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Abstract
In visual search tasks, the relative proportions of target-present and -absent trials have important
effects on behavior. Miss error rates rise as target prevalence decreases (Wolfe, Horowitz, &
Kenner, Nature 435, 439–440, 2005). At the same time, search termination times on target-absent
trials become shorter (Wolfe & Van Wert, Current Biology 20, 121–124, 2010). These effects
must depend on some implicit or explicit knowledge of the current prevalence. What is the nature
of that knowledge? In Experiment 1, we conducted visual search tasks at three levels of
prevalence (6%, 50%, and 94%) and analyzed performance as a function of “local prevalence,” the
prevalence over the last n trials. The results replicated the usual effects of overall prevalence but
revealed only weak or absent effects of local prevalence. In Experiment 2, the overall prevalence
in a block of trials was 20%, 50%, or 80%. However, a 100%-valid cue informed observers of the
prevalence on the next trial. These explicit cues had a modest effect on target-absent RTs, but
explicit expectation could not explain the full prevalence effect. We conclude that observers
predict prevalence on the basis of an assessment of a relatively long prior history. Each trial
contributes a small amount to that assessment, and this can be modulated but not overruled by
explicit instruction.
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One may search for various objects in a variety of scenes. For example, one may look for a
friend in a lecture hall or for a traffic signal when riding in a car. Even though visual
searches play an important role in daily life, we sometimes fail to find a target. If targets
appear rarely, we miss them more frequently (Wolfe, Horowitz, & Kenner, 2005). This
phenomenon is termed the “prevalence effect” (Gur et al., 2004). Wolfe et al. (2005)
demonstrated that hit rates were far lower at 1% target prevalence than at 50% prevalence
when observers searched for an object amid a noisy background, roughly simulating an X-
ray baggage screening task with nonexpert viewers. This prevalence effect has been
replicated (Rich et al., 2008; Wolfe et al., 2007; Wolfe & Van Wert, 2010) and debated
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(Fleck & Mitroff, 2007). In addition to modulating error rates, prevalence alters search
termination times on target-absent trials. Reaction times (RTs) on target-absent trials decline
as the target prevalence declines. When targets are very rare, observers tend to terminate
unsuccessful searches much more rapidly than they do when targets are more common. In
contrast, RTs on target-present trials are minimally affected by target prevalence. The
prevalence effect may be of importance, since low prevalence is characteristic of tasks such
as airport security, medical screening (Gur et al., 2004), or a predator’s search for prey
(Bond & Kamil, 1998; Olendorf et al., 2006).

Given that prevalence alters search behavior, it follows that observers must have an estimate
of the prevalence that applies to the current trial. Where does that estimate come from? It
could be based on the perceived prevalence over some previous sets of trials. Thus, if the
last 10 trials have yielded 5 target-present and 5 target-absent trials, the observer might
guess that the current prevalence is about 50%. Alternatively, the observer could respond to
explicit information about the current trial. Even if the last 10 trials have been 5 target-
present and 5 target-absent trials, the observer might change his behavior if told that the
probability of a target on the current trial is 90% or 10%. We will call this an “expectation”
effect. Under normal circumstances, these factors are confounded. The local prevalence
(e.g., the last 10 trials) is related to the global prevalence (the prevalence for the entire block
of trials), and the expectation for the next trial is based on what the observer has been told
about the block of trials and/or what that observer has figured out from the history of
preceding trials. In this article, we will attempt to disentangle these effects.

In visual search studies, Maljkovic and Nakayama (1994) were among the first to explicitly
distinguish between expectation effects and estimates based on the recent history of previous
trials. In their experiment, observers were asked to direct their attention to a singleton item.
It could be red amongst green items or green amongst red items. On some blocks, the color
of targets varied randomly from trial to trial. In those cases, the observers could not predict
what color would come next. In other blocks, the target color alternated from one trial to the
next, allowing observers to predict what color would come next. RTs were significantly
shorter when the target color was repeated, as compared to when it was not. The influence of
approximately the last seven trials could be detected in the RT for the current trial. In
contrast, RTs were not affected by the predictability of the color. The sure knowledge that
the next trial was a green target trial did not change performance. Consequently, Maljkovic
and Nakayama concluded that RT facilitation was influenced by past repetition, not future
expectation.

