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Cardiovascular diseases are the leading causes of death in men and women in industrialized countries. While the effects of
biological sex on cardiovascular pathophysiology have long been known, the sex-specific mechanisms mediating these
processes have been further elucidated over recent years. This review aims at analysing the sex-based differences in cardiac
structure and function in adult mammals, and the sex-based differences in the main molecular mechanisms involved in the
response of the heart to pathological situations. It emerged from this review that the sex-based difference is a variable that
should be dealt with, not only in basic science or clinical research, but also with regards to therapeutic approaches.
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Introduction
Cardiovascular diseases (CVDs) are the leading cause of death
in men and women in industrialized countries. Over the last
decade, while little change was noticed on the sex ratio of
cohorts in the majority of CVD studies (Mosca et al., 2011),
several clinical trials provided evidence that sex is an impor-
tant determinant of cardiovascular events in patients with
vascular diseases or high-risk diabetes mellitus. Indeed,
female diabetic patients had a higher risk for acute myocar-
dial infarction compared to male diabetics (Kappert et al.,
2012). Women also exhibited a marked increase in the inci-
dence of left ventricular (LV) hypertrophy after the meno-
pause, when the prevalence of arterial hypertension increases
(Lopez-Ruiz et al., 2008). Furthermore, women generally
display better cardiac function and survival in the face of
CVD than men, although this advantage is lost when com-
paring postmenopausal women with age-matched men
(Fujimoto et al., 2013).

The effects of biological sex on cardiovascular physiol-
ogy or pathology have long been known, but the biological
mechanisms responsible for sex-related differences started to

be unravelled over the last decades. Indeed, sex steroid hor-
mones (oestrogens in female, testosterone in male) contrib-
ute significantly to the sex-based differences in the outcome
of cardiac diseases, although the contribution of environ-
mental oestrogen-like molecules, such as phytoestrogens,
must not be neglected. Thus, hormonal therapy such as
the hormone replacement therapy (HRT) after menopause
using synthetic oestrogens and progesterone, while broadly
debated, may help to understand the effects of oestrogen in
cardiac pathophysiology. In addition, some elucidation of
the interrelation between the sex steroid hormones and
peptides and/or hormones directly involved in the cardiac
physiopathology such as the components of the renin
angiotensin-aldosterone system, and the natriuretic peptides
(NPs) will be provided. At least, as adequate exercise and
nutrition programmes were shown to improve the preven-
tion and the treatment of CVD and metabolic disorders
(Hagey and Warren, 2008), these lifestyle patterns are begin-
ning to be taken into account in the treatment of post-
menopausal women. The collection of such data will be of
interest to analyse the relation between exercise, sex and
CVD.
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This review aimed at focusing on the effects of sexual
hormones on the pathophysiology of the heart. The effect of
adjuvant therapy such as hormonal replacement therapy and
physical training on the cardiac adaptive response to patho-
logical situations will also be discussed.

Sex-based differences in the adult
heart in mammals

Sex-based differences in cardiomyocytes
With age, the number of cardiomyocytes significantly
decreases in men through different processes including apo-
ptosis and necrosis, whereas cardiomyocyte number and size
are preserved in age-matched women (Swynghedauw, 1999;
Kajstura et al., 2010). At the cardiomyocyte level, various
biochemical characteristics such as telomerase activity vary
differently in male and female across the lifespan. Telomerase
is an enzyme that repairs the telomeric repeat DNA lost
during the cell cycle, thus restoring telomere length. Tel-
omere maintenance is one mechanism through which cell
viability is preserved, and telomere shortening occurs at the
end stage of heart failure in humans (Oh et al., 2003). Telom-
erase activity is detectable in the cardiomyocytes of young
adults and decreases with aging in males, whereas it markedly
increases in females. These data emphasize a gender differ-
ence in the cardiomyocyte viability and replication (Leri
et al., 2000; Torella et al., 2004; Kajstura et al., 2010). The
enhanced telomerase activity in female cardiomyocytes pro-
vides a molecular basis for the preservation of cardiomyocyte
population in women throughout their lifespan. Besides, oes-
trogen signalling prevents cardiac muscle mass loss through
autophagy, in a context of cancer, resulting in lower cardiac
atrophy in females than in males (Cosper and Leinwand,
2011). Altogether, these data suggest that oestrogens may be
responsible for such differences in cardiomyocyte replication
capacity/viability and may explain the greater ability of the
female heart to resist the deleterious consequences associated
with the aging process and/or the development of heart
failure.

