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Graves’ disease (GD) is a common autoimmune condition. At its core, stimulatory
autoantibodies are directed at the thyroid-stimulating hormone receptor (TSHR), resulting
in dysregulated thyroid gland activity and growth. Closely associated with GD is the ocular
condition known as thyroid-associated ophthalmopathy (TAO). The pathogenesis of TAO
remains enigmatic as do the connections between the thyroid and orbit. This review
highlights the putative molecular mechanisms involved in TAO and suggests how these
insights provide future directions for identifying therapeutic targets. Genetic, epigenetic, and
environmental factors have been suggested as contributory to the development of GD and
TAO. Thyroid-stimulating hormone receptor and insulin-like growth factor receptor (IGF-1R)
are expressed at higher levels in the orbital connective tissue from individuals with TAO than
in healthy tissues. Together, they form a functional complex and appear to promote signaling
relevant to GD and TAO. Orbital fibroblasts display an array of cell surface receptors and
generate a host of inflammatory molecules that may participate in T and B cell infiltration.
Recently, a population of orbital fibroblasts has been putatively traced to bone marrow–
derived progenitor cells, known as fibrocytes, as they express CD45, CD34, CXCR4, collagen
I, functional TSHR, and thyroglobulin (Tg). Fibrocytes become more numerous in GD and we
believe traffic to the orbit in TAO. Numerous attempts at developing complete animal models
of GD have been largely unsuccessful, because they lack fidelity with the ocular
manifestations seen in TAO. Better understanding of the pathogenesis of TAO and
development of improved animal models should greatly accelerate the identification of
medical therapy for this vexing medical problem.
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Graves’ disease (GD) is a common autoimmune condition
associated with dysregulated thyroid gland activity and

growth.1 Underlying glandular overactivity are stimulatory
autoantibodies directed against the thyrotropin receptor
(TSHR), known as thyroid-stimulating immunoglobulins
(TSI).1 Their actions result in the overproduction of thyroid
hormones, which in turn causes numerous metabolic abnor-
malities in peripheral tissues.1 Closely associated with GD is the
manifestation localized in orbital connective tissues, known as
thyroid-associated ophthalmopathy (TAO, also known as
Graves’ orbitopathy) that occurs in 25% to 50% of those with
GD.2,3 The clinical features of TAO include periorbital edema,
eyelid retraction, proptosis, strabismus, exposure keratopathy,
and compressive neuropathy (Figs. 1, 2). They are disfiguring
and also may threaten sight.4 The clinical course of TAO usually
involves a self-limited active phase characterized by inflamma-
tion and tissue remodeling.4 This process typically lasts
between 18 and 36 months, and is followed by the stable
phase. The exact pathogenesis of TAO appears to involve
complex molecular and cellular processes that have yet to be
understood fully.

The connection between the orbit and the pathologic
events occurring within the thyroid in GD remains enigmatic,
as does any relationship existing between thyroid hormone
excess and TAO. The first signs of ocular involvement can
precede, accompany, or follow development of thyroid

dysfunction. The concept that orbital disease is not provoked
directly by abnormal thyroid hormone levels associated with
GD is now widely accepted. Rather, most experts believe that
TAO occurs as the consequence of underlying autoimmune
processes. Its complexity and diversity of presentation,
combined with the absence of complete animal models, have
delayed solving TAO. However, recent progress in identifying at
least some of the pathologic elements involved in GD has
begun to accelerate our understanding of the disease. This
review attempts to crystallize these advances, and in so doing,
identify weaknesses in the current concepts, and provide a
roadmap for future studies that should facilitate basic discovery
and translate to the clinic.

GENETIC, EPIGENETIC, AND ENVIRONMENTAL RISK

FACTORS FOR TAO

Genetic Predisposition

Genetic and environmental factors contribute to the pathogen-
esis of GD.5 However, clear-cut differences between genetic
variations associated with GD and those peculiar to the subset
of individuals developing TAO have not yet been identified.6

Similar to other autoimmune conditions, GD and TAO are more
prevalent among females.7 However, men with GD appear to
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be at greater risk of developing severe TAO.8,9 Prevalence of
TAO also diverges with respect to ethnicity. For instance,
Asians are less likely to suffer TAO than are their European
counterparts.10 Increased incidence of GD among family
members also indicates that genetic factors have a major role
in susceptibility.5,11 A recent study investigated the prevalence
of ocular and eyelid signs in first and second-degree relatives
from a single family harboring multiples cases of GD, TAO, and
Hashimoto’s thyroiditis.12 The investigators reported that 33%
of the euthyroid relatives had signs of TAO, such as upper lid
retraction. These findings favor a genetic contribution to the
development of TAO.12

Studies examining twins with GD were conducted by
interrogating the Danish twin registry.5,13 These demonstrated
concordance rates as high as 30% for GD in monozygotic
compared to 3% in dizygotic twins.5,13 They indicated that
approximately 79% of the risk for developing GD is attributable
to genetics, while the remaining 21% derives from environ-
mental factors.13 In addition, several reports have appeared
identifying multiple susceptibility genes associated with GD.
Among these polymorphisms are variations in genes regulating
immune function, such as HLA-DR3,14,15 CTLA4,16 PTPN22,17