As has been noted, the conditions for repetition and expectation effects tend to happen
together (e.g., if prevalence is low, you will get more repetitions of target-absent trials), so
they could be easily confounded. For example, Kristjánsson, Wang, and Nakayama (2002)
required observers to perform conjunction searches for two types of potential targets (red–
vertical or a green–horizontal targets among red–horizontal and green–vertical distractors).
The observers performed better when the type of target remained the same throughout the
whole block rather than varying randomly (see also Egeth, 1977; Wolfe, Butcher, Lee, &
Hyle, 2003). Obviously, in a design of this sort, blocked conditions are associated with more
repetitions and a clear expectation for target type.

Wolfe and Van Wert (2010) dissociated local prevalence from global prevalence by varying
prevalence in a sinusoidal fashion from 1.0 to 0 over 500 trials, and then back again to 1.0 in
the next 500 trials. The authors calculated target prevalence, error rates, target-absent RTs,
and criterion values over blocks of 50 trials. Each prevalence occurred twice, once as
prevalence was falling and once as it was rising. The error rates, target-absent RTs, and
criterion values clearly tracked the change in target prevalence. However, equivalent
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prevalence values produced different results in the falling and rising phases of the
experiment. The error rates, target-absent RTs, and criterion values lagged behind the
current prevalence. It was possible to use this lag to roughly estimate the number of trials
that were contributing to the observer’s estimate of the prevailing prevalence. Wolfe and
Van Wert concluded that “it appears that observers compute prevalence over about four
dozen trials.”

Can the effects of prevalence be influenced by explicit future expectations, or only by past
repetitions? Wolfe and Van Wert’s (2010) study was not equipped to look at this factor,
since prevalence changed in a predictable manner, confounding prevailing prevalence and
explicit expectations about prevalence. Lau and Huang (2010) addressed this question by
giving their observers different instructions on different trials (see also Reed, Ryan,
McEntee, Evanoff, & Brennan, 2011). In their Experiments 1 and 2, observers were told that
one color background meant high (50%) prevalence of a target, while another color meant
low (10%) prevalence. On some blocks this was true. On other blocks, the color cue was
unrelated to the constant target prevalence. Although target-absent RTs were affected by the
probabilistic cues, miss rates were governed by the actual prevalence and were not
influenced by the cues. In Experiments 3 and 4 of Lau and Huang (2010), the cues were
always valid. Even though target-absent RTs were affected by the cue, again, the effect of
prevalence on miss rates was linked to the overall prevalence and not to a future expectation
provided by the cue. There are three reasons to think that this might not be the end of the
story. First, Lau and Huang focused on error rates rather than RTs. Wolfe and Van Wert
argued that error rates and RTs were influenced separately by prevalence. Thus, it is
possible that there could be a significant effect on RTs, even if there was no effect on errors.
Second, the largest effect on RTs for Wolfe and VanWert occurred when prevalence was
very high. Lau and Huang only explored the low-to-middle range of prevalence. Third,
Wolfe and VanWert’s experiment permitted only a rather crude estimate of the number of
trials required to estimate prevalence. Here we looked for evidence of more fine-grained
effects.

In the present study, our primary focus was on search termination times on target-absent
trials, in an attempt to clarify the roles of local prevalence and explicit expectations. In
Experiment 1, we used three target prevalence conditions in a simulated luggage search task
(6%, 50%, and 94%). We found, at best, only small effects of local prevalence, not enough
to explain the overall prevalence effect. In Experiment 2, we used reliable cues about the
target probability on the upcoming trial to dissociate the prevailing local and global
prevalences from explicit expectations. We found that there were reliable cue effects, though
as with local prevalence, the effects of expectation were not enough to account for the
prevalence effect. These results led us to the conclusion that the prevailing estimate of
prevalence is built up quite slowly over a rather large number of trials.

