cells were only reported in a
limited number of cases (Davila et al. 2006; Hi-
sashi et al. 2008).

Taken together, in vitro and in vivo data con-
vincingly point to the existence of a vigorous
antixenograft T-cell immune response. Still,
many investigators in the field share the impres-
sion that, with current immunosuppression,
this cell-mediated immune response is less de-
structive than the response induced byactivation
of the humoral immune system, although the
contribution of the T cells in the elicited anti-
body production should not be underestimated.
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It is in the setting of nonvascularized xeno-
grafts such as porcine pancreatic islet xeno-
transplantation that T cells have been found to
play the most significant part. Early studies on
mice showed that fetal pig islets transplanted
under the kidney capsule were rapidly rejected
in normal but not in athymic (Karlsson-Parra
et al. 1996) or TCR-deficient mice (Benda et al.
1998). The T cells infiltrating the graft were
mainly CD4þ cells, and no CD8þ cells were de-
tected. These studies also suggested that the xe-
nogeneic islet rejection was a T-cell-dependent
process, possibly via the stimulation of the ef-
fector activity of macrophages (Karlsson-Parra
et al. 1996).

Returning to the clinically most relevant
pig-to-primate models, porcine islets infused
through the portal vein were lost en masse im-
mediately after coming into contact with pri-
mate blood (Bennet et al. 2000) owing to the
so-called instant blood-mediated inflammatory
reaction (IBMIR), which is characterized by
macroscopic coagulation, rapid platelet con-
sumption, leukocyte infiltration, and the de-
position of complement components (Goto
et al. 2008; van der Windt et al. 2009). It has
also been shown that islets from neonatal (Car-
dona et al. 2006) or adult pigs (Kirchhof et al.
2004) infused intraportally in nonimmuno-
suppressed primates and engrafted in the liver
are destroyed within 3–5 d with a marked in-
filtration of CD4þ and CD8þ cells and ma-
crophages (Kirchhof et al. 2004; Cardona et al.
2006).

When immunosuppressive therapy com-
prising basiliximab, FTY720, everolimus, and
anti-CD154 was administered, adult islet sur-
vival was prolonged to up to 187 d (Hering
et al. 2006). Despite the absence of any IgM or
IgG and complement deposition, peri-/intra-
graft T-cell infiltration, both CD4þ and CD8þ,
and macrophages were apparent in the rejected
grafts. The high levels of circulating indirectly
activated donor-reactive T cells in rejecting re-
cipients suggest a crucial role of such infiltrating
cells in islet rejection, and their incomplete in-
hibition may have been the primary cause of
graft rejection (Hering et al. 2006; Hering and
Walawalkar 2009).

The Role of the Cells Involved in the Innate
Immune Response

At least three types of cell—namely, neutro-
phils, natural killer (NK) cells, and macrophag-
es—should be critically considered when ana-
lyzing the potential contribution to xenograft
rejection of the cellular component of the innate
immune system. For each of these, recruitment,
adhesion, and trans-endothelial migration are
mediated by different receptor–ligand interac-
tions and finely regulated by chemotactic cyto-
kines and chemokines released by host cells and
the activated endothelium following xenotrans-
plantation (Holgersson et al. 2002). Compati-
bility between human receptors and their por-
cine counterparts is therefore indispensable for
the optimal migration and function of each of
these cells.

Human naı̈ve neutrophils have been found
capable of directly recognizing and binding na-
ı̈ve xenogeneic endothelial cells more avidly
than their allogeneic counterpart, irrespective
of any presence of aGal, ICAM-1 (Sheikh
et al. 2002), xenogeneic natural antibodies, or
complement (Al-Mohanna et al. 1997; Cardozo
et al. 2004). On the other hand, complement
has been seen to increase neutrophil adhesion
(Vercellotti et al. 1991). Human neutrophils ac-
tivate porcine but not allogeneic endothelial
cells (as shown by an increased P-selectin and
VCAM-1 expression), making porcine endothe-
lium more prone to human NK-driven cyto-
toxicity. In turn, porcine endothelium secretes
an as-yet-unidentified soluble factor that is
chemotactic for human neutrophils (Cardozo
et al. 2004). The xenogeneic cell contact with
porcine endothelial cell induces human neutro-
phil activation with an increased output of toxic
reactive oxygen metabolites (ROM), irrespec-
tive of any presence of aGal epitopes, natural
xenoantibodies, or complement (Al-Mohanna
et al. 2005). Xenogeneic activation also prompts
neutrophils to secrete proinflammatory cyto-
kines, such as IL-1a/b, IL-6, and IL-8, involved
in cellular and humoral adaptive immune re-
sponses and platelet activation, crucial players
in the rejection process. As shown in some stud-
ies, polymorphonuclear neutrophils appear to
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be the first line of cells infiltrating and possibly
damaging (van der Windt et al. 2007) cell and
solid-organ xenografts soon after transplanta-
tion (Kirchhof et al. 2004; Hisashi et al. 2008;
Ezzelarab et al. 2009; Shimizu et al. 2012). As
shown in the majority of reports, however, this
infiltration appears to be replaced by T cells
and macrophages (Kirchhof et al. 2004; Hisashi
et al. 2008; Ezzelarab et al. 2009; Shimizu et al.
2012). Although in vitro studies suggest that
neutrophils have the potential to damage por-
cine cells and tissues, there is only limited evi-
dence of their detrimental role in vivo beyond
HAR.

