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SUMMARY

There is accumulating neural evidence to support the existence of two distinct systems for guiding
action-selection in the brain, a deliberative “model-based” and a reflexive “model-free” system.
However, little is known about how the brain determines which of these systems controls behavior
at one moment in time. We provide evidence for an arbitration mechanism that allocates the
degree of control over behavior by model-based and model-free systems as a function of the
reliability of their respective predictions. We show that inferior lateral prefrontal and frontopolar
cortex encode both reliability signals and the output of a comparison between those signals,
implicating these regions in the arbitration process. Moreover, connectivity between these regions
and model-free valuation areas is negatively modulated by the degree of model-based control in
the arbitrator, suggesting that arbitration may work through modulation of the model-free
valuation system when the arbitrator deems that the model-based system should drive behavior.

INTRODUCTION

It has long been known that there are multiple competing systems for controlling behavior, a
deliberative or “goal-directed” system, and a reflexive “habitual system”(Balleine and
Dickinson, 1998). Distinct neural substrates have been identified for these systems, with
regions of prefrontal and anterior striatum implicated in goal-directed control and a region of
posterior lateral striatum involved in habitual control (Balleine and Dickinson, 1998;
Balleine and O’Doherty, 2010; Graybiel, 2008; Tricomi et al., 2009; Valentin et al., 2007,
De Wit et al., 2009; Yin and Knowlton, 2004).

However, the issue of how control passes from one system to the other has received scant
empirical attention. Addressing this issue is crucial for explaining how unified behavior
emerges through the interaction of these different systems, as well as for understanding why
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the balance between goal-directed and habitual systems might sometimes break down in
diseases such as addiction or obsessive compulsive disorder. For example, persistent drug
taking behavior might reflect failure to suppress inappropriate drug-related stimulus-
response habits in spite of the fact that such behavior ultimately leads to highly adverse
consequences (Everitt and Robbins, 2005).

To address how the arbitrator works we deployed a computational framework in which goal-
directed and habitual behavior are expressed as different forms of reinforcement-learning.
Goal-directed learning is described as model-based, in which the agent uses an internal
model of the environment in order to compute the value of actions online (Daw et al., 2005;
Doya et al., 2002), while habitual control is proposed to be model-free in that “cached”
values for actions are acquired on the basis of trial and error experience without any explicit
model of the decision problem being encoded (Daw et al., 2005). Empirical evidence for this
computational distinction has emerged in recent years (Daw et al., 2011; Glascher et al.,
2010; Wunderlich et al., 2012). It has been hypothesized (Daw et al., 2005) but never
directly tested, that an arbitrator evaluates the performance of each of these systems and sets
the degree of control that each system has over behavior according to the reliability of those
predictions. Here we aimed to elucidate the neural mechanisms of this arbitration process in
the human brain.

Computational Model of Arbitration

The arbitration model consists of three levels of computation — model-base/model-free
learning, reliability estimation, and reliability competition. The first layer consists of model-
based and model-free learning, which generates the state and reward prediction error,
respectively. The second layer provides an estimation of reliability for the two learning
models. Specifically, we start with a standard Bayesian framework that formally dictates
prior successes and failures in predicting task contingencies in the form of prediction error.
The next layer provides a competition between the two reliabilities. This bottom-up design
allows us to systematically test six types of arbitration strategies (see Supplemental Methods
for details).

When building the arbitrator, we leveraged the fact that learning in these two systems is
suggested to be mediated by means of prediction error signals that indicate discrepancies
between expected and actual outcomes. Whereas the model-free system uses a reward
prediction error (RPE) that reports the difference between actual and expected rewards
(Montague et al., 1996; Schultz et al., 1997), the model-based system uses a “state
prediction error” (SPE) to learn and update the model of the world — in particular to acquire
state-action-state transition probabilities (Glascher et al., 2010). Our arbitrator made
inferences about the degree of reliability of the model-based and the model-free systems by
determining the extent to which the SPE signals and RPE signals are estimated to be high or
low. If the state prediction error is close to zero, this means that the model-based system has
a good and reliable estimate of the world, whereas if the state prediction error is high, this
means that the model-based system has a very inaccurate and hence unreliable model of the
world. Similarly, if RPEs are minimal, this means that the model-free system likely has a
very accurate estimate of the expected rewards available for different actions at that moment
in time, while high RPEs implies that the model-free system has inaccurate and hence
unreliable predictions about future reward. To make these reliability inferences for the
model-based system we formulated a bottom-up Bayesian model that estimates the
probability that the SPE is set to zero at a particular moment in time. The reliability of the
model-based (Relyg) is defined as the ratio of the mean prediction and the uncertainty of
that prediction for SPE, a variance-to-mean ratio that is formally known as an inverse of the
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index of dispersion (Ma et al., 2006; Pennini and Plastino, 2010) (Figure S1A; see
Supplemental Methods for definitions). For the model-free system, a similar Bayesian
framework could also be used, substituting the RPE for the SPE (dual BayesArb model; see,
Supplemental Methods). However, the model-free system might not use sophisticated
Bayesian machinery to estimate reliability, but rather deploy a much simpler mechanism for
tracking the approximate degree of reliability of the RPE (mixedArb model). A candidate
mechanism would be to use the absolute value of the RPE signal to learn trial-by-trial
predictions about the degree of reliability of the RPE in a model-free manner (Li et al.,
2011; Preuschoff et al., 2008; Takahashi et al., 2011). Once the reliability signals are
estimated for the two systems then a dynamical two-state transition rule borrowed from
biophysics (see Supplemental Methods), allows these two reliability indices to compete with
each other in order to set a weight (model-choice probability Py g) that governs the extent to
which the model-based vs model-free systems control behavior. When Pyg is high, control
is dominated by the model-based system, whereas when Py is low, control is dominated by
the model-free system. Thus, control by the model-based vs model-free systems over
behavior is not implemented in an all or nothing fashion, but rather the level of control each
system exerts is dynamically weighted by the degree of reliability in each system (Figure
S1B). Also, due to the computational demands of having to hold a model in memory, and
operate on the model to dynamically compute values, model-based control is likely to be
more cognitively effortful than model-free. Thus, it is reasonable to assume that at least part
of the consideration should include a trade-off about cognitive complexity. The transition
rule incorporates a bias term accommaodating the fact that habits involve less cognitive effort
than goal-directed behavior and thus should be favored, assuming all else is equal.
Simulations showed that this control framework could successfully capture behavioral
characteristics of goal-directed and habitual learning in the literature, such as early
devaluation sensitive control of behavior by the model-based system followed by a gradual
transition to devaluation insensitive model-free control with repeated training (Adams and
Dickinson, 1981) (Figure S1C).