Experiment 1
Method

Stimuli: making luggage—We used stimuli like those developed by Wolfe et al. (2007)
and Wolfe and Van Wert (2010). This laboratory version of luggage screening made use of
jpeg X-ray images supplied by the Department of Homeland Security’s Transportation
Security Laboratory. The image set included empty bags and images of objects that could be
found in those bags. Targets were drawn from a set of 100 images of guns and 100 images
of knives. Bags were created with MATLAB using the Psychophysics Toolbox (Brainard,
1997). Each bag was loaded with 18 randomly chosen objects. Objects were drawn to scale,
so a hair dryer would be bigger than a nail clipper. Selection of objects was random from the
set, so some bags contained unusual collections of objects. The bag images varied in height
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from 9.5 to 20 deg at a 57-cm viewing distance, and in width from 16 to 21.5 deg. Clothing
appeared in X-ray images as an orange haze. Eight pieces of clothing were added to each
bag to produce this effect, but these were not counted as “items” in the bag. Figure 1 shows
a sample bag. In the standard color scheme, blue indicates metal, orange shows organic
material, and green shows material of intermediate density.

Observers—In Experiment 1, 15 novice observers who had never seen the stimuli were
tested in all conditions (ages 19–27 years, mean age = 22.3 years, SD = 2.0; 6 women, 9
men). By self-report, the observers had no history of eye or muscle disorders. None were
colorblind (Ishihara plates), and all had visual acuity no worse than 20/25 with correction.
Informed consent was obtained from observers, and each was paid 1,000 yen/h for his or her
time.

Procedure—On each trial, a fixation cross was presented for 1,000 ms. Then a bag
stimulus was presented until the observers responded. Observers pressed one key for target
presence and another if they felt that there was no target. Observers received accurate
feedback. The target, if present, was outlined on the screen after a response was made.
Correct “present” responses were rewarded with the written comment “Good for you. You
found the target. Take a look and then press a key to continue.” The message after a miss
error “You missed the target. Take a look and then press a key to continue.” Messages after
target-absent trials indicated whether the response was correct or incorrect. Observers made
another keypress to move to the next trial.

Observers were given 50 practice trials at 50% prevalence and then tested in three blocks
having 6%, 50%, or 94% prevalence. There were 300 trials per block. Block order was
counterbalanced across observers. The computer enforced breaks every 50 trials; therefore,
300 trials in each block were divided into six sessions composed of 50 trials each. Observers
could get up and leave the testing room during breaks, but this was not required.

Data analysis—RTs over 5,000 ms and under 200 ms were removed from the analysis. In
Experiment 1, we did not inform observers about target prevalence. Therefore, we treated
the first 50 trials of each block as practice trials that allowed observers to learn the
prevailing target prevalence.

Results
Eliminating RT outliers resulted in the removal of 0.14% of trials. The pattern of errors was
the same with and without the data from those trials. Removing these outlier RTs decreased
the variability in the RT analysis.

Subjective prevalence—After a block of trials, observers were asked to give an explicit
estimate of the prevalence. The average subjective prevalence was 7% (SEM = 0.8) in the
6% prevalence condition, 55% (SEM = 3.0) in the 50% prevalence condition, and 92% (SEM
= 0.7) in the 94% prevalence condition. These results showed that observers acquired an
accurate and explicitly accessible estimate of target prevalence in each condition.