Other important players in the antixeno-
graft innate immune response are the NK cells,
a subset of lymphocytes capable of killing
cells recognized as non-self, including tumor
cells and virus-infected cells. Several lines of re-
search have suggested that, following adhesion
to porcine grafts, NK cells may have a detrimen-
tal role in pig-to-primate xenotransplantation.
First, it has been shown in vitro that porcine cells
are susceptible to direct cell-mediated damage
and to ADCC mediated by naı̈ve or activated
human NK cells (Horvath-Arcidiacono et al.
2006; Schneider and Seebach 2008; Kennett
et al. 2010; Sommaggio et al. 2012). The direct
cytotoxic activity of NK cells, which is inhibited
primarily by human MHC class I molecules
through inhibitory NK receptors, is not blocked
by SLA class I products. Ligands on porcine cells,
one of which has recently been identified (Lil-
ienfeld et al. 2006), can interact efficiently with
the activating receptors NKp44 or NKG2D, re-
sulting in direct human NK cell cytotoxicity
(Forte et al. 2005). Interaction between the por-
cine costimulatory molecule CD86 and a variant
form of CD28 on hNK cells may also be involved
in direct NK cytotoxicity (Costa et al. 2002),
whereas the expression of aGal residues on pig
endothelium does not appear to have a major
role, because the use of cells lackingaGal expres-
sion did not prevent direct NK-mediated cell
lysis (Baumann et al. 2004; Horvath-Arcidia-
cono et al. 2006). Second, it has also been shown
that, on activation by porcine endothelial cells,
NK cells produce INF-g, ultimately potentiating
T-cell activity (Xu et al. 2002). Third, NK cells

rapidly infiltrate porcine xenografts perfused ex
vivo with human blood (Kirk et al. 1993; Inver-
ardi and Pardi 1994). In explanted xenografts,
on the other hand, NK cells were found in small
numbers (Davila et al. 2006; Hisashi et al. 2008;
Shimizu et al. 2012) or were not reported (Ash-
ton-Chess et al. 2003; Cozzi et al. 2003; McGre-
gor et al. 2005; Ezzelarab et al. 2009), except for
one case in which the particular features of the
model may have heavily influenced the outcome
(Itescu et al. 1998). It is worth noting, however,
that the in vivo studies conducted to date can-
not definitely rule out the possibility of NK cells
being directly implicated in the untimely failure
of xenografts.

Monocytes and differentiated macrophages
are the third component of the innate immune
system considered here. These phagocytic cells’
involvement in xenograft rejection has been
amply discussed, especially in islet xenotrans-
plantation, although the reported degree and
timing of infiltration have varied in the differ-
ent models. After xenotransplantation, mono-
cytes attracted by graft proinflammatory medi-
ators migrate into the xenograft and infiltrate it
by virtue of the cross-species interaction of
adhesion molecules, including CD49d/CD29
and b2-integrins (Hauzenberger et al. 2000;
Schneider et al. 2009). Macrophage recruitment
appears to be more intensive when xenogene-
ic rather than allogeneic cells are transplanted
(Fox et al. 2001), and it seems to be T-cell inde-
pendent. The role of aGal in increasing mono-
cyte adhesion is still being debated because
macrophage infiltration has been identified in
adult porcine islet grafts known to express
low levels of aGal epitopes, and in islets from
GalT-KO donors (Thompson et al. 2011a). In
xenotransplantation, macrophages exert their
phagocytic action and modulate adaptive im-
munity by contributing to cell recruiting and
antigen presentation. Upon contact with xeno-
geneic cells, macrophages have been seen to al-
low the recruitment of both CD4þ and CD8þ