At the subcellular level of the cardiomyocyte, sex differ-
ences in excitation-contraction (E-C) coupling have been
reported in adult rats. Ca2+ transients are smaller and the gain
of E-C coupling is lower in the female cardiomyocytes than
in the males. In addition, the aging-induced alterations of
cardiac E-C coupling are more prominent in male, than in
female hearts (Howlett, 2010). The sex-based differences in
intracellular calcium handling also involved the phosphor-
ylation state of phospholamban, L-type Ca2+ channel density
and the K+ currents. In mouse ventricle, Saito et al. (2009)
proposed a gender-related differences in K+ currents during
ventricular repolarization, when examining fast transient
outward K+ current (Ito,f) and ultrarapid delayed rectifier K+

current (IK,slow). They observed that under conditions where
oestrogen levels were high, the induced K+ current was
reduced following a down-regulation of the Kv4.3 and Kv1.5
channels carrying the Ito,f and IK,slow respectively (channel
and receptor nomenclature follows Alexander et al., 2013).
These changes provided a molecular correlation for the pro-
longation of the action potential duration and the corrected

QT interval in female mice under conditions of high oestro-
gens. These findings suggest that knowledge of the hormonal
status is important to set the appropriate timing of the treat-
ment in women prone to arrhythmias (Saito et al., 2009). In
addition, female cardiomyocytes have a lower density of
β-adrenoceptors and thus also a decreased inotropic response
to stimulation of these receptors (Ostadal et al., 2009).

Other sex-based differences are found at the level of mito-
chondria in the cardiomyocytes. The rate of Ca2+uptake by
cardiac mitochondria is lower in females than in males (see
Ostadal et al., 2009). In addition, female rats exhibit lower
cardiac mitochondria contents, their lower number being
compensated by a higher efficiency (Colom et al., 2007).
Therefore, the mitochondria from female hearts generate less
free radicals, hence leading to lower cardiac oxidative damage
in these animals. Such mitochondrial properties might be
involved in the lower incidence of aging-related disorders
and/or cardiac disease in women than in men.

Sex-based differences in the vascular cells of
the coronary network
Another major cellular target for the sex-based differences in
the CVDs is the endothelial cell, mainly through the modu-
lation of the endogenous vasodilator NO by the endothelial
NOS (NOS3). The oestrogens via the oestrogen receptors
(ER)-α play a key role in the control of NOS3 activity
(Mendelsohn and Karas, 1999; Chambliss and Shaul, 2002;
Fleming and Busse, 2003). The microdomains, such as cave-
olae, are involved in the fine-tuned regulation of oestrogen-
dependent NOS3 activity (Fleming and Busse, 2003; Loyer
et al., 2007a).

Sex differences have been also observed at the level of
the vascular smooth muscle cell (VSMC) and affect the cell
death and growth in vivo and in vitro. A ‘gender memory’ can
be conserved in VMSC in primary culture (Straface et al.,
2009) and sex-based inhibition of VMSC proliferation by
endothelin-1 (ET-1) was proposed to contribute, in part, to
the cardioprotection noted in oestrogen-repleted states
(Antoniucci et al., 2001). Female VSMCs exhibit a resistance
to anoikis, showing a more adhering phenotype that is char-
acterized by a well-organized actin microfilament cytoskel-
eton and an increased level of phosphorylated kinases
involved in focal adhesion, and more importantly, a higher
propensity to undergo survival by autophagy (Straface et al.,
2009). The regulating effects of oestrogens on artery myo-
genic tone appear to involve regulation of calcium-activated
potassium (BKCa) channels (Geary et al., 1998; Rosenfeld et al.,
2000). BKCa channel expression and activity depend on a
cohort of hormones and factors including those of the renin-
angiotensin aldosterone system. Hence a down-regulation of
BKCa channels in VSMC (Ambroisine et al., 2007), is present
only in males in presence of a cardiac hyperaldosteronism
(Garnier et al., 2004); the oestrogen levels in female counter-
acting the aldosterone effect on BKCa channel expression (C.
Delcayre, pers. comm.).

Sex-based differences in the
inflammatory cells and fibroblasts in
cardiac pathophysiology
Inflammatory cells, mast cells and cardiac fibroblasts are
known to have a detrimental role during cardiac disease and
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these cell types might also be modulated by sex hormones.
For example, oestrogens appeared to protect against the sig-
nificant increases in mast cell density, collagen degradation,
ET-1 and TNF-α, induced by volume overload (Lu et al.,
2012). The gender effects on the cardiac fibroblast, one of the
key cells involved in the development of fibrosis, have been
investigated recently (Montalvo et al., 2012). By combining,
gender analysis together with the effect of castration, it was
demonstrated that circulating sex hormones contributed to
the male sex-related increase in fibrosis and subsequent LV
dysfunction after thoracic aorta constriction (TAC) through a
mechanism involving TGF-β (Montalvo et al., 2012). Based
on these results, it was proposed that upon aging, the detri-
mental effects of the circulating androgens in males, rather
than the protective actions of oestrogens in females, contrib-
uted to sex-related differences in myocardial remodelling.