Replication of the prevalence effect—Figure 2 shows that target prevalence
influenced search termination time in our study. As reported in the previous works, search
termination time increased from an average of 1,184 ms at 6% prevalence to 1,510 ms at
50% prevalence, and it was an average of 2,728 ms at 94% prevalence. The main effect of
prevalence was statistically significant [F(2, 28) = 61.32, p < .001]. Subsequent Bonferroni-
corrected comparisons indicated that there were significant differences among the three
conditions (all ps < .05). The target-present RTs were reliably slower at low prevalence
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[F(2, 28) = 23.50, p < .001]. Subsequent Bonferroni-corrected comparisons indicated that
RTs at 6% prevalence were longer than those at both 50% prevalence and 94% prevalence
(p < .05), and that there was no difference between the 50% prevalence and 94% prevalence
conditions. There was a more modest effect of prevalence on target-present RTs. These
results showed clear evidence that Experiment 1 produced a typical prevalence effect on
search termination times.

Prevalence had the usual effects on the error rates. The miss rates are shown in Fig. 3 as a
function of prevalence. Miss rates decreased from an average of .15 at 6% prevalence, to .06
at 50% prevalence, to .02 at 94% prevalence. We used a nonparametric Friedman test
because the number of 100%-correct cells rendered the distribution of errors clearly non-
Gaussian (miss errors, Friedman statistic = 19.6, p < .001; false alarms, Friedman = 14.3, p
< .01). Wilcoxon tests (Bonferroni corrected) indicated significant differences among the
three conditions in miss rates (p < .05). False alarms were higher at 94% prevalence than at
either 6% prevalence or 50% prevalence (p < .05), and there was no difference between the
6% and 50% prevalence conditions. The trade-off between miss and false alarm errors also
showed that, as has been reported elsewhere (Healy & Kubovy, 1981; Wolfe et al., 2007),
the main effect of prevalence was on criterion and not on sensitivity (d′). The d’s were 3.6 at
6% and 3.6 at 94% [F(2, 28) = 1.26, p = .30], while criterion changed from .6 at 6% to –.3
at 94% [F(2, 28) = 54.01, p < .001]. Subsequent Bonferroni-corrected comparisons
indicated significant differences among the three conditions (all ps < .05).

As Fig. 2 shows, there were very large effects of prevalence on target-absent RTs, with
smaller effects, as has been reported elsewhere (Godwin, Menneer, Cave, & Donnelly,
2010), in the opposite direction on target-present RTs.

Local prevalence effect on RTs—As noted, Wolfe and Van Wert (2010) changed
prevalence slowly over the course of 1,000 trials and found that RTs changed with the
prevailing prevalence. They could roughly estimate that prevailing prevalence was
computed over about 40–50 trials. The structure of the present experiment allowed us to
look for more local effects within an experimental design that varied overall prevalence.
Though the prevalence over a block might be 6%, 50%, or 94%, the local prevalence would
vary. Thus, if one looks, for example, at just the previous 10 trials, the local prevalence
could be 0%, 10%, 20%,… or 100%, depending on the number of target-present trials in the
group of 10. Of course, at 94% prevalence, 0% or 20% local prevalence will occur very
rarely, and at 6% prevalence, there will not be many higher values of local prevalence.
Nevertheless, there will still be substantial variation in local prevalence over trials.

Figure 4 shows the results of such an analysis. Large symbols reproduce the mean RT data
from Fig. 2. Smaller figures show the RTs as a function of the local prevalence. Data are
plotted for those conditions that produced at least 150 trials, accumulated across all 15
observers. Thus, at 6% global prevalence, there are 150 trials at 0%, 10%, and 20%
prevalence. Runs of 10 trials with, say, 5 target-present trials occur at very low rates at 6%
prevalence. Lines are regression lines through the local-prevalence RT values for each
global prevalence. The target-absent trials are the RTs of interest. The slopes of the local-
prevalence lines are very shallow. Indeed, the effects of local prevalence on RT are not
statistically reliable [50% global prevalence, F(4, 56) = 0.31, p = .87; 6% global prevalence,
F(2, 28) = 0.97, p = .39]. The results are qualitatively similar for local prevalence computed
for windows of 20, 7, or 5 trials (all ps > .05).