T cells. In turn, optimal macrophage activation
requires a contribution from the CD4þ T cells,
possibly via the INF-g pathway (Yi et al. 2002),
ultimately resulting in graft rejection (Fox et al.
2001; Yi et al. 2003).
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The macrophages’ phagocytic activity is
mediated by an ADCC mechanism or direct
cell-to-cell contact (Jackson and Evans 2000).
Like the case of NK cells, the “missing self”
(Ljunggren and Karre 1990) has been suggested
as the regulatory mechanism behind their
phagocytic activity against xenografts. It has
been shown, in fact, that the lack of any func-
tional interaction between porcine CD47 (a
membrane glycoprotein expressed ubiquitously
on the cell surface of xenografts) with the hu-
man species-specific macrophage inhibitory re-
ceptor SIRPa makes porcine cells more sus-
ceptible to macrophage-mediated damage (Ide
et al. 2007).

Macrophages activated by CD4þT cells have
an important role in the destruction of pancre-
atic islet xenografts. In rodents, macrophages
are reportedly the earliest infiltrating cell pop-
ulation after islet transplantation under the kid-
ney capsule (Wallgren et al. 1995). Macrophages
activated by CD4þ T cells in islet-transplanted
NOD-SCID have also been found to cause graft
destruction within 8 d (Yi et al. 2003). After
intraportal islet injection in nonhuman pri-
mates, T cells reportedly preceded the influx
of macrophages (Kirchhof et al. 2004) into the
graft. Together with T cells, macrophages might
contribute to islet damage (Kirchhof et al. 2004;
Cardona et al. 2006; Hering et al. 2006). They
appear to have a pivotal role in cellular graft
rejection, and they have also been identified
soon after solid organ xenografting. They con-
tinue to be detectable up until the graft is reject-
ed (Ashton-Chess et al. 2003; Cozzi et al. 2003;
Hisashi et al. 2008; Ezzelarab et al. 2009; Shimi-
zu et al. 2012), and they have been accused of
contributing to the onset of graft failure and TM
(Ezzelarab et al. 2009).

IMMUNE STRATEGIES TO EXTEND
XENOGRAFT SURVIVAL

Preventing Humoral Rejection

Several strategies may be envisaged to deal with
the detrimental role of the humoral antixe-
nograft immune response, as briefly reviewed
below.

Removing the Key Target Antigens

Removing the immunogenic epitopes recog-
nized by preexisting or elicited antixenograft
antibodies is an obvious approach that has
been pursued successfully in the case of the
aGal epitope (Dai et al. 2002; Lai et al. 2002;
Phelps et al. 2003). The technology is available
for preventing the expression of undesirable tar-
get antigens on pig cells (Hauschild et al. 2011).

At least two caveats should be borne in
mind, however, when using such an approach.
First, the number of epitopes potentially elicit-
ing a humoral response to a xenograft is consid-
erable, in theory at least (Burlak et al. 2012),
making it unrealistic to try and delete them
all. Second, deleting epitopes may sometimes
result in an unpredictable de novo appearance
of new target molecules that are recognized as
foreign (Diswall et al. 2010). Therefore, apart
from a handful of antigens (e.g., the aGal and
possibly also the Neu5GC epitopes [Lutz et al.
2013], and a few others) whose deletion is con-
sidered crucial to help establish an advanta-
geous immunological context, such as accom-
modation or tolerance, the application of this
approach in xenotransplantation is probably of
limited value.

Preventing the Activation of the
Complement Cascade Triggered
by Xenoreactive Antibodies

Several efforts have been made to eliminate the
detrimental effect of the complement cascade’s
activation on the xenograft, including the use
of specific soluble complement inhibitors, such
as soluble complement receptor type 1 (Lam
et al. 2005), or the cobra venom factor (Koba-
yashi et al. 1997), and the production of animals
transgenic for human complement regulatory
proteins (CRP), such as hCD55, hCD46, or
hCD59 (Fodor et al. 1994; Cozzi and White
1995; McCurry et al. 1995; Cowan et al. 2000;
Loveland et al. 2004; Menoret et al. 2004). This
approach represents an elegant strategy for
down-regulating local complement activation
on the xenograft while preserving systemic com-
plement activity as a first line of defense. The
expression of hCRP by the xenograft cell sur-
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face may have a beneficial role on T-cell im-
munity too because molecules such as hCD55
can negatively modulate T-cell expansion and
function (Heeger et al. 2005; Kwan et al. 2012).
Judging from the data obtained so far, however,
pig xenografts expressing CRPs are not pro-
tected from the overwhelming complement
activation occurring in AHXR, even if CRPs
are expressed on a GalT-KO background. This
underlines the existing limitation of the use of
CRP transgenic organs (Le Bas-Bernardet et al.
2011; Tazelaar et al. 2011). Indeed, it may be
necessary to implement a multistep inhibition
of the complement cascade, associated with a
tight regulation of the coagulation system in-
volved in complement activation (Huber-Lang
et al. 2006).