CD40,18 IL-2RA,19 FCRL3,20 and IL-23R.21 Others encode
thyroid-specific proteins, such as TSHR22 and thyroglobulin
(Tg).23

Identification of novel single-nucleotide polymorphisms
(SNPs) in disease susceptibility genes further contributes to
our understanding of the genetic basis underlying GD. The
Interleukin-21 and IL-21R polymorphisms have been associated
with autoimmune conditions, such as type 1 diabetes
mellitus,24 juvenile idiopathic arthritis,25 psoriasis,26 celiac
disease,27,28 ulcerative colitis,29 and multiple sclerosis.30 The
SNPs within the IL-21 gene and those located within intron 1

of TSHR, such as rs2284720, also have been associated with
GD and TAO.31–34 The SNP rs6479778, identified within the
ARID5B gene at 10q locus,32,35 and SNP rs12147587, located
within the NRXN3 gene at 14q locus,32 represent variations
within genes that regulate adiposity and might predispose to
GD.36,37

Because the vast majority of individuals with TAO have
underlying GD, it would not be surprising that the two
processes share disease susceptibility genes. One recent study
examined polymorphisms of HLA, CTLA4, IL23R, and TSHR in
a cohort with TAO and found no genetic differences compared
to patients with GD without ocular involvement.38 Most
studies have concluded that the gene polymorphisms thus far
identified contribute little to overall disease susceptibility.
None identified appears to convey sufficient risk for develop-
ing TAO to warrant prophylactic treatment in individuals with
GD. The relative contributions of specific genetic and
environmental factors for developing TAO remain to be
quantified. Moreover, the susceptibility conferred appears
complex and varies with ethnicity.

Epigenetics

Besides genetic factors, epigenetic determinants, such as
heritable alternations in gene function, also may have a role
in GD. These could contribute through alterations in DNA
methylation, histone modifications, genomic imprinting, RNA
interference, and X chromosome inactivation.39 As with
genetic factors, those that emanate from the epigenenome

FIGURE 1. A 61-year-old woman with TAO. (A) Frontal view
demonstrating bilateral upper lid retraction (right greater than left)
and bilateral lower lid retraction with inferior scleral show. Bilateral
proptosis, lateral flare, chemosis, injection, caruncular edema, and
significant left esotropia also are evident. (B) Worms-eye view
highlighting proptosis (right greater than left).

FIGURE 2. Orbital CT without contrast. (A) Uninvolved orbits. (B)
Patient with TAO demonstrating bilateral exophthalmos. Bilateral
marked enlargement of the extraocular muscles, especially the medial,
superior, and inferior rectus muscles, causing apical crowding of the
optic nerve. Stranding can be observed around both optic nerves.
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and provide unequivocal causality have yet to be identified. Yin
et al.39 found upward skewing of X chromosome inactivation
(‡80% inactivation of one X chromosome in the same tissue)
in GD when compared to healthy individuals. Yet, the
mechanisms through which this inactivation leads to increased
risk for GD are not yet known.39 Nonetheless, this phenom-
enon could ultimately explain the higher incidence of GD and
TAO in women.40

A recent study has identified a Tg promoter nucleotide
substitution (�1623 A/G SNP, rs180195) that may predispose to
autoimmune thyroid disease.41 This G allele and G/G haplotype
are more frequent in affected individuals, and interact
epigenetically with IFNa following viral infections.41 Subse-
quently, interferon regulatory factor-1 (IRF-1) binds the Tg
promoter at rs180195, resulting in enhanced mono-methyla-
tion of the Lys-4 residue of H3.41 Treatment with IFNa of
thyroid cells transfected with a fragment of the Tg gene
promoter fused to a reporter increases its activity only in the
construct harboring the variant. Thus, it is possible that IFNa
promotes IRF-1 binding to the variant Tg promoter, thereby
directly modulating expression of gene(s) underlying thyroid
autoimmunity.

Environmental Factors

Environmental factors, such as infectious agents, have been
implicated in the initiation of immune responses to self-
antigens.7 These might underlie the development of GD and
TAO. Bacteria can induce inflammatory responses leading to
aberrant expression of co-stimulatory molecules, including
MHC class II. This process often results in presentation of self-
antigens and the activation of antigen-specific T cells.7

Alternatively, infections can alter the expression of host
proteins so that they become misrecognized as foreign.42

Molecular mimicry, resulting from primary sequence identity
or conformational similarities to antigens, also could have a
pathogenic role in the development of GD, as has been
proposed in other autoimmune conditions.43–45

An early study reported that DNA from human foamy
viruses (HFV), otherwise known as spuma viruses, had been
detected in peripheral DNA from a majority of those with GD,
but was undetectable in healthy controls.46 Subsequent studies
have failed to confirm these findings.47,48 However, another
report detected HFV proteins in diseased thyroid tissue.49 It
remains unclear whether HFV infection might be associated
with GD. A follow-up study utilizing more modern techniques
could resolve this open question.