Thus, oestrogens may trigger some of the major sex-based
differences observed in cardiac pathophysiology, through
unique effects in the different cell types present in the heart
(Figure 1).

Sex hormones and receptors, effect on
target organs

The sex-specific effects in the CVDs are mediated by the
oestrogen, progesterone and androgen receptors (ERs, PRs

and ARs respectively). The two known ERs, ERα and ERβ
(ESR1 and ESR2), have been described in the human and
rodent hearts, (see Fielitz et al., 2007). All three receptor
types, ERs, ARs and PRs, act by a number of genomic and
non-genomic pathways. They act as transcription factors able
to initiate the transcription of hormone-sensitive genes or to
modulate the activity of other transcription factors. On
binding the corresponding hormones, the ER, AR and PR can
activate or interfere with many signalling pathways, includ-
ing that of PI3K. Furthermore, an orphan GPCR, GPR30, has
been proposed to mediate rapid actions of oestrogens
(Revankar et al., 2005), and was recently suggested to be a
candidate receptor for non-genomic action of aldosterone in
VSMC (see Wendler et al., 2012). Signalling after activation of
GPR30 may involve the stimulation of the adenyl cyclase and
cAMP-dependent pathways.

Both ERs are expressed both in male and female myocar-
dium. Apart from the production of oestrogens by the ovary,
it has been suggested that both men and women synthesize
oestrogens locally through the conversion of androgen to
oestrogens by aromatase, particularly in adipose tissue (see
Regitz-Zagrosek et al., 2013). The increased oestrogen levels in
older or obese men have been proposed to increase the risk
for the development or the progression of CVD (Kararigas
et al., 2012). These elevated oestrogen levels in men are sug-
gested to be responsible for the age-related changes in cardiac
gene expression (see below). However, Banka (2012) pointed

Figure 1
Summary of the effects of oestrogens, according to the cell types in the heart, which can be involved in cardioprotection induced by oestrogens.
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out that longitudinal studies revealed a significant age-
dependent decrease in estradiol bioavailability in men,
whereas there was a high increase in estradiol levels associ-
ated with obesity. This adipose tissue-dependent increase in
estradiol synthesis in men may account in part, for the
increased risk of CVD associated with obesity and with the
increase in cardiovascular events observed in a study on men
treated for prostate cancer with high dose of diethylstilbestrol
(Ferrini and Barrett-Connor, 1998) or of polyestradiol phos-
phate (Hedlund et al., 2008).

Hence, the oestrogen actions differ between male and
female with direct sex- and cardiomyocyte-specific effects in
the heart (Kararigas et al., 2012). The relative importance of
ERα versus ERβ has not been addressed in normotensive
models. However, genetic models of ERβ-deleted mice (ERβ-/-)
showed that ERβ has a cardioprotective role in females, while
having minor effects on fibrotic remodelling in heart of the
ERβ-/- male (Regitz-Zagrosek et al., 2013). As described above,
the stimulation of the ERα and ERβ by oestrogens activate
kinases involved in different signalling pathways such as Akt,
PI3K, ERK 1/2, the p38 MAPK, and regulate calcineurin
expression (see Sussman et al., 2011; Figure 2). Sussman et al.
(2011) have clearly established sex differences in the basal
levels of Akt, and demonstrated a nuclear accumulation of
Akt in response to estradiol or a phytoestrogen treatment.
The activation of Akt by oestrogen is known to influence
events such as cell metabolism, cell cycle and cell survival.
Studies from Sussman’s group have also highlighted the role
of the PI3K/Akt signalling cascade in the cardioprotective

effects mediated by oestrogens and oestrogenic treatment. In
addition, many cardioprotective genes such as the heat shock
protein (Hsp) 72 or Hsp70 are up-regulated either directly or
indirectly by oestrogens (Bhupathy et al., 2010).

Numerous results indicate that oestrogens have favour-
able metabolic effects. Oestrogen deficiency increased heart
and muscle lipid content and the atherogenic index (Picard
et al., 2000; Torto et al., 2006) and was associated with meta-
bolic disorders such as insulin resistance and altered glucose
metabolism (Champion et al., 2004; Bouwens and Rooman,
2005; Song et al., 2005; Sitnick et al., 2006).