Markov Decision Task: Goal and State-transition Uncertainty

Motivated by our proposed control scheme, we designed a decision task in which on
different trials, the structure of the task should optimally favor behavioral control by either
the model-based or model-free systems (Figure 1 and Figure S2A). On each trial the
participant makes sequential binary choices through a 2-layer Markov decision problem
(MDP) in order to obtain different colored tokens that are redeemable for money (Figure
1A). The experiment consists of two main trial types — specific and flexible goal (Figure
1B). On specific goal trials, the participant is informed at the outset that only one color of
token is redeemable on that trial (e.g. blue tokens can be redeemed for money, but the other
color tokens have no value). The color of the tokens redeemable is switched on a trial-by-
trial basis (Figure 1C). On flexible goal trials by contrast, the participant can collect any
color token in order to obtain monetary reward. Specific goal trials should encourage a more
model-based strategy because reward-prediction errors will be on average high due to
constant changes in goal state-values, while flexible goal-trials should enable gradual
transition to the model-free control scheme. In addition to this goal manipulation, we also
manipulated state-action-state transition probabilities within the MDP, so that on some
occasions uncertainty in state-action-state transitions is high (0.5 vs 0.5), and on other
occasions uncertainty in state-action-state transitions is low (0.9 vs 0.1). Such differences in
the state-action-state transition probabilities across trials are designed to elicit either high or
low state-prediction errors on average, which should favor model-free vs model-based
control respectively (Figure S2B). This was reflected in our reliability estimation (Figure 2
and Figure S3), which essentially leads the arbitration model to successfully adapt to the
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changing environment. Twenty two adult participants (six females, age between 19-40)
performed the task while being scanned with fMRI.

Behavioral Results

Subjects performed the task successfully in all conditions (Figure 3A). To test whether
uncertainty had an influence on a subject’s outcome experience while performing the task,
we ran a generalized linear model regression analysis on hit rate (Figure 3A), for which the
distribution function was chosen to be the Bernoulli and the link function was the probit
model. There is a main effect of the goal and the uncertainty condition (the coefficient
estimate of the goal and the uncertainty condition was 0.8738 (p=1.5e-16) and -0.6355
(p=4.1e-11), respectively). The effect of state transition uncertainty is greater in the specific
condition than in the flexible condition (coefficient estimate of the interaction = -0.16;
p=1e-2). This suggests that the state-transition uncertainty does considerably affect subjects’
performance differently for each goal condition. It is also consistent with our prediction that
the model-based system, which tends to gain control in the specific goal condition, is more
sensitive to state-uncertainty than the model-free.

Model Comparison of Arbitration Process

We tested six different versions of our arbitration process to establish which version of
reliability computation best explains the behavioral data (see Supplemental Methods —
Model-Comparison for details). We found that the versions of the arbitrator with a
dynamical threshold, accommodating the fact that behavior tends to move from model-based
to model-free control over time due to the increased cognitive effort associated with model-
based control, performed significantly better than versions without the threshold (Table S1).
We also compared a version of the arbitrator in which the model-free reliability was
estimated using a full Bayesian mechanism or else via the alternate absolute RPE
approximation described above. The arbitrator in which the level of control each system
exerts is dynamically weighted by the degree of reliability in each system and the absolute
RPE estimate is implemented on the model-free side (mixedArb-dynamic model; although
the model-based arbitrator was still the full Bayesian version. Refer to Supplemental
Methods for full details) performed better than the full Bayesian mechanism on the model-
free side (dualBayesArb-dynamic model) in terms of the trade-off between model fit and
model complexity (Wilcoxon signed rank test on BIC score data: p<0.05; Table S1) and also
better than the other alternative arbitration strategies including the original arbitration
scheme proposed by Daw (UncBayesArb ;Daw et al., 2005) (Wilcoxon signed rank test on
BIC score data: p<0.01). We therefore feature the best version of the arbitrator (mixedArb-
dynamic model; Table S2) as the primary model used in this study, although the next best
model (dual BayesArb-dynamic model) and the original arbitrator form proposed by Daw
(Daw et al., 2005) is used in a formal model comparison of the fMRI data below (see also
Figure S4A and Figure S4B for fMRI analyses with mixedArb-dynamic model and

dual BayesArb-dynamic model, respectively, and Figure S4C for the comparison of the
model choice probability between the two models).

Relationship between Arbitration Model and Choice Behavior

To demonstrate that the arbitrator captures variation in subjects’ choice behaviors, we
computed the proportion of times subjects took the right action (as opposed to the left
action) and plotting this against the model-predicted probability of choosing the right action
(binned into each size bins) (Figure 3B). As can be seen from the figure, the model does
very well in predicting participant’s choice behavior.

To further examine whether our control framework predicts participants’ choice behavior,
we compared the choice consistency of the subjects in chunks of trials in which model-based
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control is predicted by the arbitrator against other trials in which model-free control is
predicted. The choice consistency quantifies the behavioral sensitivity exhibited to task
structure changes. If the model-based learning strategy is preferred, then we would expect
participants to exhibit a flexible profile of choice behavior due to the fact that knowledge
about state-transition probabilities facilitates rapid sensitivity to the changes of the
environment. If the model-free learning strategy is preferred, then we would expect
otherwise. The analysis indicates that subjects’ choice consistency is well accounted for by
our control framework (Figure 3C). The more the arbitrator favors the model-based learning
strategy the less consistent participants’ choices become. To provide a statistical measure of
the model-based influence on choice, we used a likelihood-ratio test (Figure 3D) in which
we separately fit the model-based and model-free algorithms to behavior and computed the
ratio between the likelihoods for the two models. This analysis revealed that choice behavior
is better explained by the model-based learner when the arbitrator predicts that behavior
should be under model-based control, while the choice behavior is better explained by the
model-free learner when the arbitrator predicts that behavior should be predominantly under
model-free control.