Yersinia enterocolitica was investigated initially for its
participation in GD more than 40 years ago.50,51 The large
proportion of individuals with GD in whom antibodies against
Y. enterocolitica can be detected suggests that these bacteria
might express proteins resembling those of the host.52,53 This
concept is based in part on identification of high affinity TSH
and TSI binding sites on Y. enterocolitica.54–56 Furthermore,
mice immunized with Y. enterocolitica envelope proteins have
been shown to develop anti-TSHR antibodies.50 A recent study
demonstrated the outer membrane porin F protein of Y.

enterocolitica cross-reacts immunologically with the leucine-
rich domain of TSHR.57 Furthermore, early precursor B cells
can expand when exposed to Y. enterocolitica porin proteins
and undergo somatic hypermutation to acquire cross-immuno-
geneticity with TSHR.58 Although development of autoimmu-
nity following certain infections has been suspected for many
years, further study will be necessary before this mechanism
can be linked causally to GD and TAO.

Cigarette smoking has been associated consistently with
development and worsening of GD and TAO,59–61 as well as
other forms of human autoimmunity.62,63 This connection was

first described by Hagg and Asplund.64 Subsequent studies
have confirmed their findings, and smoking has emerged as an
important risk factor for GD and TAO with odds ratios of 1.9
(95% confidence intervals [CI], 1.1–3.2) and 7.7 (95% CI, 4.3–
13.7), respectively.60 In individuals with GD who smoke more
than 20 cigarettes per day, the relative risk for developing
proptosis is 3.37 (1.50–7.58, P ¼ 0.003) and as high as 7.04
(3.00–16.5, P < 0.0001) for developing diplopia.65 Risk for
developing TAO relates more to the number of cigarettes
smoked following development of GD than the life-cumulative
smoking burden.65 In a matched case-control twin study, Brix
et al.66 found that the discordant monozygotic twin with GD
was more likely to have smoked when compared to the healthy
sibling. A meta-analysis of studies investigating the association
between smoking and thyroid diseases confirmed the in-
creased risk for developing or worsening of TAO beyond that
associated with GD.67 A retrospective analysis demonstrated
that nonsmokers had a decreased risk of TAO progression, and
better therapeutic response to orbital radiation and corticoste-
roids than did smokers.68 While the mechanism underlying the
deleterious effects of smoking on TAO remains uncertain, its
cessation appears to improve treatment response and to lower
the risk of developing TAO de novo.

THE PUTATIVE ROLE OF TSHR IN TAO

Thyroid-stimulating hormone receptor, a glycoprotein hor-
mone receptor, is a member of the G protein coupled receptor
family.69 It contains a ligand-binding extracellular domain
(ectodomain), a transmembrane domain, and an intracellular
domain (endodomain).69 Posttranslational intramolecular pro-
teolytic cleavage of the extracellular domain results in the
generation of the A-subunit, which exhibits immunoreactivity
and is processed by antigen presenting cells.70 Thyroid-
stimulating immunoglobulins and TSH binding to TSHR results
in receptor activation and unregulated thyroid hormone
production. This appears to be the basis for hyperthyroidism
and the development of goiter in GD.1

The frequently encountered close temporal relationship
between the onset of thyroid dysfunction and development of
TAO suggests that GD and TAO might share a common
etiology, and perhaps share a common autoantigen.71 In
addition to thyroid epithelium, TSHR can be detected in
several connective tissue/adipose depots, including those
within the orbit.72,73 Levels of TSHR mRNA are considerably
lower in orbital fat than those found in thyroid.74 They appear
to be higher in orbital fibroblasts from patients with TAO
compared to those from healthy donors.74 While the role of TSI
in TAO has not been established, these antibodies can activate
TSHR displayed on orbital fibroblasts and lead to downstream
signaling and production of IL-6.75 While evidence suggesting
that low-level TSHR expression on orbital fibroblasts is capable
of transducing signals from TSI has been introduced, whether
the receptor protein serves as an intraorbital antigen remains
uncertain. To our knowledge, no compelling studies have
demonstrated antigen-specific T cell infiltration of the orbit in
TAO.

T AND B CELLS

In TAO, T and B cells infiltrate orbital fat (Fig. 3) and
extraocular muscles.76 This pattern of lymphocyte recruitment
shares similarities with that occurring in the thyroid.77,78 Both
CD4þ and CD8þ T cells can be identified among the infiltrate, a
process that apparently occurs early in TAO.79 Th1 predom-
inates early in the disease, whereas a bias toward the Th2
phenotype can be found later.80 CD4þ Th17 T cells, which
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have been implicated in other autoimmune diseases, have yet
to be identified in orbital infiltrates.81 Despite the variants of IL-
23R that have been associated with TAO,21 and the increased
frequency of circulating Th17 and Th22 cells in GD,82,83 the
possible involvement of the Th17 pathway in TAO has yet to be
examined carefully.