Sex-based differences and
neurohormonal disorders in CVD

An increasing body of evidence demonstrates sex differences
in the renin-angiotensin-aldosterone system (RAAS), and
their involvement in the development and progression of
CVD and hypertension (see Bubb et al., 2012). The greater
activation of the RAAS leading to greater BP levels in males
may be attributed in part to androgens, as castration leads to
a normalization of BP and a down-regulation of the intra-
renal RAAS. In addition, oestrogens have been shown to
down-regulate the expression and activity of various compo-
nents of the RAAS, potentially explaining the lower BP levels
observed in females compared to males (see Maric-Bilkan and
Manigrasso, 2012). Oestrogens decreased renin levels, ACE

Figure 2
Molecular mechanisms of oestrogen action in cardiac cells, such as endothelial cells. Oestrogens can bind and activate the ERs, thereby inducing
intracellular signalling cascades. Additionally, oestrogens influence other signalling pathways in the heart: oestrogens activate (i) the PI3K/Akt
pathway, (ii) the Gq-coupled receptors, which results in the production of inositol trisphosphate (IP3) and the subsequent triggering of intracellular
Ca2+ release and NO production, and (iii) the PKC/MAPK signal transduction pathways. All these signalling pathways are triggered at the level of
the plasma membrane and activate intracellular cascades that converge to cytosolic targets and transcription factors and cofactors modulating
gene expression. Finally, oestrogens can bind to mitochondria-specific receptors, through an increase in nuclear transcription of the nuclear
respiratory factors (NRFs). MEK, mitogen-activated extracellular signal-regulated protein kinase; RAF, rapidly accelerated fibrosarcoma; ROS,
reactive oxygen species.

BJP L Fazal et al.

558 British Journal of Pharmacology (2014) 171 555–566



activity, angiotensin AT1 receptor density and aldosterone
production (Bubb et al., 2012). Besides, oestrogens increase
the expression of NPs, AT2 receptor density and angiotensin-
(1–7) (Baiardi et al., 2005; Bubb et al., 2012; Gupte et al., 2012;
Maric-Bilkan and Manigrasso, 2012). The sex difference in the
RAAS may also involve the GPR30 receptor, which has been
proposed to trigger the non-genomic effects of oestrogens
and aldosterone. Progesterone competes with aldosterone for
the mineralocorticoid receptor. Little is known about andro-
gens, but testosterone seems to increase renin levels and ACE
activity (Komukai et al., 2010). These effects of sex hormones
on the RAAS can explain some of the sex differences in CVDs.

We previously described that cardiac hyperaldosteronism
induced coronary artery defects in a sex-specific fashion
(Garnier et al., 2004). More recently, our data suggested that
oestrogen may counteract the effect of hyperaldosteronism
on the BKCa channel-mediated coronary relaxation in normo-
tensive animals (Azibani et al., 2013). In male mice, cardiac
hyperaldosteronism was shown to worsen hypertension-
induced fibrosis through two mineralocorticoid receptor-
dependent mechanisms: the activation of inflammation/
galectin-3-induced fibrosis and the inhibition of anti-fibrotic
factor expression (NPs and bone morphogenetic protein-4;
Azibani et al., 2012). As proposed by Regitz-Zagrosek et al.,
2013, these features of adverse remodelling strongly sug-
gested a role for ERβ in males. This suggestion was supported
by the fact that in deoxycorticosterone acetate (DOCA)-salt
mice, a model for low-renin salt-sensitive hypertension
similar to aldosterone, a higher increase in cardiomyocyte
diameter, pro-inflammatory and pro-fibrosis transcripts was
observed in male when compared to female. In addition,
female DOCA mice did not exhibit any signs of heart failure
(Regitz-Zagrosek et al., 2013). Interestingly, in diabetic
animals, aldosterone plasma levels were shown to be
increased in males, but not in females (Shimoni et al., 2008).
The sex-dependent elevation of aldosterone in plasma and in
cardiac cells was proposed to contribute to oxidative stress in
this metabolic disorder (Shimoni et al., 2008).

Finally, the association of NPs, such as BNP and ANP, with
gender has been examined in several studies. Despite dispar-
ity among results, higher BNP plasma levels were observed in
females than in males. In basal conditions, NT-proBNP
plasma levels, like those of BNP, tend to be higher in female
patients and older individuals, through mechanisms involv-
ing either the clearance receptor for BNP or an increased NP
expression (Redfield et al., 2002; Costello-Boerrigter et al.,
2006). However, a population-based study indicated that in
women, LV mass and NP concentrations increased to a lesser
extent when compared to men and only upon severe LV
dysfunction (Luchner et al., 2002). Regarding postmenopau-
sal women, HRT has been associated with higher BNP levels
(Redfield et al., 2002). In line with these findings, oestrogens
exert anti-hypertrophic effects on cardiomyocytes in vitro,
through the transactivation of the ANP gene (Horio et al.,
2000; Babiker et al., 2004), hence preventing cardiomyocyte
hypertrophy (Horio et al., 2000). Taken together, it seems that
tight regulation of NP expression is of importance for the
sex-based differences involved in the development of cardiac
hypertrophy.