Neural Correlates of Arbitration

To address the neural computations underlying control between the model-based and model-
free strategies, we regressed each of our computational signals against the fMRI data (Figure
S4A, and see also Table S3). To validate our approach we initially attempted to replicate
previous findings indicating differential neural encoding of SPE and RPE. Consistent with
previous results we found SPE signals in dorsolateral prefrontal cortex and intraparietal
sulcus (all p<0.05 FWE corrected), as well as in anterior insula, while RPE signals were
found in the ventral striatum (p<0.05 FWE) (Glascher et al., 2010; McClure et al., 2003;
O’Doherty et al., 2003). We then tested for the computational signals needed to generate
reliability estimates for the two systems. The uncertainty of zero SPE, which is used as an
input for computing model-based reliability (Daw et al., 2005), was negatively correlated
with activity in multiple brain areas - dorsomedial prefrontal cortex, parts of supplementary
motor area, inferior parietal lobule, and thalamus (all p<0.05 FWE corrected, Table S3). The
estimate of absolute RPE used by the model-free system to generate a reliability estimate
was found in a region of caudate nucleus (p<0.05 cluster level corrected, Table S3).

Next, we investigated neural correlates for the reliability signals. A region of inferior lateral
prefrontal cortex bilaterally was found to correlate with the reliability of both the model-
based and the model-free systems (peak z-scores were 5.18, and 4.45 respectively), although
activity in these areas correlated best with the reliability of whichever system had the
maximum reliability (max(Relyg,Relpr: peak z-score: 5.68; p<0.05 FWE; Figure 4),
alongside a region of right frontopolar cortex (FPC, p<0.05 cluster level corrected; Figure
4). The neural activities in these areas are significantly better explained by the reliability
signals of our arbitration model (mixedArb-dynamic model) than the alternative hypotheses,
such as the version implementing Bayesian estimation of reliability for both MB and MF
(dualBayesArb-dynamic model) which showed the second best model goodness and the
Bayesian value uncertainty arbitration (UncBayesArb; Daw et al., 2005) (Figure 5; see
Supplemental Methods for further details). A region of ACC was also found to respond to
the difference in the reliability between the two systems (Relyg-Relve) (p<0.05 cluster
level corrected; Figure 4). These findings suggest that anterior cingulate cortex may be
involved in comparing reliabilities therefore forming an input into the arbitration process,
while the presence in the iIPFC and FPC cortex of the “max” of the two reliabilities suggests
that these regions may be involved in implementing the arbitration process itself.
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Neural Correlates of Model-based and Model-free Value Signals

Next we tested for areas correlating with value signals computed by the two models. Shown
in Figure 6 are the regions whose variance in neural activation is purely explained by Qmg
and Qwmr, respectively (Table S4). The chosen value of the model-based system (Qmg), but
not the model-free, is associated with activity in orbital and medial prefrontal cortex
(omPFC) and parts of ACC (p<0.05, small-volume corrected, Table S4). The chosen value
of the model-free (Qpmr), but not the model-based, is associated with activity in
supplementary motor area (SMA; p<0.05 FWE corrected, Table S4), dorsomedial and
dorsolateral prefrontal cortex (dmPFC and dIPFC) (p<0.05 cluster-level corrected, Table
S4), significantly overlapping with value representation in right dIPFC and dmPFC (Hare et
al., 2011; Rowe et al., 2010), and most notably in posterior putamen (significant at p<0.05,
small volume corrected, Table S4) a region that has been implicated in habitual control and
in model-free valuation in previous studies (Tricomi et al., 2009; Wunderlich et al., 2012).
We also tested for regions commonly activated by either model-free and model-based value
signals, revealing significant correlations in SMA and dmPFC (p<0.05 FWE and cluster-
level corrected, respectively, Table S4). In order to guide behavior, the brain ultimately
needs to compute an integrated value-signal in which model-based and model-free value
signals are combined in a weighted manner determined by the output of the arbitrator (i.e. by
Pme)- We found significant correlations in ventromedial prefrontal cortex (vmPFC) with
such a weighted signal corresponding to the difference in weighted values between the
chosen and unchosen actions (Boorman et al., 2009; Hare et al., 2009; Rushworth et al.,
2011) (p<0.05 FWE corrected, Table S4).

Neural Correlates of Value Integration

Our main novel finding is that a region of ilPFC as well as right FPC contains reliability
signals that could be used to implement an arbitration between model-based and model-free
control. However, in order to understand how the arbitration process might work, we next
needed to characterize the nature of the interactions between the areas involved in encoding
reliability and areas involved in encoding valuation within the model-free and model-based
systems. To test for this we implemented PPI analyses, in which the physiological variable
consisted of activity in left or right ilPFC cortex or FPC, and the psychological variable was
the output of the dynamic transition model, Ppg (Figure 7A; Table S5). Remarkably, we
found a significant negative coupling between ilPFC and regions of the left posterior and
mid-putamen, including the area of posterior putamen found to encode model-free valuation
signals as well as in regions of supplementary motor cortex (p<0.05 small-volume and
cluster-level corrected, respectively; see Figure S5A for a clear demonstration of the overlap
between the results of the PPI and areas found to be active in model-free valuation). A
negative coupling between FPC and right posterior putamen was also found (small-volume
corrected; Table S5). We also looked for areas showing the opposite coupling, i.e. showing
increased coupling when Pyg is high, when behavior should be under model-based control.
We did not find any significant effects in this case, suggesting that the arbitrator may work
predominantly by acting on the model-free system, as opposed to acting directly on the
model-based system. Second, we investigated modulation effects among the value areas by
Pue (Figure 7B; Table S5). We found a strong negative modulation of the coupling between
posterior putamen and vmPFC by Py, (p<0.05 FWE), which strongly supports the
hypothesis that model-free value signals are transmitted to vmPFC in order to be combined
with model-based values as a precursor to generating choices (see Figure S5B for evidence
that areas found in vmPFC in the PPI are specific to the integrated value area). Further, the
strength of these connections appears to be modulated by the arbitrator.
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Effect of Reaction Time

We also tested for reaction time (RT) effects on behavior. When we compare RTs on
“specific-goal trials” to those in “flexible-goal trials” there is indeed an effect of condition
on RTs such that participants are slower on specific trials (where they have to select a
particular goal based on which token is currently valuable) compared to when they do not
(RT specific = 0.93 sec; RT flexible = 0.81 sec; paired t-test; t=5.56; p=1.61e-5).