CYTOKINES

Orbital tissue activation and remodeling associated with TAO
appear to result from cytokine-dependent fibroblast activa-
tion.84 This might be attributed, at least in part, to the unusual
susceptibility of orbital fibroblasts to the actions of pro-
inflammatory cytokines.84 Evidence for involvement of specific
cytokines derives from their detection in involved orbital fat.
One study demonstrated immunoreactivity against IFNc, TNFa,
and IL-1a.85 Messenger RNA encoding cytokines, including
TNFa, IL-1b, IFNc, IL-4, IL-6, and IL-10, was detected in
extraocular muscle and fat from patients with TAO.86 Prummel
et al.87 found elevated serum soluble IL-2R (sIL-2R) levels in
approximately 45% of individuals with TAO. Although these
levels failed to correlate with disease activity or severity, those
individuals with the highest levels exhibited enlarged extra-
ocular muscles.87 Serum concentrations of IL-6 and soluble IL-
6R were found to be elevated in GD compared to healthy
individuals.88 These were even higher in the subset with active
TAO.88 Serum IL-6 levels were higher in long-standing TAO.89

Serum soluble IL-2R, IL-6, IL-6R, TNFaR I, II, and sCD30 were
elevated in patients with moderately severe untreated TAO
compared to healthy individuals matched for sex, age, and
smoking habits.90 Increased serum IL-17 levels were detected
in TAO and were particularly elevated in those with active
disease.91

ORBITAL FIBROBLASTS AND THE PUTATIVE ROLE OF

BONE MARROW–DERIVED FIBROCYTES

A remaining central question concerns the identity of the
primary autoimmune target in TAO. Extraocular muscle has
been proposed by a few investigators,92–97 but most have
focused on orbital fibroblasts.98 Supporting the latter point of
view, infiltrating CD8þ T cells recognize orbital fibroblasts, and
become activated through MHC class II and CD40-dependent

signaling,7 suggesting that these cells represent autoimmune
targets.

Orbital fibroblasts are a heterogeneous population of cells
with complex structural and immunoregulatory func-
tions.99,100 They comprise spindle- and fusiform-shaped cells,
projecting two or three dendritic processes.101 Others are
angular, with three or more dendritic processes. Thus, their
shapes differ slightly from those of dermal fibroblasts. Their
rate of cell division is predicated, at least in part, on whether
they display the cell surface glycoprotein CD90, known as
thymocyte antigen 1 (Thy-1).102 For the first time, Koumas et
al.103,104 demonstrated that human orbital fibroblasts exhibited
heterogeneous expression of Thy-1, and when separated into
Thy-1þ and Thy-1� subsets, responded differently to extracel-
lular stimuli, and showed distinct functionalities. When
exposed to IL-1b or following CD40 ligation, Thy-1þ orbital
fibroblasts produced considerably higher levels of PGE2 via
upregulation of prostaglandin endoperoxide H synthase-2
(PGHS-2, also known as COX-2).104 Further, Thy-1þ orbital
fibroblasts differentiated into myofibroblasts when treated with
TGF-b, as was evidenced by strong immunofluorescence
activity to a-SMA,105 whereas the Thy-1�-subset underwent
adipogenesis when treated with a PPARc agonist.103,104

The cellular attributes of orbital fibroblasts currently are
thought to predispose to the pathologic processes associated
with TAO.84 They display unique arrays of costimulatory
molecules and cell surface receptors for various cytokines and
growth factors.84 It is the particular profile of inflammatory
cues to which they respond that appears to set them apart
from other fibroblasts. For instance, leukoregulin, IL-1b, and
CD40 ligand (also known as CD40L or CD154) vigorously
induce PGHS-2 in orbital fibroblasts when compared to dermal
fibroblasts.106–108 A major aspect of phenotypic divergence of
orbital fibroblasts appears to relate to the disparities with
which the IL-1 receptor antagonists (IL-1RA) isoforms are
expressed.109,110 Unlike those from the skin, orbital fibroblasts
express vanishingly low levels of secreted IL-1RA (sIL-1RA), the
antagonist molecule that has the dominant role in blocking IL-
1–derived signaling. Instead, intracellular IL-1RA is far more
highly expressed and inducible in these cells. The exaggerated
induction of PGHS-2 resulting from cytokines, such as IL-1b, is
mediated through enhanced PGHS-2 gene promoter activity
and mRNA stability.106,108 The upregulation of PGHS-2 was
found to be accompanied by dramatically increased PGE2

production.107 Orbital fibroblasts express PGE2 receptors and
respond to this prostanoid by developing multiple long
cytoplasmic processes111 and generating cyclic adenosine
monophosphate.112 In addition, PGE2 influences B cell class-
switching,113 T cell differentiation,114 and mast cell degranu-
lation,115 all of which might have roles in TAO. Hwang et al.116

recognized that orbital fibroblasts from patients with TAO
display higher levels of CD40 than do cells derived from
healthy donors. These levels are further upregulated by IFNc.
When ligated with CD40L, they produce hyaluronan117 as well
as IL-6, IL-8, and MCP-1.116 Interleukin-6 drives immunoglob-
ulin production, development of plasma cells,118 IL-4 synthesis,
and biases T cells toward Th2 development.119 Monocyte
chemotactic factor-1, a powerful chemoattractant, may be
involved in promoting mononuclear cell infiltration in TAO.120

Interleukin-16 and RANTES121 also are produced by orbital
fibroblasts, once they are activated by cytokines, such as IL-
1b122 and IgGs,123 from patients with GD through the IGF-1
receptor pathway.124 Thus, fibroblasts may have important
roles in T cell infiltration of the orbit and B cell differentiation.