From a pharmacological standpoint, the differences
observed between males and females affected by neurohor-

monal disorders suggest that the potency of a number of
cardiovascular drugs may vary with sex. A greater benefit for
women or female animals was suggested by some studies for
the aldosterone antagonist eplerenone (Kanashiro-Takeuchi
et al., 2009). Pharmacokinetic studies using eplerenone indi-
cate that male rats metabolized the drug better than female
rats due to an increased expression of cytochrome P-450
enzymes (Cook et al., 2003). In addition, enhanced adrener-
gic responses have been described in females, in which direct
sex hormone-dependent mechanisms may be involved.
Indeed, women appear to have fewer α-adrenoceptors,
resulting in a lower α-adrenoceptor response to noradrena-
line, and an increased β-adrenoceptor sensitivity. The
oestrogen-enhanced, β-adrenoceptor-mediated response par-
tially involved NO mechanisms (Grossini et al., 2008). Along
these lines, the ability of the β-adrenoceptors to offset
noradrenaline-mediated vasoconstriction that is seen in
younger women disappears in postmenopausal women (Hart
et al., 2012). Altogether, these data highlight that efforts are
still needed to take into account the sex of the patient when
prescribing cardiovascular medication; efforts that should be
undertaken from the initial pharmacokinetic and pharmaco-
dynamic studies.

Effects of sex-based differences
in the cardiac adaptability to
haemodynamic overloads

Sex-based differences in the cardiac
adaptability to pressure overload
Pathological cardiac hypertrophy (PCH) per se is an independ-
ent risk factor for heart failure (see Swynghedauw, 1999) and
is frequently secondary to a mechanical pressure overload,
due to arterial hypertension or aortic stenosis. The sex differ-
ence in the myocardial ability to adapt to mechanical over-
load has long been described (Douglas et al., 1995; 1998), but
received recently an increased interest (Loyer et al., 2007a,b;
Regitz-Zagrosek et al., 2007; Luczak and Leinwand, 2009;
Ostadal et al., 2009; Bhupathy et al., 2010; Petrov et al., 2010).
More interestingly, there are significant differences in the way
male and female hearts respond to various challenges. In
rodents, pressure overload increases left ventricular mass to
the same extent in males and females, but cardiac function is
better preserved in females (Weinberg et al., 1999; 2003;
Loyer et al., 2007b). It is well known that premenopausal
women have a better prognosis than men in response to
hypertension and to aortic stenosis (Legget et al., 1996).
Based on clinical trials, heart failure with normal ejection
fraction is much more common in women than in men and
was related to sex-based differences in ventricular diastolic
distensibility, in vascular stiffness and ventricular/vascular
coupling and in skeletal muscle adaptation to heart failure
(Regitz-Zagrosek et al., 2007). When focusing on patients suf-
fering from aortic stenosis (see Luczak and Leinwand, 2009),
women, and specially the elderly, develop a more concentric
form of hypertrophy than men. Interestingly, when analys-
ing the regression of hypertrophy after aortic valve replace-
ment, LV hypertrophy reversed more frequently in women
than in men (Petrov et al., 2010). Furthermore, women with
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congestive heart failure survive better than men (Luczak and
Leinwand, 2009), although recent epidemiological studies
failed to demonstrate sex differences in death rate (Laribi
et al., 2012).

Experimental studies exposed sex-based differences in the
development of PCH. Recently, Bubb et al. (2012) have high-
lighted the role of sex hormones in a genetic model of essen-
tial hypertension, the SHR. In response to mechanical triggers
such as at the onset of a pressure overload secondary to a
TAC, female rats developed more cardiac hypertrophy than
male (Douglas et al., 1998; Loyer et al., 2007b) and did not
exhibit any signs of acute heart failure (Loyer et al., 2007b). In
mice, similar sex-based differences were observed at later
stages of cardiac hypertrophy (Witt et al., 2008). Such sex
differences in the adaptation of hearts to pressure overload
draw attention to the underlying mechanistic pathways and
induced gene expression profiles. Indeed, the sex-based dif-
ferences in remodelling of the whole heart are mirrored by
the differences in signalling pathways or gene expression
profiles. These sex-based differences in cardiac response to
TAC included a higher β-myosin heavy chain expression,
lower levels of mRNA for the sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA) and lower expression of several genes
controlling mitochondrial function, including the transcrip-
tion factor PGC-1α, in males displaying hypertrophied hearts
than in females. These transcriptional changes were associ-
ated with a preserved contractile reserve in females with
hypertrophied hearts (Weinberg et al., 1999; Witt et al.,
2008).