Furthermore, when we correlate the probability that behavior is under model-based control
(Pmg) against RT we also find a modest albeit significant correlation in the majority of
participants (median correlation coefficient=0.13; correlation coefficient test; p<le-2 for 16
out of 22 participants). This likely reflects the possibility that model-based control is more
effortful cognitively than model-free control.

On account of these RT effects in the behavioral data, an obvious concern is that RT effects
could be confounded with some of the computational variables in our fMRI analysis. In
order to address whether trial-by-trial changes in reaction time (RT) account for the effects
reported in our fMRI data, we included reaction times as a covariate that competed for
experimental variance in an additional fMRI analysis. After doing this, all of our main
findings remain intact (and if anything the p-values improved marginally for our reliability
signals), suggesting that reaction time per se does not explain the fMRI results.

DISCUSSION

We provide evidence for the existence in the human brain of an arbitrator mechanism that
determines the extent to which model-based (goal-directed) and model-free (habitual)
learning systems control behavior. Specifically, this arbitrator keeps track of the degree of
reliability of the two systems and uses this information in order to proportionately allocate
behavioral control.. We found evidence to indicate that computational signals corresponding
to reliability for the two systems are present in a region of inferior lateral prefrontal cortex
bilaterally, as well as a region of right medial frontopolar cortex. In particular, in the inferior
lateral prefrontal cortex, the individual reliability signals for the two systems was present
alongside the maximum reliability (whichever signal out of the two systems was the most
reliable), while in the frontopolar cortex, we found evidence for the maximum reliability out
of the two systems. We further found evidence for a comparison signal reflecting the
difference in reliability between the model-based and model-free signals in a region of
rostral cingulate cortex. In order to further test whether the areas found to encode reliability
are involved in interacting with neural systems involved in encoding value signals within the
two frameworks, we demonstrated that effective connectivity between the arbitrator regions
and regions involved in encoding model-free values in posterior putamen and supplementary
motor cortex was significantly modulated as a function of the degree to which the arbitrator
allocates behavioral control to the model-based system: the more the arbitrator deems
behavior should be controlled by the model-based system, the greater the negative coupling
between the arbitrator regions and regions involved in model-free valuation. Furthermore,
the coupling between areas involved in model-free valuation in the putamen and areas
involved in encoding integrated value signals in the vmPFC was also modulated by the
output of the arbitrator such that the more control is allocated to the model-free system the
greater the coupling between those regions. Taken together, these findings suggest that the
mechanism by which the arbitrator works is to modulate brain regions involved in model-
free valuation, and to modulate the strength of connections between areas encoding model-
free values and regions involved in encoding an integrated value signal for the purpose of
guiding choice.
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Valuation of Model-based and Model-free Learning System

Our task design also permitted us to clearly delineate brain systems involved in model-based
and model-free valuation. Consistent with a number of prior reports we found evidence for
model-based value signals in the ventromedial prefrontal cortex (Hampton et al., 2006;
Wunderlich et al., 2012). The finding of a role for ventromedial prefrontal cortex in model-
based inference is also consistent with evidence from manipulations designed to isolate
brain regions involved in goal-directed control using techniques such as reinforcer
devaluation and contingency manipulations imported directly from the animal literature
(O’Doherty, 2011; Tanaka et al., 2008; Valentin et al., 2007; De Wit et al., 2009). The
additional finding that the vmPFC also contains an integrated signal, incorporating a
weighted sum of model-based and model-free value signals proportional to the degree of
control allocated by the arbitrator, is consistent with the possibility that the vmPFC is
responsible for integrating value signals across the two systems (Beierholm et al., 2011,
Wunderlich et al., 2012). Such an integrated signal would be necessary for guiding unified
choice behavior that reflects inputs from both model-based and model-free controllers.

We also found regions of posterior putamen as well as parts of supplementary motor cortex
to contain model-free value signals. This finding is compatible with a previous report that
value signals in this area were prominent following an over-training manipulation
(Wunderlich et al., 2012), as well as a finding that activity in this area is associated with
increased habitual control as manifested by insensitivity to reinforcer devaluation (Tricomi
et al., 2009). Furthermore a recent DTI study found increased connectivity between the
posterior putamen and premotor cortex in those individuals more susceptible to habitual
control in a slip-of-action task (de Wit et al., 2012). Collectively these findings support a
relatively specific role for posterior parts of the putamen in habit-learning, and further
suggest that the contributions of this region in habit-learning can be well accounted for by a
role for this region in encoding value-signals prescribed by a model-free reinforcement-
learning algorithm.

Computations Involved in Arbitration between Two Learning Systems

The arbitration mechanism implemented in the present study used reliability measures about
the two systems based on the prediction-error signals generated by each model system.
State-prediction errors within the model-based system were found to be located in largely
cortical systems, particularly a fronto-parietal network consistent with a previous report
(Gléscher et al., 2010). To compute reliability estimates within the model-based system we
used a bottom-up Bayesian approach, which generates a probability distribution over the
hypothesis that state-prediction errors are zero. The ratio of the mean prediction (belief
about the hypothesis) and variance of the distribution produced the reliability estimate used
by the arbitrator in inferior prefrontal cortex. The notion that the model-based system uses a
computationally rich Bayesian inference mechanism to generate reliability estimates is
feasible given that this system appears to depend on a large extent of cortex to facilitate its
implementation, including parts of parietal cortex that have previously been hypothesized to
implement neural coding schemes consistent with Bayesian inference (Beck et al., 2008).

On the other hand, reward-prediction errors within the model-free system were found to be
located sub-cortically in the striatum, both ventrally and dorsally, consistent with a large
prior literature (McClure et al., 2003; O’Doherty et al., 2004) implicating these regions in
reward-prediction error coding. Unlike the model-based system, where a Bayesian
mechanism was used to estimate reliability, in the model-free system behavior was best
explained using a simpler reliability estimate that essentially kept track of the average
absolute value of reward-prediction errors accumulated. As in the Bayesian estimator, the
more prediction errors that accumulated in the recent past, the lower the reliability estimate.
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The use of an absolute prediction error signal to keep track of reliability within the model-
free system that can subsequently be used by the arbitrator represents a novel use of an
unsigned prediction error signal, which is typically used to drive the rate of learning or
degree of associability ascribed to a cue (Pearce and Hall, 1980; Roesch et al., 2010).