The embryonic origins of orbital fibroblasts have been
debated for many years. Recently, a potential explanation for
the cellular heterogeneity found in TAO orbital connective
tissue has been provided by the recognition that a subset of

FIGURE 3. Histologic examination of orbital tissue of a patient with GD
(hematoxylin and eosin, 320). Mononuclear cell infiltrate is seen
within the orbital fat compartment.
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these cells apparently derives from the bone marrow.74

Progenitor cells, known as fibrocytes, have been found in
these orbital tissues from individuals with TAO, but not in
those from healthy donors. They derive from monocyte and B
cell lineages and circulate as peripheral blood mononuclear
cells (PMBCs).125 Fibrocytes ordinarily comprise approximate-
ly 0.5% of circulating PBMCs and can infiltrate connective
tissues at sites of injury.126 They participate in inflammation,
wound healing, and tissue remodeling, and also are involved in
fibrotic lung and kidney diseases.127,128 Fibrocytes synthesize
collagen I (Col I), display CD34 and CXCR4, and traffic to
tissues in response to multiple chemokines, including
CXCL12.129 They become more numerous in GD (Fig. 4),
and can differentiate into myofibroblasts and adipocytes, and,
thus, may account for the characteristic tissue remodeling
associated with TAO.130 The presence of fibrocytes in the TAO
orbit may explain the divergent phenotypes observed in
fibroblast populations.74,131

Fibrocytes unexpectedly express functional TSHR at levels
comparable to those displayed on thyroid epithelial cells.74 A
greater proportion of fibrocytes from donors with TAO express
TSHR than do those from healthy donors.132 The levels of
TSHR on fibrocytes are considerably higher than those on
orbital fibroblasts, regardless of whether they derive from
healthy tissues or those affected by TAO.132 When TSHR on
fibrocytes is ligated with bTSH or monoclonal TSI (M22),
production of several cytokines, including IL-6, IL-8, RANTES,
MCP-1, IL-1b, and TNF-a, is upregulated dramatically.74,132

Further, fibrocytes are morphologically similar to orbital
fibroblasts (Fig. 5A). The TAO orbital fat contains
CD34þTSHRþCXCR4þCol1þ cells in situ, and the fibroblasts
outgrowing these tissues display these markers74 (Figs. 5B, C).
CD34þ orbital fibroblasts, like their circulating fibrocyte
precursors,133 differentiated into either adipocytes or myofi-
broblasts, depending on the culture conditions to which they
were subjected.103,104

ADIPOGENESIS AND HYALURONAN PRODUCTION BY

ORBITAL FIBROBLASTS: REFLECTIONS OF TISSUE

REMODELING IN TAO

Thyroid-associated ophthalmopathy is characterized by the
gross enlargement of extraocular muscles.134 While this is due
mostly to edema, the production of glycosaminoglycans
(GAGs) by the orbital fibroblasts and hyperplasia of the
adipose tissue also contribute to proptosis and can result in
compression of the optic nerve.134–136 Once lymphocytes
infiltrate and activate the orbital fibroblasts, these cells
produce GAGs and differentiate into myofibroblasts or
adipocytes.103,137–139

The cardinal feature of remodeling seen in TAO is the
disordered accumulation of hyaluronan, a nonsulfated GAG.
The extraordinary hydrophilic nature of hyaluronan causes
volume expansion within orbital tissues.140 Orbital fibroblasts,
as opposed to dermal fibroblasts, demonstrated a dramatic
increase in hyaluronan production when exposed to leukor-
egulin, IFN-c, and IL-1b through the induction of UDP-glucose
dehydrogenase141 and the hyaluronan synthases.108,142 Further,
when incubated with CD40L, they exhibited substantial
coordinate increases in hyaluronan and PGE2 synthesis, with
the latter being mediated through PGHS-2 and IL-1a synthe-
sis.106 The robust response is due to low-level expression of
sIL-1RA in orbital fibroblasts and subsequent poor inhibition of
IL-1b.106,109,110 Also, TGF-b has been shown to regulate
hyaluronan production (Fig. 6). Recently, PPARc activation
was shown to suppress TGF-b–induced activation of fibrosis-

FIGURE 4. Increased generation of fibrocytes from PBMCs of patients
with GD. There was approximately 5-fold more fibrocytes in
individuals with GD compared to controls (5268 6 1260 fibrocytes
per 106 PBMCs, n ¼ 70 versus control, 954 6 329 fibrocytes per 106

PBMCs, n ¼ 25, mean 6 SD, P < 0.001). Reprinted with permission
from Douglas RS, Afifiyan NF, Hwang CJ, et al. Increased generation of
fibrocytes in thyroid-associated ophthalmopathy. J Clin Endocrinol

Metab. 2010;95:430–438. Copyright 2010 The Endocrine Society.

FIGURE 5. (A) Similar spindle-shaped phenotypes among orbital
fibroblasts, dermal fibroblasts, and fibrocytes (hematoxylin and eosin,
320). (B) Fibrocytes from individuals with GD display cell surface
receptor CD34. 1, Immunofloresence staining of CD34 in TAO-derived
tissue (inset as negative control). 2, Absence of CD34 expression in
healthy orbital tissue (inset as positive control). (C) Orbital fibroblasts
from individuals with and without TAO display similar receptors on
fibrocytes, as shown by flow cytometric analysis with anti-CD34 and
anti-Col I antibodies. Reprinted with permission from Douglas RS,
Afifiyan NF, Hwang CJ, et al. Increased generation of fibrocytes in
thyroid-associated ophthalmopathy. J Clin Endocrinol Metab.
2010;95:430–438. Copyright 2010 The Endocrine Society.
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related processes.143–145 Guo et al.146 demonstrated that
PPARc ligands inhibited TGF-b–induced hyaluronan-dependent
T cell adhesion to orbital fibroblasts. The same group reported
that PGD2, a major prostanoid produced by mast cells,
regulates hyaluronan production in orbital fibroblasts, actions
mediated through PD1.147