Discussion
Apparently, observers are not highly responsive to local variation in prevalence. There are
three possibilities. (1) Perhaps the effect of prevalence builds up slowly, and this experiment
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simply lacked the power to see the effects that occurred over 5 or 10, or even 20, trials.
Wolfe and Van Wert (2010) estimated that performance was based on prevalence over 40–
50 trials. The design of Experiment 1 was able to look at shorter runs of trials. Once the run
length became longer, the range of local prevalence did not vary much from the global
prevalence, making this experimental design uninformative. (2) Alternatively, perhaps there
is no effect of prevalence until observers have a quite large sample of trials. Perhaps it
appears ballistically after that large number of trials have been evaluated. Finally, (3) maybe
prevalence effects on RTs occur only when observers have gathered enough information to
explicitly predict the prevalence of the next trial. Experiment 2 will show that there is some
evidence for a role of explicit information.

Experiment 1b
However, Proposition (1) above also seems to be true. In order to look for subtle effects of
local prevalence, we analyzed data collected for a different experiment (dubbed 1b here).

Method
A group of 20 observers between the ages of 18 and 55 searched for a “T” among “L”s for
600 trials at 50% prevalence. By self-report, they had no history of eye or muscle disorders.
None were colorblind (Ishihara plates), and all had visual acuity no worse than 20/25 with
correction. Informed consent was obtained from all observers, and each was paid $10/h for
his or her time.

Observers searched for a black “T” among black “L”s presented on a white background. All
items could be presented in any of four 90-deg rotations. Letter’s subtended approximately 2
deg. Set sizes were 5, 10, 15, and 20 items. On each trial, a fixation cross was presented.
Then a stimulus was presented until observers responded. Observers pressed one key for
target presence and another if they felt that no target was present. Observers received
accuracy feedback after each trial.

Results
Eliminating outliers (RTs > 3,000 ms) resulted in the removal of 0.075% of trials. The error
rates were 4.1% miss and 1.5% false alarm errors.

In what may be a mere coincidence, the slope of the RT × prevalence function for these data
(2.8 ms per percent prevalence; see Fig. 5) is identical to the slope for the 50% global
prevalence data, shown in Fig. 4. However, the greater number of subjects and trials
rendered the local prevalence effect significant in this case [F(4, 76) = 4.65, p = .002].
Subsequent Bonferroni-corrected comparisons indicated that RTs were longer for 70%
prevalence than for 30% prevalence (p < .05), and that there were no differences among the
other conditions. We conclude, therefore, that observers can respond to local prevalence.
The effect of each trial is small and, as a consequence, it takes many trials, perhaps the four
dozen or so suggested by Wolfe and Van Wert (2010), before prevalence reaches its full
effect. This might seem to suggest an analysis in which we look for an effect of not-so-local
prevalence over a range of 40 or 50 trials. As noted above, the difficulty with this analysis is
that the range of local prevalence over 50 trials is very limited. At 50% global prevalence,
for example, the great bulk of local-prevalence values lie between 45% and 55%, a range too
small to see a prevalence effect on RTs.

Experiment 2: The role of explicit information about prevalence
Experiment 1 showed that local prevalence effects are, at best, quite small. However, a
second type of a local effect could be larger. If the observer has explicit and credible
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information about the target probability on the upcoming trial, perhaps that clear expectation
about the future could have more of an impact than the estimate of the recent past. Lau and
Huang (2010) argued against such an effect, but as noted, they may not have looked for the
effect in the place where it was most likely to appear. In Experiment 2, we created situations
in which the prevailing prevalence history was different from this future expectation. In this
experiment, high- and low-prevalence trials were randomly mixed in a block. Of course, the
mixture created an overall prevalence for the block. Those overall target prevalence rates
were 20%, 50%, and 80%. One of two levels of prevalence expectation was indicated by a
cue before each trial (see Table 1). This design allowed us to compare the magnitudes of the
effects of block prevalence and cued prevalence expectation.

Method
Stimuli—The stimuli used were the same as in Experiment 1.