Arbitration Process Reflected by Functional Connectivity

It is notable that while we find evidence for effective connectivity between the inferior
frontal and frontopolar arbitration regions and areas involved in model-free valuation in the
putamen and supplementary motor cortex, we did not find any evidence for direct
interactions between the arbitrator and regions involved in model-based valuation. These
results imply an asymmetry in how the arbitrator operates: instead of modulating either
model-based or model-free systems depending on which one has the most reliable estimate,
the controller appears to work by selectively gating the model-free system. This could be
consistent with the possibility that perhaps model-free control is in essence default behavior:
unless the model-free controller has especially poor predictions, all else being equal (and
due to reasons of computational efficiency), it is better for behavior to be under model-free
as opposed to model-based control.

One possible interpretation of the present results is that the lateral prefrontal cortex may
exert inhibitory downregulation on the value-signals in the model-free system, although
other interpretations are possible given that PPI analyses cannot permit direct measurement
of “inhibition”. However it is notable that many previous findings have suggested a role for
inferior lateral prefrontal cortex in inhibitory control and task-switching more generally
(Aron et al., 2003, 2004; Garavan et al., 1999; Tanji and Hoshi, 2008). It is likely that in
many previous studies in which activity is reported in these regions during task-switching as
well as pertaining to situations where inhibitory control is required, such tasks are tapping
into interactions between goal-directed and habitual controllers. For instance, in reversal-
learning, the switching of response-selection from a previously rewarded stimulus-response
contingency to a new response likely involves the need to wrest control from a previously
learned S-R habit to a new goal-directed action (Cools et al., 2002; O’Doherty et al., 2003;
Xue et al., 2008). In such previous studies it was not possible to determine precisely what
computations in inferior prefrontal cortex are facilitating such a switch in control (and
inhibition of a pre-potent response set).

The present findings may relate to some findings in the animal literature. In the rodent brain,
infralimbic cortex, a part of the rat prefrontal cortex has previously been implicated in
modulating habitual control (Coutureau and Killcross, 2003; Smith et al., 2012). It is unclear
to what extent the areas identified in the present study in humans relate to that infralimbic
region in the rodent. We did find a region of medial frontal cortex putatively involved in the
comparison of reliabilities between the two systems in the rostral cingulate cortex (which
could be a candidate homologue). However, the type of arbitration found in inferior
prefrontal cortex and frontopolar cortex in the present study appears not to correspond
directly to the functions ascribed to the infralimbic cortex in the rodent brain. Nevertheless,
there is some commonality between the findings of the present study and those rodent
studies in that in both cases we find a key role for prefrontal cortex in mediating the degree
of habitual control expressed over behavior. Intriguingly, a recent studies in rodents
(Burguiére et al., 2013) also appears to support the notion of an inhibitory mechanism
involving parts of lateral prefrontal cortex in the rodent operating on the striatum, which is
potentially related to what we find in our data, although that particular rodent study did not
address the distinction between model-based vs model-free control.
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Control Between Multiple Learning Systems in Lateral Prefrontal and Frontopolar Cortex

Our evidence additionally implicating the frontopolar cortex in the arbitration process is also
compatible with previous proposals that frontopolar cortex sits at the apex of a hierarchical
prefrontal organization for cognitive control (Koechlin and Hyafil, 2007). While we found
that both the frontopolar cortex and inferior prefrontal cortex contained estimates about the
maximum reliability out of the two systems, only the inferior prefrontal cortex contained
individual reliabilities for the two controllers. It is possible that frontopolar cortex and
inferior prefrontal cortex play different roles in implementing the arbitration process, and
given the putative locus of frontopolar cortex at the top of the frontal hierarchy, it is
tempting to speculate that this region might supervise the inhibitory control being
implemented by a subservient inferior prefrontal cortex. However, further work will be
needed to establish whether this is indeed the case.

Our findings implicating frontopolar cortex in reliability competition generalize previous
findings about a role for this region in relative uncertainty processing in rostrolateral
Prefrontal Cortex (Badre et al., 2012) and a role for this region in encoding relative
unchosen action probabilities (Boorman et al., 2009). The computation of our reliability
competition might accommodate both of these findings because the preferred and alternative
strategy should be integrated and because it needs to be done on the basis of the estimation
of the posterior uncertainty.

The inferior lateral and frontopolar areas in which we found reliability signals are also close
to the region of right lateral prefrontal cortex found to process subjective confidence (De
Martino et al., 2013) and the region of lateral anterior prefrontal cortex previously
implicated in metacognitive processes (Baird et al., 2013), respectively. One possibility
emerging from these findings is that anterior lateral and polar prefrontal cortices may serve a
general role in computing estimates about the reliability of different control strategies. This
interpretation might serve to unify a number of findings about the role of lateral and
frontopolar cortices in meta-cognition by suggesting that the activity of this region reflects
the operation of higher-level nodes in a processing hierarchy. Reliability computations about
model-based and model-free control may be only one out of a number of different types of
computation sub-served by these brain areas. It is important to note that it is entirely feasible
that other variables apart from reliability will feed into the arbitration process, such as for
example the time available to render a decision, or the amount of available cognitive
resources at a given point in time. Further work will need to establish how such other
considerations get incorporated into the arbitration process, as well as to determine which
brain regions contribute to those aspects of the arbitration.

The arbitration framework also accounts for both competitive and co-operative effects
between model-based and model-free learning in a broader sense. The arbitration
mechanism undergoes competition on each choice (MB vs MF) while fostering
collaboration during the transition over trials (MB[barb2right]MF or MF[barb2right]MB).
The competition corresponds to the reliability computation, whereas the collaboration
corresponds to the dynamics of arbitration (PMB). Moreover, the dynamics of the arbitration
keeps the result of this competition as the model-choice bias (PMB), which will affect
learning process in subsequent trials. The reward prediction errors that the model-free
system experiences in these trials are the consequence of the choices that are based on the
mixture of the model-based and the model-free value. This interpretation is supported by the
recent study that model-based control can influence model-free learning (Daw et al., 2011;
Staudinger and Biichel, 2013). In future work, it would be valuable to formally test the
framework outlined here in a unified dynamic causal model of the arbitration process
involving the brain areas implicated here on the basis of the computational fMRI and PPI
analyses.
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In summary, the present findings indicate how it is that the brain switches control between
two very different strategies for controlling behavior. These findings open the possibility for
investigating the role of impaired arbitration mechanisms in driving addictive behavior, or
psychiatric disorders involving the over-dominance of habitual control such as OCD (Gillan
et al., 2011), as well as opening avenues to potential novel treatments for such disorders
involving pharmacological or electromagnetic modulation of neural activity in the inferior
lateral or polar prefrontal cortices.