Removing Xenoreactive Antibodies or Cells
Producing Xenoreactive Antibodies

Removing or neutralizing xenoreactive anti-
bodies with the aid of antigen-specific immuno-
adsorbants (Katopodis et al. 2002; Brandl et al.
2007), ex vivo organ perfusion, or nonspecific
tools such as Sepharose beads conjugated with
polyclonal antibodies against human Ig (Bren-
ner et al. 2005) may help to protect grafts, at
least temporarily, from offending antibodies.
Strategies have also been attempted to delete
antibody-producing cells using aspecific phar-
macological immunosuppression (e.g., with cy-
clophosphamide) (Cozzi et al. 2000, 2003) or
specifically targeting the B-cell lineage with
anti-CD20 monoclonal antibodies (Vugmey-
ster et al. 2005; Mohiuddin et al. 2012), with
ricin A–labeled target molecules (Tanemura
et al. 2002), or even using the proteasome in-
hibitor bortezomib (Bauer et al. 2010). To date,
however, findings indicate that none of these
strategies is yet able to prolong xenograft sur-
vival indefinitely, suggesting that these ap-
proaches need to be further refined.

Inducing Accommodation
and B-Cell Tolerance

Inducing accommodation—defined as long-
term graft survival notwithstanding the contin-

uing presence of xenoreactive antibodies and
complement (Bach et al. 1991)—is a very ap-
pealing option for preventing antibody-medi-
ated damage. Certain changes in the graft, such
as the up-regulation of protective genes or
changes in the antigens targeted by the humor-
al response after transplantation, may at least
partially explain the mechanisms behind ac-
commodation (Koch et al. 2004). Alternatively,
changes in the recipient’s antibody repertoire
may underlie this fortunate situation. Be that
as it may, accommodation is currently seen as
a phenomenon requiring further investigation
to better identify its potential in the primate
xenotransplantation setting.

The induction of B-cell tolerance against
xenogeneic antigens is another very attractive
idea for preventing antibody-mediated damage.
Inducing chimerism in the recipient has been
considered indispensable to achieving toler-
ance. Elegant preliminary studies conducted
in mice to induce a tolerance of B-cell clones
producing anti-aGal antibodies have convinc-
ingly shown that inducing a mixed hemato-
poietic chimerism may lead to B-cell tolerance.
This mixed hematopoietic chimerism was ob-
tained by infusing allogeneic (Ohdan et al.
1999) aGalþ T-cell-depleted bone marrow in-
to aGal2 mice submitted to lethal whole-body
irradiation (Yang et al. 1998) or to a nonmyelo-
ablative regimen (Ohdan et al. 1999). The result-
ing chimerism was associated with an indefi-
nite acceptance of aGalþ grafts with no need
for further immunosuppression (Ohdan et al.
1999). Tolerance early after transplantation was
induced by anergy, requiring the persistence of
aGalþ cells, whereas clonal deletion or receptor
editing was believed to be the mechanism in-
volved in B-cell tolerization at subsequent stages
(Kawahara et al. 2005). B-cell tolerance has also
been achieved in relation to non-aGal epitopes
(Aksentijevich et al. 1992). Using a microchi-
merism-based approach, Griesemer and col-
leagues recently succeeded in obtaining a spe-
cific humoral unresponsiveness to swine an-
tigens in baboons. This is a promising strategy
and its refinement may, at some stage, enable
long-term xenograft acceptance in primates
(Tseng et al. 2004; Griesemer et al. 2010).

M. Vadori and E. Cozzi

10 Cite this article as Cold Spring Harb Perspect Med 2014;4:a015578

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



Preventing Cell-Mediated Rejection

Several strategies have also been developed to
block innate and adaptive cell-mediated xeno-
graft rejection.