Observers—In Experiment 2, 15 observers with no previous experience of the stimuli
were tested in all conditions (ages 18–23 years, mean age = 20.1 years, SD = 1.6; 2 women,
13 men).

Procedure—In Experiment 2, the procedure was the almost same as in Experiment 1, but
fixation cues appeared on each trial, informing the observer about the prevalence on the next
trial. Table 1 shows the marginal probabilities and the conjunctive probabilities for each
condition in this experiment. Observers were given 50 practice trials at 50% prevalence and
were then tested for 300 experimental trials in each of the 20%, 50%, and 80% overall
prevalence conditions. In each overall prevalence condition, there were 96 “50%-cue” trials
(32%) and 204 “extreme-cue” trials (68%). In the 20% prevalence condition, target
prevalence was 50% when the 50% cue appeared, but was 6% when the extreme cue
appeared. In the 80% prevalence condition, target prevalence was 50% when the 50% cue
appeared but was 94% when the extreme cue appeared. In the 50% prevalence condition,
both cues were associated with 50% prevalence. In Experiment 2, we used two kinds of
fixation cue (“+” and “*”). For each observer, these were randomly assigned as the 50% cue
and the extreme cue. Therefore, observers needed to learn the relationship of the cue to the
probability of a target on that trial. The first 50 trials of each block were practice trials that
allowed the observers to learn the global prevalence and the cue values.

Results
Eliminating outliers resulted in the removal of 1% of trials. The pattern of errors was the
same with and without the data from those trials. Removing these outlier RTs decreased the
variability in the RT analysis.

Subjective prevalence—Since observers would need to learn the probabilities associated
with the cues, it was important to determine whether, in fact, they did learn these
probabilities. We asked observers to estimate the subjective prevalence associated with each
cue. In the 20% prevalence condition, they reported that the subjective prevalences were
46% (SEM = 4.5) for the 50%-cue trials (objective prevalence = 50%) and 13% (SEM = 1.8)
for the extreme (6%) cue. In the 80% prevalence condition, they reported that the subjective
prevalences were 47% (SEM = 5.8) for the 50%-cue trials (50%) and 88% (SEM = 1.2) for
the extreme (94%) cue. In the 50% prevalence condition, they reported that the subjective
prevalences were 43% (SEM = 4.8) for the 50%-cue trials (50%) and 58% (SEM = 4.1) for
the extreme-cue trials (50%). These results showed that observers acquired a broadly
accurate impression of target prevalence in all conditions.
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Replication of the global prevalence effect—Experiment 2 can be treated as a
replication of Experiment 1. This is shown in Fig. 6. There was a strong overall prevalence
effect on target-absent RTs [F(2, 28) = 10.81, p < .001]. Subsequent Bonferroni-corrected
comparisons indicated that RTs were longer with 80% overall prevalence than with either
20% or 50% prevalence (p < .05) and that there was no difference between the 20% and
50% prevalence conditions. There was no overall prevalence effect on target-present trials
[F(2, 28) = 2.45, p = .10]. We restricted the analysis of local prevalence to those local
prevalence values that generated at least 150 total trials over the 15 observers. The local
prevalence effect was significant in the 20% overall prevalence condition [F(4, 56) = 3.64, p
= .01]. Subsequent Bonferroni-corrected comparisons indicated a significant difference only
between 10% local prevalence and 30% local prevalence (p < .05). The local prevalence
effects were not significant at 50% overall prevalence [F(4, 56) = 1.73, p = .15] or 80%
overall prevalence [t(14) = 0.55, p = .59]. This pattern of results is similar to that seen in
Experiment 1. Local effects of prevalence are either weakly present or so weak as to be
statistically unreliable, again consistent with the idea that larger numbers of trials are used to
derive the estimate of prevalence that drives search behavior.