Experimental Procedures

Participants

Stimuli

Task

Twenty two right-handed volunteers (six females, mean age 28; age ranging between 19-40)
participated in the study. They were screened prior to the experiment to exclude those with a
history of neurological or psychiatric illness. All subjects gave informed consent, and the
study was approved by the Institutional Review Board of the California Institute of
Technology.

The image set for the stimuli consisted of 126 fractal images, four kinds of collection box
images (red, yellow, blue, and white), three kinds of color coins (red, yellow, and blue), and
an extra four fractal images to represent outcome states. The colors of the outcome state
image were accompanied by numerical amounts which indicate the amount of money that
subjects could receive in that state. Before the experiment began, the stimulus computer
randomly chose five fractal images that were subsequently used to represent each state, and
the amount of money available in each state (40, 20, or 10 cents USD) was randomly
assigned to each color coin across subjects.

Participants performed a sequential two-choice Markov decision task, in which they need to
make two sequential choices (by pressing “LEFT” or “RIGHT” button) to obtain a monetary
outcome (coin) at the end stage. Making no choice in 4 seconds had a computer make a
random choice to proceed and that trial was marked as a penalizing trial. In each trial,
participants begin at the same starting state. The two choices will be followed by a coin
delivery. The states were intersected by a variable temporal interval drawn from a uniform
distribution between 1 to 4 seconds. The inter-trial interval was also sampled from a uniform
distribution between 1 to 4 seconds. The reward was displayed for 2 seconds. At the
beginning of the experiment, subjects were informed that they need to learn about the states
and corresponding outcomes to collect as many coins as possible and that they will get to
keep the money they cumulatively earned at the end of the experiment. Participants were not
informed about the specific state-transition probabilities used in the task except they were
told that the contingencies might change during the course of the experiment. In the pre-
training session, they were given the opportunity to learn about the task, while they were
free to make any choice. The state-transition probability was fixed at (0.5,0.5) and a white
collection box was presented during this session indicating that any token color would yield
monetary reward (see below). The subjects performed 100 trials in this pre-training session,
which would allow them to spend enough time to learn; we learned from our previous study
that 80 trials would be enough for subjects to learn about the two-choice Markov decision
task (Glascher et al., 2010). The experiment proceeded in five separate scanning sessions of
80 trials each on average.

Our experimental design incorporated two conditions: a specific-goal condition, and an
outcome general condition. In the specific-goal condition participants were presented with a
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specific color collection box (e.g. either red, yellow, blue, or gray) which indicated the color
of the specific token that was valuable on that trial. If the state associated with that token
was reached then participants would gain the specific monetary amount associated with that
token. If on the other hand, a different colored end-state was reached, then no money would
be obtained. The specific goal-state that was valued was changed randomly from trial-to-
trial. Thus participants had to continually consider which goal is currently valuable in order
to make a choice. This condition was designed to favor model-based as opposed to model-
free control. Conversely, in the flexible-goal condition, a white collection box was presented
which indicated that any color of end state could be reached in order to yield monetary
outcomes. While this condition also could involve model-based computations, simulations
demonstrated that after a number of trials, control might transition to the model-free system
(Figure S1C). Hence these two conditions were designed to favor model-based vs model-
free control respectively (Figure S2). To further dissociate the model-based from the model-
free control and to prevent participants from using multiple model-free strategies in the
absence of the model-based control in the specific goal condition, in both conditions
changes to the transition probabilities were implemented. Two types of state-transition
probability were used — (0.9,0.1) and (0.5,0.5). They are the probabilities that the choice is
followed by going into the two consecutive states. For example, if you make a left choice at
state 1 when the state transition probability is (0.9,0.1), then the probability of your next
state being state 2 is 0.9 and the probability for state 3 is 0.1. The order of the block
conditions was randomized. Thus, the conditions are (i) specific-goal, state-transition
probability (0.9,0.1), (ii) specific-goal, state-transition probability (0.5,0.5), (iii) flexible-
goal, state-transition probability (0.9,0.1), and (iv) flexible-goal, state-transition probability
(0.5,0.5). The blocks with the state transition probability (0.9,0.1) consists of three to five
trials, whereas those with (0.5,0.5) consists of five to seven trials due to the difficulty in
learning under high uncertainty. When determining the minimum length of trials and the
state-transition probability values, we ensured that the estimation process of the state-
transition probability of the model-based learner does not break down; also, the two
transition probabilities are distinctive enough that with (0.9,0.1) participants feel that the
state transition is congruent with the choice, whereas with (0.5,0.5) the state transition is
random. At the beginning of each trial participants can immediately recognize the specific/
flexible goal condition by seeing the color of the collection box, but they performed the task
without knowing the state-transition probability.

While the changes in the transition probabilities are rapid, they are designed to induce
perturbations in the predictions about state-transition probabilities, which in turn affect
changes in the allocation of model-based and model-free control. We do not expect
participants to fully learn these different transition probabilities in the small number of trials
before a shift occurs: all that matters is that a change in the reliability of the predictions
occurs following such changes. The changes occur at these rates in order to ensure that
tonically varying changes in model-based vs model-free control (i.e. Pyyg in our model) can
be detected at experimental frequencies appropriate for fMRI data. Slower-varying changes
in transition probabilities might have produced changes in control at frequencies aliased
with the well-known characteristics of low-frequency noise inherent in fMRI data.