Crisp et al.134 examined the role of TSHR in the
adipogenesis of orbital tissues and found that the receptor is
expressed differently at several stages of orbital and nonorbital
fat differentiation. Further, levels of TSHR become elevated in
orbital fibroblasts undergoing adipogenesis. Supraphysiologic
TSH concentrations stimulated TSHR expression in TAO orbital
preadipocyte fibroblasts.134 In another study, PPARc-express-
ing orbital fibroblasts underwent adipogenesis when co-
cultured with activated T lymphocytes that produce PPARc
ligands. This activity could be attenuated by cyclooxygenase
(COX) inhibitors.148 When Zhang et al.149 introduced TSHR
harboring a gain-of-function mutation into orbital fibroblasts,
cellular proliferation was slowed and the fibroblasts became
refractory to PPARc-induced adipogenesis. Other potentially
important connections between TSHR and adipogenesis
remain to be investigated thoroughly.

Individuals with TAO can be classified as manifesting either
type I disease, which is characterized by expansion of adipose
tissue, or type II, which is predominately extraocular muscle
enlargement, or both.86 While ample evidence suggests the
phenotypic divergence of orbital fibroblasts, Kuiryan et al.150

demonstrated that orbital fibroblasts from donors with type I
TAO undergo adipogenesis more robustly than those from type
II disease (Fig. 7). In contrast, type II fibroblasts exhibit a
greater proliferative response to TGF-b. Therefore, it is possible
that orbital fibroblast subtype determines clinical manifestation
of TAO, as was suggested some time ago.102,139 Further,
inhibition of PGHS-1 and PGHS-2 by indomethacin can

attenuate 15-d-PGJ2 (a PPARc ligand)-induced adipogenesis
only in fibroblasts from type II donors.150 The mechanisms
underlying this observation remain uncertain. Nonetheless,
PGHS-2 inhibitors, such as celecoxib, may show promise in
treating type II patients who prove unresponsive to cortico-
steroid treatment.151

THYROID PROTEINS IN THE ORBIT? A CONTINUING

CONTROVERSY

Detection of ‘‘thyroid-specific’’ proteins in the orbit was first
reported by Konishi et al.,152 Kriss,153 and McDougall et al.,154

who detected Tg in tissues affected by TAO. This early report
was followed by more recent work by Marino et al.,155 who
also identified Tg in orbit and in TAO orbital fibroblasts. The
investigators assumed its origin to be the thyroid.155 Fernando
et al.156 subsequently reported finding Tg expression by
human CD34þ fibrocytes and trace levels in TAO orbital
fibroblasts. Their report suggested that fibrocytes express Tg as
a consequence of substantial Tg gene promoter activity. This
results in levels of Tg mRNA considerably below those found in
thyroid tissue. Further, they found that the Tg was functional in
that it could be iodinated in situ. Their studies suggest the
potential for fibrocytes to generate iodothyronines, such as
thyroid hormones. Further, they also raise the possibility that
Tg might have some role as an orbital antigen.

Mature TSHR mRNA was detected initially using PCR by
Fenzi et al.72 in healthy orbital tissues and those affected by
TAO. Their report soon was followed by that of Bahn et al.,157

who detected TSHR mRNA in orbital fibroblasts (Fig. 8).
Subsequently, these investigators found even higher levels in
fibroblasts from individuals with TAO, especially when the cells
were incubated under culture conditions favoring adipogenic

FIGURE 6. Immunofloresence of the induction of hyaluronan with TGF-b in human orbital fibroblasts. Cultures were treated with nothing (controls)
or TGF-b1 for 24 hours. (a, d, g) Contain images of cells stained with biotinylated HABP and demonstrate hyaluronan. (b, e, h) Contain monolayers
stained with phalloidin and demonstrate actin. (c, f, i) Show cultures stained with DAPI and disclose nuclei. (a–c) Untreated controls. Hyaluronan
staining appears to be perinuclear. TGF-b1 induced hyaluronan staining and formation of microvillus-like projections. Streptomyces hyaluronidase-
treated fibroblasts failed to exhibit hyaluronan staining, as in (g–i). Reprinted with permission from Guo N, Woeller CF, Feldon SE, Phipps RP.
Peroxisome proliferator-activated receptor c ligands inhibit transforming growth factor-b-induced, hyaluronan-dependent, T cell adhesion to orbital
fibroblasts. J Biol Chem. 2011;286:18856–18867. Copyright 2011 The American Society for Biochemistry and Molecular Biology.
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differentiation.157 Thus, orbital tissues and their derivative
fibroblasts express at least two proteins that were believed
previously to be restricted to the thyroid epithelium. Further-
more, considerably higher levels of Tg and TSHR were found in
fibrocytes.156 Expression of these proteins in orbital fibroblasts
localizes, albeit at considerably lower levels, to the CD34þ

orbital fibroblasts, which are derived putatively from fibro-
cytes.156 This fibroblast subset is peculiar to cells derived from
patients with TAO.156 Orbital fibroblasts from healthy donors
are uniformly CD34�.74 It would appear that expression of Tg
and TSHR is dampened as fibrocytes infiltrate the orbit and
cross-talk with CD34� fibroblasts.156 The CD34� GD-orbital
fibroblasts appear to downregulate Tg and TSHR expres-
sion.156 Taken together, we can conclude that circulating
fibrocytes become more numerous in patients with GD and
can traffic to the orbit where they participate in the ocular
manifestations of the disease (Fig. 9).