Oestrogens can prevent PCH development indirectly by
counteracting hypertension, through the direct triggering of
ANP release (van Eickels et al., 2001; Jankowski et al., 2001;
Zhu et al., 2002), by blocking the p38 MAPK phosphoryla-
tion (van Eickels et al., 2001) and by preventing Ca2+ deregu-
lation (Xin et al., 2002). Conversely, oestrogen deficiency
enhanced adverse cardiac remodelling (capillary rarefaction,
cardiomyocyte hypertrophy and loss) following TAC in rats
(Marques et al., 2006; Loyer et al., 2007a). Recently, Kararigas
et al. (2012) used elegant approaches including genome-wide
expression profiling of oestrogen-treated human cardiac
tissues and gene expression and functional analysis of mouse
cardiomyocytes according to biological sex and oestrogen
treatment in order to investigate the effects of oestrogens on
gene regulation in the heart. Using this combined approach,
they showed that the gene encoding the myosin regulatory
light chain interacting protein was specifically induced in
the cardiac tissues of men, in response to oestrogens. Con-
versely, the expression of the myosin regulatory light chain
protein, a protein involved in cardiomyocyte contractility,
was decreased only in male heart tissue. These changes in
gene expression were related to impaired contractile func-
tion. All together, the data suggest a male-specific, oestrogen-
regulated, effect resulting in an alteration of cardiac
contractility.

Marked sex-based differences are also described in the
development of cardiac fibrosis and include the expression of
genes associated with the remodelling of the extracellular
matrix (ECM), including those for collagen 3, MMP 2, TIMP2
and TGFβ2, which are lower in female heart after TAC in mice
(Witt et al., 2008; Fliegner et al., 2010). Oestrogens reduced
the turnover of the ECM, especially that of proteins involved

in the collagen network (Xu et al., 2003; Mahmoodzadeh
et al., 2010). Insights into the sex-specific regulation of
fibrosis-related genes were provided by genetic heart failure
models and in vitro approaches. In these models, β-estradiol
significantly increased collagen-I and -III gene expressions in
male fibroblasts, contrary to the effects observed in female
cells (Petrov et al., 2010); these effects being mediated by ERβ
(Fliegner et al., 2010). The sex-based differences observed in
the regulation of genes encoding ECM proteins and MMPs
may represent one of the major mechanisms slowing the
progression of heart failure and the enhanced recovery of the
heart in females.

Other lines of evidence of oestrogen-induced cardio-
protection were provided by studies devoted to NO bio-
availability or endothelial function. The reduction in the
bioavailability of NO is a key feature of endothelial dysfunc-
tion during heart failure. In response to a severe TAC, sex
differences changes in NOS3 activity were observed (Loyer
et al., 2007b). In the hypertrophied female rat heart, the
NOS3 activity remained constant before the onset of signs of
heart failure (Loyer et al., 2007b) while after TAC, oestrogen
deficiency blunted the increased NOS3 expression and exac-
erbated cardiac dysfunction (Loyer et al., 2007a). Besides the
putative role of NOS3-derived NO, the involvement of NOS1-
derived NO has been demonstrated during the development
of PCH and heart failure (Bendall et al., 2004; Damy et al.,
2004; Loyer et al., 2008). In male mice lacking both NOS
isoforms, NOS1/3-/-, a twofold increase in mortality was
observed when compared to NOS1/3-/- females (Barouch et al.,
2003). The changes in NOS1 expression in hearts following
TAC seemed to be triggered by mechanotransduction path-
ways, independently of oestrogen status (Loyer et al., 2007a).
However, in the failing heart, sex-based differences were
reported regarding the sub-cellular localization of NOS1, as
NOS1/caveolin-3 association was significantly higher in
female mice in response to cardiac injury than in males (Sun
et al., 2006) or following TAC in rats (Loyer et al., 2007b).
According to Murphy and Steenbergen (2007), the increase in
NOS1 co-localization with caveolin-3 in females under stress
conditions (ischaemia/reperfusion) associated with increased
Ca2+ (which activates NOS) resulted in an increase in
S-nitrosylation of the L-type Ca2+ channel, lower Ca2+ entry
and therefore lower Ca2+ load, altogether constituting a car-
dioprotective mechanism (Chakrabarti et al., 2010).