Computational model of arbitration

First, in order to capture model-free learning we used a model-free SARSA learner (MF), a
variant of a classical reinforcement learning model (Sutton and Barto, 1998) (the first row of
Figure 2). We also implemented a model-based learner (MB), which is equipped with
FORWARD learning (following our previous study (Glascher et al., 2010) and
BACKWARD planning (the first row of Figure 2). Second, we implemented a simple
hierarchical empirical Bayes approach to compute the reliability of a learning strategy given
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the history of the prediction error (PE) (the second row of Figure 2). PE refers to SPE for the
case of MB and RPE for the case of MF. Implemented was then a push-pull mechanism to
govern how the reliability-based competition between MB and MF mediates value
computation (the third row of Figure 2). Finally, the arbitration model selects actions
stochastically according to the following softmax function (Gléscher et al., 2010; Luce,
1959) (the fourth row of Figure 2). Full details of the model description, parameter
estimation, and model comparison are provided in Supplemental Methods.

fMRI data acquisition

Functional imaging was performed on a 3T Siemens (Erlangen, Germany) Trio scanner
located at the Caltech Brain Imaging Center (Pasadena, CA) with a 32 channel radio
frequency coil for all the MR scanning sessions. To reduce the possibility of head movement
related artifact, participants’ heads were securely positioned with foam position pillows.
High resolution structural images were collected using a standard MPRAGE pulse sequence,
providing full brain coverage at a resolution of 1 mm x 1 mm x 1 mm. Functional images
were collected at an angle of 30° from the anterior commissure-posterior commissure (AC-
PC) axis, which reduced signal dropout in the orbitofrontal cortex. Forty-five slices were
acquired at a resolution of 3 mm x 3 mm x 3 mm, providing whole-brain coverage. A one-
shot echo-planar imaging (EPI) pulse sequence was used (TR = 2800 ms, TE = 30 ms, FOV
=100 mm, flip angle = 80°).

fMRI data analysis

Whole brain

The SPM8 software package was used to analyze the fMRI data (Wellcome Department of
Imaging Neuroscience, Institute of Neurology, London, UK). The first four volumes of
images were discarded to avoid T1 equilibrium effects. Slice-timing correction was applied
to the functional images to adjust for the fact that different slices within each image were
acquired at slightly different points in time. Images were corrected for participant motion,
spatially transformed to match a standard echo-planar imaging template brain, and s
moothed using a 3D Gaussian kernel (6 mm FWHM) to account for anatomical differences
between participants. This set of data was then analyzed statistically. A high-pass filter with
a cutoff at 129 seconds was used. Full details of the GLM design are provided in
Supplemental Methods.

analyses

Essentially all of the findings we report survive after the whole-brain correction for multiple
comparison at the cluster level (p<0.05 corrected), except for the value signals, some of
which are reported using a well-motivated SVC correction. Full details are provided in
Supplemental Methods.

To avoid nonindependence bias in plotting parameter estimates of the reliability, we ran
leave-one-subject-out GLM analysis (Esterman et al., 2010). Specifically, we ran 22 general
linear models (GLM) with one subject left out in each, and each GLM defines the voxel
cluster for the subject left out. The percent signal change (rfxplot toolbox: http://
rfxplot.sourceforge.net/), illustrating how much the evoked BOLD response deviates from
its voxel-wise baseline, was then computed across 22 subjects.

To formally test which version of the reliability computation provides the best account of
responses in inferior lateral prefrontal cortex, we ran a Bayesian model selection(Stephan et
al., 2009) on three models. We chose three models - mixedArb-dynamics and dual BayesArb-
dynamics which showed the best and the second best performance in terms of the trade-off
between model fit and model complexity for the behavioral data, respectively, and for
comparison with an arbitration scheme proposed in prior literature we tested Daw’s version
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of reliability computation (UncBayesArb; (Daw et al., 2005)) in which the computation of
reliability is based on the uncertainty in the state-action value.

Post hoc PPI analysis

To test whether there is a functional coupling between the areas associated with value
signals and the area serving as a value comparator during choices, we performed a
psychophysiological interaction (PPI) analysis (Friston et al., 1997) with the probability of
choosing the model-based learning strategy (Pmg) being a parametric psychological factor.
We used the first eigenvariate of BOLD signals from the left and the right inferior lateral
prefrontal cortex extracted from a 5mm sphere centered at (—54,38,3) and (48,35,-2),
respectively, areas identified as correlating with model-based and model-free reliability.
Because we found significant negatively correlating PPIs using the reliability areas as our
seed regions and Pyg as the psychological variable with brain regions shown to be
correlated with model-free but not model-based valuation, we next performed additional PPI
analyses using areas involved in encoding model-free values as our seeds: supplementary
motor area (—9,8,55), and posterior putamen (-27,-4,1) (all 5mm spheres). In each of these
analyses we formed an interaction term, which is the first eigenvariate of the BOLD signal
multiplied by the parametric psychological variable - the model-choice probability (Ppg)-
To avoid identifying regions in which most of the variance is accounted for by main effects,
as opposed to being accounted by interaction effect, we included the psychological and
physiological term from which we derived the interaction term in the GLM as covariates of
no interest, followed by the interaction term as a regressor of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Task design. (A) Sequential two-choice Markov decision task. Participants move from one
state to the other with a certain state-transition probability p following a binary choice (left
or right) (B) Hlustration of the specific goal condition, in which the color of the collecting
box (either yellow, blue, or red) should match the color of the coin, and the flexible
condition, in which participants are allowed to collect any kind of coin. The high uncertainty
condition corresponds to p=(0.5,0.5) and the low uncertainty condition corresponds to
p=(0.9,0.1). (C) Hlustration of the task. The specific goal block requires participants to rely
on a model-based strategy for guiding choices in each state, while, in the flexible goal block,
an initial model-based strategy during early experience can give way to a model-free
strategy after extensive experience.

See also Figure S2.

Neuron. Author manuscript; available in PMC 2015 February 05.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Leeetal.

Page 19

Model-based(MB) State/Reward Prediction Error Model-free(MF)

Reinforcement state-action vejlue st:ate-action value
learning me(sv a)% SPE RPE —fﬁQMF(& a)
Reliabilit v ———————————————— V ---------

Tetabiity E Reliability of MB/MF

estimation : .

P

PR

0 i

! i
'

'

i

Reliabilit
competition = s

v

Integrated M v
value computation Q(s,a) = pypQup(5,0) + (1 — pyp)Cyr(s,0)

Figure2.