Replication of the cueing effect on miss rates—The error rates are shown in Fig. 7
as a function of prevalence and cue condition. The basic prevalence effect on errors was
replicated, with overall miss errors declining as prevalence rises and false alarm errors rise.
These effects were statistically significant. We used a nonparametric Fried-man test because
the number of 100% correct cells rendered the distribution of errors clearly non-Gaussian.
(miss errors, Friedman statistic = 15.6, p < .001; false alarms, Friedman = 13.6, p < .01).
Wilcoxon tests (Bonferroni corrected) indicated significant differences among the three
conditions in terms of miss rates (all ps < .05). False alarms were higher in the 80%
prevalence than in either the 20% prevalence or the 50% prevalence condition (p < .05), and
there was no difference between 20% prevalence and 50% prevalence. The only effect of
cue that appears to be reliable is a difference between 1% and 2.4% false alarm errors at
20% prevalence (Wilcoxon signed rank: p = .048). This effect, while tiny, is in the predicted
direction: Higher expected prevalence (50%) produces more false alarm errors than does
lower expected prevalence (6%). No other comparisons approach significance (all ps > .2).

Expectation effect on RTs—The main question of interest in Experiment 2 was whether
a cue that reliably tells the observer about the probability of a target on the next trial
influences the search termination time on that trial. Figure 8 shows the RT data as a function
of cue types. If the prevalence effect were entirely driven by the expected prevalence, then
50%-cue RTs should be the same in all prevalence conditions, since that cue reliably
indicated 50% prevalence on the next trial in all cases. Clearly, that hypothesis can be
rejected. There is a significant effect of overall prevalence on 50%-cue target-absent RTs
[F(2, 28) = 6.12, p = .006]. Subsequent Bonferroni-corrected comparisons indicated that
RTs were longer at 80% prevalence than at 50% prevalence (p < .05) and that no differences
appeared between 20% prevalence and 50% prevalence and between 20% prevalence and
80% prevalence. However, we can also reject the hypothesis that the cues had no effect. If
there were no effect of the cues, the 50%-cue and extreme-cue RTs should be the same. This
hypothesis can also be rejected. At 20% overall prevalence, a 6% cue produced reliably
shorter RTs than did a 50% cue [t(14) = 4.53, p < .001], and at 80% prevalence, a 94% cue
produced reliable longer RTs than did a 50% cue [t(14) = 2.78, p = .015]. Fortunately, there
was no effect at 50% overall prevalence, since both cues denoted 50% prevalence on the
next trial [t(14) = 0.35, p = .73]. There were no significant effects of cues on target-present
trials [all t(14)s < 1.5, all ps > .15].
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Thus, the results of Experiment 2 replicated those of Experiment 1. In addition, they showed
that search termination RTs could be influenced by information about future prevalence.
However, the effect was only modest in size. Explicit expectation was certainly not the
primary source of the prevalence effect seen in other experiments.

General discussion
In two experiments, we again replicated significant prevalence effects on errors and RTs.
Obviously, observers must have information about prevalence that drives these effects. In a
standard search experiment, the plausible sources of information are highly correlated with
each other. When prevalence is fixed, the explicit expectation of the prevalence on the next
trial is essentially same as the history of prevalence over some preceding set of trials. Here
we could begin to tease apart the effects of different sources of information, and we could
reject some hypotheses.

Is the prevalence effect based primarily on the expected prevalence?
Their results allowed Lau and Huang (2010) to reject this hypothesis. Indeed, they found no
reliable effects of expected prevalence. Our Experiment 2 results, likewise, did not support
that hypothesis.

Is the prevalence effect entirely unaltered by expected prevalence?
The results of our Experiment 2 did not support this hypothesis, as well. Expected
prevalence produced reliable effects on target-absent RTs. There was only a hint of an effect
on error rates. Wolfe and Van Wert (2010) proposed that prevalence effects on errors and
RTs should be partially dissociable, because prevalence affected two internal decision
criteria. One criterion governs decisions about individual items during search (“Is this
attended item a target?”). The other is specifically related to quitting times on target-absent
trials. Both of these will influence error rates. The quitting criterion will be the primary
source of prevalence effects on target-absent RTs. Thus, if explicit expectations had a
greater influence on the quitting criterion than on the target/nontarget criterion, we might
expect to see larger expectation effects on target-absent RTs than on error rates.