IGF-1R PATHWAY

Since Ingbar et al.158 first described the functional relationship
between TSH and IGF-1 pathways, much evidence has evolved

to reinforce that proposed connectivity. They demonstrated

that IGF-1 promoted rat thyroid epithelial cell proliferation and

enhanced the effect of TSH on DNA synthesis.158 Subsequently,

substantial overlap between TSHR and insulin-like growth

factor-1 receptor (IGF-1R) downstream signaling was reported.

Both receptors extensively utilize the Akt/FRAP/mTOR/P70s6k

pathway.159 Further, TSHR and IGF-1R form a functional and

physical complex, suggesting a potential synergism that could

promote abnormal signaling, such as that associated with

GD.160 Monoclonal antibodies used to block IGF-1R signaling

also attenuate that downstream signaling from TSHR, suggest-

ing that IGF-1R may participate in physiological TSHR

signaling.160

Although TSHR has been established as the central auto-

antigen in GD, how it might participate in TAO remains less

certain, as is the potential pathogenic involvement of other

autoantigens. Insulin-like growth factor-1 influences several

aspects of immunity, including thymic, B, and T cell

development.161 Overexpression of IGF-1R has been demon-

strated in autoimmune processes, such as those occurring in

GD.98 The IGF-1 pathway was first implicated in GD when IgG

FIGURE 7. Treatment of orbital fibroblasts with 15d-PGJ2 from different subtypes of TAO. Orbital fibroblasts were grown in the presence of 5 lM
15d-PGJ2. Type I TAO orbital fibroblasts demonstrated more adipogenesis compared to type II or orbital fibroblasts from a healthy donor, as is
evidenced by Oil Red O accumulation. TED, thyroid eye disease or TAO. Reprinted with permission from Kuriyan AE, Woeller CF, O’Loughlin CW,
Phipps RP, Feldon SE. Orbital fibroblasts from thyroid eye disease patients differ in proliferative and adipogenic responses depending on disease
subtype. Invest Ophthalmol Vis Sci. 2013;54:7370–7377. Copyright 2013 The Association for Research in Vision and Ophthalmology.
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from patients was found to displace radiolabeled IGF-1 from

the surface of orbital fibroblasts.162

Anti–IGF-1R antibodies have been detected in sera from

many individuals with GD, whereas they are absent in the vast

majority of sera from healthy controls.123,124,163–167 At least a

subset of these antibodies appear to activate IGF-1R and to

initiate signaling that can be disrupted with a dominant

negative IGF-1R, as well as with monoclonal anti–IGF-1R

blocking antibodies.124 Moreover, IGF-1R levels are increased

on TAO orbital fibroblasts compared to those from healthy

tissues.124 When TAO orbital fibroblasts are treated with IGF-1

or IgG from patients, the cells produced hyaluronan165 and

two powerful T-cell chemoattractants, namely IL-16 and
RANTES.123,124 These actions are mediated through the Akt/
FRAP/mTOR/P70s6k pathway.123 Furthermore, T cells and B
cells from patients with GD also skew toward the IGF-1Rþ

phenotype.168,169 Display of IGF-1R may protect against Fas-
mediated apoptosis in B cells and is associated with the
production of anti-TSHR antibodies by these cells.169

ANIMAL MODELS OF TAO

Among the first animal models attempting to recapitulate GD
experimentally was that created by Shimojo et al.170 These

FIGURE 8. Immunohistochemical analysis of TSHR immunoreactivity on orbital connective tissue from a donor with TAO. The immunostaining was
conducted with a monoclonal antibody directed against TSHR (amino acids 604-764). (A) Orbital connective tissue. (B) Passage one exhibits intense
staining. (C) Passage three with reduced staining. (D) Passage 5 culture fails to show staining. Reprinted with permission from Bahn RS, Dutton CM,
Natt N, Joba W, Spitzweg C, Heufelder AE. Thyrotropin receptor expression in Graves’ orbital adipose/connective tissues: potential autoantigen in
Graves’ ophthalmopathy. J Clin Endocrinol Metab. 1998;83:998–1002. Copyright 1998 The Endocrine Society.