Sex-based differences in the cardiac
adaptability to volume overload
In rats, a volume overload secondary to aortocava fistula
induces clear gender-specific differences in ventricular func-
tion, structural remodelling and mortality (Gardner et al.,
2002). The eccentric dilated hypertrophy was only observed
in male Sprague-Dawley rats in response to volume overload,
not in females (Gardner et al., 2008). Using hormonal
therapy in ovariectomized animal, it was proposed that oes-
trogens prevented adverse cardiac remodelling to a sustained
volume overload through the direct or indirect inhibition of
ET-1, the prevention of mast cell maturation and the inhibi-
tion of TNF-α synthesis by the mast cells (Gardner et al.,
2008; Lu et al., 2012). Differences in the remodelling
responses can also be seen after myocardial infarction (MI), as
female rats developed less thickening of the non-infarcted
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regions and a less pronounced diastolic dysfunction than
their male counterparts. Also, post-MI rupture of the left
ventricle was less frequent in female than in male mice
(Deschepper and Llamas, 2007).

Sex-based differences in adjuvant
therapy of CVD

Besides the classical therapeutic approach that includes
ACE inhibitors, diuretics, β-blockers and that is prescribed
to patients regardless of their gender, new therapeutic
approaches taking into account the sex-based difference may
profoundly affect the prognosis of the patient.

Sex-based differences in cardiac benefit
following exercise training; effects during
pathological conditions
Physical training is recognized as beneficial in the context of
cardiac diseases. Sex-based difference during experimental
physical training revealed better exercise capacity of female
than male animals, and sex-specific difference in cardiac
hypertrophic signalling have been identified, such as a rela-
tive higher cardiac increase in Ca2+/calmodulin-dependent
protein kinase in females than in males (Konhilas et al.,
2004). In human, physical exercise reveals clearly sex-related
differences in both healthy subjects and patients with
asymptomatic aortic stenosis (see Higginbotham et al., 1984;
Legget et al., 1996; Regitz-Zagrosek et al., 2007). Interaction
between exercise training and female sex hormones on
cardiac performance have been reported (Bupha-Intr and
Wattanapermpool, 2004; Brown et al., 2005; Coimbra et al.,
2008; Bupha-Intr et al., 2009). Regular exercise cardio-
protective in terms of cardiac sarcoplasmic reticulum Ca2+

uptake in oestrogen-deprived status through the regulation of
SERCA expression and phospholamban B phosphorylation
(Bupha-Intr et al., 2009). In addition, exercising reduces
inflammation and cell adhesion molecule expression in post-
menopausal women (Wegge et al., 2004). Such results support
the idea that exercise training exerts much more benefit on
cardiac function after menopause, albeit clinical studies
revealed conflicting results (Zarins et al., 2009; Swank et al.,
2010; Ryan et al., 2012).

Exercise training in oestrogen-deficient rats improved
resting haemodynamic status and arterial baroreflex sensitiv-
ity, most likely through the reduction of oxidative stress
(Irigoyen et al., 2005). Indeed, exercise training in oestrogen-
deficient animals can restore cardiac reserve function, the
normal levels of antioxidant molecules (Patten et al.,
2004; Rakpongsiri and Sawangkoon, 2008) and prevented
pathology-related expression of β-myosin heavy chain
(Bupha-Intr and Wattanapermpool, 2004). The metabolic
syndrome and insulin resistance induced by oestrogen-
deprivation were shown to be corrected by endurance exer-
cise training alone or by oestrogen replacement alone
(Saengsirisuwan et al., 2009). In addition, Pighon et al. (2010)
found that exercise training acts as oestrogen supplementa-
tion surrogate, by decreasing several genes of lipogenesis in
liver, as well as decreasing several biomarkers of inflamma-
tion (IL-6, NFkB, TNF-α) in oestrogen-deprived rats. Growing

evidence suggest that most of these effects are dependent on
the AMP-activated protein kinase pathway (Park et al., 2002;
Lavoie and Gauthier, 2006).

During pathological situations, a prospective randomized
controlled exercise trial indicated that exercise training had
no major impact on the cardio-metabolic risk profile of over-
weight or obese postmenopausal women with moderate
hypertension, despite considerable improvements in maxi-
mal oxygen consumption (Arsenault et al., 2009). These
results contrast with data obtained in aging men indicating
that progressive resistance training can be used as anti-
hypertensive therapy as well as for the control of metabolic
diseases such as obesity or type 2 diabetes (Ibanez et al.,
2005). Furthermore, physical exercise was identified as a
potent anti-senescent intervention to up-regulate telomere-
stabilizing proteins and the telomerase activity in the dis-
eased heart (Werner et al., 2008).