Computational hypothesis to account for arbitration between model-based and model-free
learning strategies. The Bayesian model computes reliability using the state-prediction error
used to update state-action values of the model-based learning system and a Pearce-hall type
associability model computes reliability using the reward-prediction error used for the
update of the state-action value of the model-free. The computed reliability functions as a
transition rate for the two-state transition model, in which each state represents the
probability of choosing the model-based learning strategy (Ppg) and the model-free (1-
PmB), respectively. The state-action value regulating the actual choice behavior is given by
the weighted average of values from the two reinforcement learning systems.

See also Figure S1 and Table S1.
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Figure 3.

Behavioral Results. (A) Performance of the subjects in the form of the mean total reward
accrued, the reward rate, and the proportion of optimal choices. The left bar graph shows the
average of reward value received in each trial, averaged over all subjects. The middle bar
graph shows the reward rate, the proportion of trials the rewarding goal is reached. The right
bar graph shows the optimal choices, defined by the ideal agent’s behavior in each condition
(Figure S2A). The bold line in the bars refers to the baseline given by the random agent
making choices. The green color code corresponds to the low state-transition uncertainty
condition, and the yellow corresponds to the high uncertainty condition. Error bars = SEM
across subjects. (B) Performance of the arbitrator in capturing variation in subjects’ choice
behavior,to demonstrate that the model is performing well in predicting subjects’ choices.
The model predicted probability of choosing the right action has been split into five equal
sized bins. The proportion of subjects’ right choices increases with the model’s action
probability. Error bars are SEM. (C) Performance of the arbitrator in capturing variation in
model-based and model-free choice strategies on the consistency of participants’ choice
behavior on a trial-by-trial basis plotted separately for situations where the arbitrator favors
model based control (PMB>0.5), compared to when the arbitrator favors model-free control
(PMB<0.5). The choice consistency is the proportion of changes of choices from trial to trial
in each state. Choice consistency is significantly higher when the arbitrator predicts
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predominantly model-free control compared to when it predicts predominantly model-based
control. On the other hand, simply plotting the choice consistency as a function of the
experimental conditions: specific vs flexible goal is not sufficient to reveal robust
differences on this behavioral measure. Results are plotted separately for two different states
in the task (State 1 and 4 = the state at layer 1 and 2 of the task, respectively. States 2, 3, and
5 are rarely sampled by participants, because they lead to relatively low valued outcomes
and hence are not plotted here as there are insufficient samples to enable meaningful
performance plots to be extracted. Error bars are SEM. (D) Results from a log-likelihood
test comparing the degree to which model-based vs model-free reinforcement-learning
accounts best for participants’ choices, plotted separately for the (i) situations in which
model-based control (P\g>0.5) and (ii) situations in which the arbitrator favors model-free
control (Ppmg<0.5). The model-based and the model-free were fitted independently to
prevent circularity. Test statistics of likelihood-ratio test refers to log-likelihood value of the
model-based minus the model-free. The more negative the ratio, the more the model-free
system accounts better for behavior, while the more positive the ratio the more the model-
based system accounts better for behavior. As can be seen, in the strategic goal-condition the
ratio test favors the model-free system (significant at p<le-4), while in the flexible goal-
condition the ratio test favors the model-based system (significant at p<le-11).These
findings thereby validate the task manipulations by showing that the task can successfully
manipulate control to be governed predominantly by either the model-based or model-free
system. Error bars are SEM.

See also Table S2.
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Figure4.

Neural correlates of reliability-based arbitration. (A) (Top) Bilateral Inferior lateral
prefrontal cortex encodes reliability signals for the model-based (Relyg) and the model-free
(Relyp) systems individually. The two reliabilities are, by and large, not highly correlated
(mean:—0.26, standard deviation: 0.106), suggesting that our task successfully dissociates
the model-based from the model-free. Effects significant at p<0.05 (FWE corrected) are
shown in yellow. (Bottom) A region of rostral anterior cingulate cortex (rACC) was found to
encode the difference in reliability between the model-based and model-free systems
(Relyg-Relpg), while an area of bilateral ilPFC and right FPC was correlated with the
reliability of whichever system had the highest reliability index on each trial (max(Relyg,
Relpie)). (B) The mean percent signal change for a parametric modulator encoding a max
and difference reliability signal in lateral prefrontal cortex (IPFC) and rostral anterior
cingulate cortex (rACC). The signal has been split into two equal sized bins according to the
50t and 100 percentile. The error bars are S.E.M. across subjects.

See also Figure S3 and Table S3.
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Results of a model comparison process on BOLD correlates of the arbitration process. For
this we implemented a Bayesian model selection analysis, and illustrate voxels for which the

exceedance probability is 0.9 in favor of a given model. UncBayesArb refers to the
uncertainty-based arbitration used by Daw et al. (2005), dualBayesArb refers to the

dual BayesArb-dynamic model, and mixedArb refers to the mixedArb-dynamic model. The
colored blobs refer to the voxels in which exceedance proabability>0.9, indicating that the
corresponding model provides a significantly better account for the neural activity in that

region.
See also Figure S4.
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Figure6.

Neural correlates of model-based and model-free value signals. Qpg refers to the chosen
value of the model-based system, Qur the chosen value of the model-free, the areas
corresponding to Qvgjmr respond to chosen values commonly for both systems. Qary refers
to the encoding of the chosen minus un-chosen value signals, in which the value signals are
a weighted combination of model-based and model-free values determined by the output of
the arbitrator (Ppg)-

See also Figure S5 and Table S4.
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Figure?7.

Neural correlates of value integration. (A) Connectivity analyses between reliability regions
in inferior lateral prefrontal cortex and model-free value areas. The shaded circles represent
seed regions from which physiological signals were extracted, and colored blobs show the
psychophysiological interaction effect. Shown are significant negative correlations between
activity in the left inferior lateral prefrontal cortex and a region of posterior putamen
modulated by Pyg (in orange), of the right inferior lateral prefrontal cortex and the bilateral
anterior putamen modulated by Pyg (in green), and also of the right FPC prefrontal cortex
and the right posterior putamen modulated by Pyg (in purple). (B) Connectivity analyses
between model-value areas and vmPFC area involved in encoding integrated value signal.
Shown in cyan color is the negative modulation of posterior putamen activity on
ventromedial prefrontal cortex activity by Pyg. All images are shown thresholded at
p<0.001 for display purposes.

See also Figure S5 and Table S5.
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