FIGURE 9. Schematic illustrating the putative role of fibrocytes in the pathogenesis of TAO. CD34þ fibrocytes derive from the bone marrow and
appear to be trafficked specifically to the orbit in TAO where they transition into CD34þ fibroblasts. Fibrocytes express relatively high levels of
functional TSHR. Further, they can differentiate into either adipocytes or myofibroblasts in vitro. CD34þ orbital fibroblasts interact with the native
residential CD34� orbital fibroblasts, resulting in dramatic reduction of expression of TSHR and other thyroid proteins. We postulate that the
magnitude of this suppression may underlie susceptibility to TAO.
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investigators immunized mice with human TSHR (hTSHR)-
transfected fibroblasts also expressing MHC class II antigen.170

Hyperthyroidism was detected in 20% of the animals. Later,
Costagliola et al.171 reported hyperthyroidism resulting from
infection with an expression plasmid containing hTSHR cDNA.
Nagayama et al.172 injected an adenoviral vector expressing
hTSHR into mice. This strategy resulted in a greater proportion
(30%–50%) of animals developing hyperthyroidism.172 When
the free A-subunit of hTSHR was used for immunizations
instead of the intact receptor, 65% to 80% of mice developed
hyperthyroidism.70 This model has proven replicable and is
widely used as an animal model for GD.173–176 More recent
studies have combined TSHR plasmid injection with electro-
poration to enhance transfection efficacy.177 However, these
earlier attempts at creating a complete model of GD, including
the ocular features of TAO, were not completely successful.

In 2011, Zhao et al.178 attempted to induce hyperthyroidism
and orbital pathology in mice by immunizing animals with
plasmids encoding TSHR A and IGF-a1R. Deoxyribonucleic
acid was delivered via skeletal muscle electroporation.178 Many
mice developed hyperthyroidism and generated TSI. Surpris-
ingly, animals immunized with plasmid harboring TSHR also
developed antibodies directed against IGF-1Ra. Histopatholog-
ic examination of the orbits revealed fibrosis. The IGF-1R–
immunized mice also developed a strong anti–IGF-1R antibody
response, but failed to exhibit a phenotype resembling GD.
This study suggested an association between IGF-1R and
TSHR,160 although the basis of anti–IGF-1Ra antibody genera-
tion in TSHR A-immunized mice remains uncertain. Subse-
quently, Moshkelgosha et al.,179 using the same plasmid
electroporation strategy, demonstrated extensive tissue infil-
tration and remodeling within the orbit. The animals exhibited
signs of marked orbital congestion, such as edema and
chemosis. The majority of immunized animals developed
blocking anti-TSHR antibodies and manifested hypothyroidism.
A feature of the ocular pathology found by this group was the
dramatic infiltration of optic nerves, which is strikingly
uncharacteristic of TAO. Unfortunately, no details concerning
the status of intraocular tissues or the central nervous system
following immunization were included in the report. Further,
an explanation for the dramatically different hypothyroid
phenotype and predominately blocking anti-TSHR antibody
profile from this group’s earlier report178 was not discussed in
detail. Thus, greater definition of this model, including more
careful and complete interrogation of the animals and their
interesting phenotype, will be necessary before these findings
can be evaluated critically. Nakahara et al.180 described
successful induction of TSI in wild type mice that received
splenocytes from TSHR-immunized TSHR-knockout mice.
Although this study suggests a role for anti-TSHR immune
response in the development of GD, a low percentage of mice
(22%) were hyperthyroid. Some of these mice later became
hypothyroid. Furthermore, orbital tissue from two of the nine
recipient mice demonstrated modest macrophage infiltration
without the presence of striking extraocular muscle or fat
enlargement, or lymphocytic infiltration. Thus, while encour-
aging reports of preclinical mouse models for GD have
appeared recently, there have been inconsistent results and a
potentially confounding deviation from the human disease.
Consequently, further study is required before the implications
of these reports can be fully assessed.

TREATMENT IMPLICATIONS AND FUTURE PERSPECTIVES

Current medical therapy for active moderate to severe TAO is
limited to corticosteroids and external beam radiotherapy.4

Surgical remediation usually awaits transition from active

disease to the stable, chronic phase. This typically occurs over
a course of a 36- to 48-month horizon.4 Unfortunately, none of
these therapeutic approaches appears to alter the natural
course of TAO, making development of new therapies critical
to addressing an important unmet need. Thyroid-associated
ophthalmopathy is a complex autoimmune condition that only
now is being clarified. Greater definition of the molecular and
immunological underpinnings of this condition should facili-
tate the process of therapy development. In addition, better
animal models should allow critical preclinical testing of
candidate therapies. Potential immunotherapies based on our
current understanding of GD and TAO include depleting T cells
with anti-CD3 antibodies or targeting CTLA-4, a regulator of T
lymphocyte activation.181–184 Monoclonal antibodies against B
cell surface antigen CD20, such as Rituximab, have demon-
strated promising results in decreasing orbital inflammation in
patients with TAO.185–187 However, the preliminary findings
from the two recently completed controlled prospective
studies of Rituximab suggest that its effectiveness may not be
uniform.188,189 Alternative anti-B cell therapy might focus on
anti-CD19, which would target plasmablasts and might provide
a more complete response.169 Anti-cytokine therapy, such as
Etanercept and Infliximab, has been associated with anecdotal
improvement in a very limited cohort of patients with
TAO.190–192 Controlled drug trials for these and related agents
will be necessary before any conclusions can be drawn about
their efficacy and safety in TAO. Anti-TSHR and anti-IGF-1R
therapy also may prove to be effective. A trial of the latter
strategy utilizing Teprotumumab as an IGF-1R blocking strategy
currently is underway [available in the public domain at http://
clinicaltrials.gov/show/NCT01868997].
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