Systemic Immunosuppression

Many immunosuppressive approaches have
been attempted to improve xenograft survival,
including conventional and also more recently
developed molecules or biologics. The intro-
duction of anti-CD154 monoclonal antibodies
has contributed to a significantly longer solid-
organ and islet xenograft survival (Kuwaki et al.
2005; Yamada et al. 2005; Cardona et al. 2006;
Hering et al. 2006), while preventing elicited
antibody responses (Ezzelarab et al. 2012).
These results have been severely penalized by
thromboembolic events that have precluded fur-
ther use of anti-CD154 antibodies and prompt-
ed researchers to explore other therapeutic
options, such as anti-CD40 agents or CTLA-
4Ig-based strategies in combination with im-
munosuppressive drugs (Ezzelarab et al. 2009;
Thompson et al. 2011b). Using an anti-CD40
antibody associated with belatacept extended
neonatal porcine islet survival (Thompson
et al. 2011b), although further studies are need-
ed to confirm this finding. On the other hand,
Ezzelarab et al. (2012) found in an artery-patch
xenotransplantation model that CTLA-4Ig ther-
apy was probably not as efficacious as CD154/
CD40 inhibitors in preventing cellular and hu-
moral response (Dons et al. 2012).

Local Immunosuppression Using
Specifically Engineered
Source Animals

Genetic engineering of the xenograft has also
been proposed as a means to inhibit rejection
locally, while containing systemic immunosup-
pression and its side effects. Several approaches
have been considered, and novel pig lines ex-
pressing molecules that may block the recipi-
ent’s immune cells have been produced.

When a mutant form of the CIITA gene
(an essential coactivator for the transcription
of MHC class II genes) was introduced on a

GalT-KO/CD46/CD55 background, SLA II
molecules were down-regulated and CD4þ

T-cell proliferation was inhibited in MLR stud-
ies (Ayares et al. 2011). Several porcine and
human CTLA-4Ig transgenic animals were
obtained (Martin et al. 2005; Phelps et al.
2009; Koshika et al. 2011), and hCTLA-4Ig
transgenic pigs expressing the transgene selec-
tively in neurons enabled a long-term survival
of neural precursors in mice (Martin et al. 2005)
and primates (Aron Badin et al. 2009). Because
the constitutive expression of pCTLA-4Ig re-
sulted in severely immunosuppressed animals,
pigs with an inducible pCTLA-4Ig expression
have recently been obtained (Klymiuk et al.
2012). As for the NK cells, transgenic pigs
expressing HLA-E (a molecule inhibiting NK
cell adhesion and cytotoxicity) have also been
produced (Weiss et al. 2009). Transgenic pigs
expressing human CD47 have likewise recently
been generated (Tena et al. 2011). Although the
potential of these genetic modifications still
remains to be tested in vivo, their association
with other strategies may lead to a better graft
survival.

Using Mechanical Barriers

Encapsulating xenogeneic islets has been sug-
gested as a strategy to prevent cell-mediated re-
jection and enable graft survival in the absence
of immunosuppression. The crucial issues to
tackle in this area include the biocompatibility
of the encapsulating material, the mechanical
stability of the capsules, and the selection of
the implantation site (Dufrane et al. 2006b).
Microencapsulation of pig islets in water-solu-
ble polymers, such as alginate (Dufrane et al.
2006a), or macroencapsulation in subcutane-
ous devices permeable to glucose, insulin, and
nutrients (but not to antibodies or the immune
system’s cellular components) have enabled is-
lets to survive in primates for up to 6 mo with-
out any immunosuppression (Dufrane et al.
2010). These findings suggest that, notwith-
standing the currently limited life span of such
devices, refining this approach may lead in the
future to the successful clinical application of
islet xenotransplantation.
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T-Cell Tolerance and Tregsv