Is the prevalence effect based primarily on the local prevalence over the last few trials?
The results of both Expriments 1 and 2 allow us to reject this hypothesis. We presented an
analysis of local prevalence defined by a 10-trial window. However, RTs were not strongly
related to the local prevalence over any small window of trials. Only in the 20% prevalence
condition of Experiment 2 did local prevalence over a 10-trial window reach statistical
significance, and one might worry whether a single significant outcome is actually
significant, in the broader sense of that term.

Is the prevalence effect entirely unrelated to local prevalence over the last few trials?
Finally, we can reject this hypothesis, too. Experiment 1b showed that with enough
statistical power, the weak effects of local prevalence are statistically reliable.

Taken together with the results of Wolfe and VanWert (2010), the present results are
consistent with the view that the effects of prevalence build up incrementally over many
instances of a search. The estimate of four dozen given by Wolfe and VanWert might be
correct, but it would take a very large study to pin this number down accurately, even if a
fixed number of trials were used to derive the current estimate of prevalence. It seems more
plausible that a given target-present or target-absent trial has its greatest impact on the next
trials and that its impact then fades over time. Again, measuring such a function would be
extremely laborious. It is probably adequate to say that several dozen trials go into the

Ishibashi et al. Page 9

Atten Percept Psychophys. Author manuscript; available in PMC 2014 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



prevailing estimate of prevalence and that explicit information about future prevalence can
modify but cannot completely dominate this prevailing estimate.
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Fig. 1.
An example of the luggage-like stimuli used in these experiments
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Fig. 2.
Average reaction times for target-present and -absent trials in Experiment 1. Error bars
represent ±1 SEM

Ishibashi et al. Page 12

Atten Percept Psychophys. Author manuscript; available in PMC 2014 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Error rates for Experiment 1. Error bars represent ±1 SEM
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Fig. 4.
Reaction time (RT) spreads as a function of global and local prevalence in Experiment 1.
Large symbols reproduce the RT data from Fig. 2; the squares are target-absent trials, the
circles target-present trials. Smaller figures and regression lines show RTs as a function of
local prevalence. Data are plotted only for those conditions producing at least 150 trials
across 15 observers. Error bars represent ±1 SEM
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Fig. 5.
The effects of local prevalence on RTs for a T-versus-L search (Exp. 1b). Data are plotted
only for those conditions producing at least 300 trials across 20 observers. Error bars
represent ±1 SEM
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Fig. 6.
Local and global prevalence effects in Experiment 2. The upper data points (squares) show
target-absent trials. Circles are target-present trials. Open squares and circles show RTs as a
function of local prevalence averaged over 10 preceding trials. Filled squares and circles
show average target-absent RTs for each prevalence block. Data are plotted only for those
conditions producing at least 150 trials across 15 observers. Error bars represent ±1 SEM
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Fig. 7.
Error rates for Experiment 2 as a function of prevalence and cue condition. Error bars
represent ±1 SEM
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Fig. 8.
RTs as a function of cue types. Squares show target-absent RTs, and circles show target-
present RTs. Error bars represent ±1 SEM
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Table 1

Marginal probabilities and conjunctive probabilities for the conditions of Experiment 2

Cue Total

50% Extreme

20% Overall Prevalence

Present .16 .04 .20

Absent .16 .64 .80

 Total .32 .68 1.0

 Prevalence .50 .06

50% Overall Prevalence

Present .16 .34 .50

Absent .16 .34 .50

 Total .32 .68 1.0

 Prevalence .50 .50

80% Overall Prevalence

Present .16 .64 .80

Absent .16 .04 .20

 Total .32 .68 1.0

 Prevalence .50 .94
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