The feasibility of inducing T-cell tolerance has
also been explored. Early studies on T-cell tol-
erance in mice showed that transplanting fetal
or neonatal pig thymic tissue into thymecto-
mized mice could induce a central tolerance of
pig skin grafts (Zhao et al. 1996). This strategy
was successfully applied to the transplantation
of GalT-KO pig kidneys into baboons, resulting
in a normal renal function for up to 83 d (Ya-
mada et al. 2005; Griesemer et al. 2009). This
result was achieved by transplanting thymic
tissue under the donor renal capsule (thymo-
kidney) in recipients exposed to a protocol
that included thymectomy, splenectomy, T-cell
depletion, and whole-body irradiation. Doing
without whole-body irradiation enabled a
mean survival of more than 50 d. Thymic grafts
supported thymopoiesis, and there was evi-
dence of CD4þCD32 baboon cells adjacent to
porcine thymic epithelial cells (Griesemer et al.
2009). Donor-specific unresponsiveness with
respect to the normal responses to allogeneic
third parties was also detected in CTL assays.
As an alternative approach to enabling T-cell
tolerance in xenotransplantation, thymic lobe
(vascularized thymic lobe, VTL) transplanta-
tion from either aGalþ (Yamamoto et al. 2005)
or GalT-KO donors (Yamada et al. 2005) has
also been proposed. This procedure enabled
early thymopoiesis, reconstitution of the recip-
ient’s naı̈ve T-cell population, and donor-spe-
cific unresponsiveness, albeit for a limited time
(Yamamoto et al. 2005). These regimens to in-
duce T-cell tolerance clearly require further
fine-tuning, but the results achieved to date sug-
gest that this approach may soon become a vi-
able option for primates.

Inducing tolerance through regulatory T-
cell-based therapies also has its appeal for
both allo- and xenotransplantation. Regulatory
T cells have been found to suppress T-cell-direct
(Wu et al. 2008) and -indirect xenogeneic re-
sponses to T cells (Nishimura et al. 2010), B cells
(Singh et al. 2012), macrophage activation (Fu
et al. 2008), and-antigen-presenting cell func-
tions (Cederbom et al. 2000; Fu et al. 2008).
Several types of regulatory T cells (Tregs) have

been described, and those naturally occurring in
the immune system (nTregs) account for nearly
3%–10% of the peripheral CD4þ T cells (Dons
et al. 2010; Muller et al. 2011). Phenotypically,
nTregs are characterized by the constitutive
presence of CD4, CD25, the IL-2 receptor a-
chain, and the intracellular expression of tran-
scription factor Forkhead box P3 (Foxp3), and
by little or no expression of CD127, the IL-2
receptor a-chain. The suppressor activity of
nTregs depends on cell-to-cell contact via
important costimulatory molecules, which in-
clude CTLA-4, membrane-bound TGF-b laten-
cy-associated peptide (LAP), soluble induc-
ible costimulatory molecule (ICOS), galectin-1,
CD39, CD73, and PD-1, or it is mediated by
regulatory cytokines such as IL-10, TGF-b, or
IL-35 (Muller et al. 2011, 2012). Notably, the
expression of hPD-L1 (the ligand of activated
T cells PD-1) by porcine endothelial cells stim-
ulates the proliferation of human Foxp3þCD4þ

T cells both in vitro and in vivo, inducing the
expression of CD73 by Tregs and promoting the
production of IL-10, and reducing the proin-
flammatory Th1 and Th17 cytokines. The in
vivo infusion of hPD-L1þ endothelial cells pro-
longs the survival of porcine skin grafts, favor-
ing the expansion of Foxp3þCD4þT cells (Ding
et al. 2011). Much the same results have been
obtained in mice by grafting porcine endothe-
lial cells transfected with ICOS-Ig, a soluble
form of ICOS (Hodgson et al. 2011), suggesting
that Treg-based strategies may represent a novel
path toward achieving tolerance in xenotrans-
plantation.

CONCLUSIONS

To sum up, despite the challenges that remain,
the potential health benefits afforded by xeno-
transplantation make it a fascinating area of re-
search that deserves to be pursued. Important
preclinical data have been generated in recent
years, making the initiation of clinical trials a
realistic option for the not-too-distant future.
At this point, many researchers in this field
would agree that genetic engineering of the do-
nor species may be needed to improve current
results. Such genetic engineering should selec-
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tively address only major interspecies molecular
discrepancies, like those involved in regulating
the complement or coagulation cascades, elim-
inate highly immunogenic epitopes, or block
major immune cell activation pathways. This
should ultimately contribute to the develop-
ment of the ideal milieu in which novel immu-
nosuppressive drugs or innovative strategies de-
signed to enable accommodation or tolerance
will have the greatest chances of success in terms
of achieving long-term xenograft survival. It has
also become clear that, before xenotransplanta-
tion can enter the clinical arena, a multidisci-
plinary approach will be needed to comprehen-
sively tackle the various issues relating to the use
of xenografts to cure human diseases. The safe-
ty-related, ethical, and regulatory issues of xe-
notransplantation (which were not the object of
this review) are already being addressed by
highly specialized and dedicated investigators,
and the multidisciplinary effort currently under
way is expected to enable xenotransplantation
to happen with a favorable risk/benefit ratio in
the foreseeable future.
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