The marked prevalence of hypertension observed in post-
menopausal sedentary women (Staessen et al., 1998) not only
underlined the effects of oestrogen deficiency in the induc-
tion of vascular dysfunction, but also highlighted that
exercise training may bring beneficial effects in this con-
text. Postmenopausal women who engage in intermittent,
moderate-intensity physical training experience demon-
strated a significant reduction in systolic BP (Staffileno et al.,
2001). In rats, exercise training dramatically reduces systolic
BP of both normo- and hypertensive oestrogen-deficient
animals and prevents adverse cardiac remodelling (Irigoyen
et al., 2005; Marques et al., 2006). Also in SHR rats, exercise
training reduced BP only in males (Coimbra et al., 2008).
Among the molecular and biochemical mechanisms respon-
sible for this cardioprotective effect of exercise, it has been
postulated that these exercise-induced changes in the myo-
cardium result from local increases in the oxidative stress
detoxifying mechanisms or the levels of heat shock proteins
(Powers et al., 1998; Demirel et al., 2001). Exercise training
increased also antioxidant mechanisms through the expres-
sion of catalase and glutathione peroxidase (Adams et al.,
2005), and NO bioactivity through an enhanced NOS3
expression (Knowles and Moncada, 1994; Hagg et al., 2004).
Interestingly, Marques et al. (2006) demonstrated that a
major effect of exercise training was the prevention of oes-
trogen deprivation-enhanced myocyte loss in the SHR. It is
hypothesized that, as under normal conditions, regular exer-
cise induces a protective effect on cardiac sarcoplasmic reticu-
lum Ca2+ uptake in oestrogen-deficient animals (Bupha-Intr
et al., 2009). Additional benefit arose through lowering BP by
increasing the capillary density in the heart and the muscles
and physiological activation of cardiac hypertrophy (Akt
pathway). Taken together, these data clearly demonstrate the
sex difference on the effects of exercise on cardiac structure
and function. Exercise training has beneficial effects by
diminishing the PCH induced by pressure overload, mainly
by reducing interstitial myocardial fibrosis, improving myo-
cardial vascularization and preventing reduction in the
number of cardiomyocytes.

Hormonal replacement therapy (HRT)
and CVD
The change in relative CVD risk and incidence in women
aged 50 years and older as a result of aging, loss of oestrogen
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protection after menopause or the changing incidence of
other cardiovascular risk factors is largely controversial
(Valdiviezo et al., 2013). The safety of HRT in postmenopausal
women using synthetic oestrogens and progesterone was
extensively debated after the report of increased risk of heart
disease, stroke and venous thromboembolism (Rossouw et al.,
2002). Lam et al. indicated that the use of HRT in premeno-
pausal women is associated with higher circulating
NT-proBNP levels, compared with untreated age-matched
women (Lam et al., 2011). However, a recent randomized
study (Schierbeck et al., 2012) showed that women receiving
HRT early after menopause had a significantly reduced risk of
mortality, heart failure or MI, without any apparent increase
in risk of cancer or stroke. In humans, HRT not only allevi-
ated the metabolic consequences of menopause (Hassager
and Christiansen, 1989; Arabi et al., 2003; Green et al., 2004)
but maintained or improved cardiac performance (Alecrin
et al., 2004). Thus, the cardiac hypertrophy frequently
observed after menopause can be significantly prevented by
HRT (Bhupathy et al., 2010). Consequently, the assessment of
lifestyle patterns should be taken into account in the treat-
ment of postmenopausal women, as adequate exercise and
nutrition programmes were beneficial in the prevention and
the treatment of obesity, diabetes and CVD in postmenopau-
sal women (Hagey and Warren, 2008).

Hence, there is a need to encourage the implementation
of well-proven interventions such as lifestyle changes of exer-
cise, weight, BP and lipid control to prevent and reduce CVD
risk, together with the inclusion of the sex-based differences
in cardiac physiopathology in the therapeutic approaches
adopted.

Conclusions

So far, the potentially important cardiovascular influences of
endogenous oestrogens in men have received little attention.
Recent evidence emphasizing the sexually dimorphic
response of the heart to sex steroids according to pathophysi-
ological status, suggests some novel therapeutic targets. For
example, the negative responses to oestrogens in older men
suggest the use of aromatase inhibitors as a potential phar-
macological approach. In addition to the sex-based differ-
ences listed above, significant differences in the way the
hearts of males and females respond to various challenges
bring important insights into the mechanisms whereby
female gender may influence favourably the remodelling and
the adaptive response to myocardial insult. It is worth men-
tioning that, contrary to the apparently low improvement in
treatment and outcome that has been suggested regarding
women with MI over the past 25 years (Nauta et al., 2012), a
recent study demonstrated that the temporal mortality reduc-
tions between 1985 and 2008 were at least as high in women
as in men with MI, in terms of both 30 day mortality and
long-term mortality hazard (Nauta et al., 2012). Recently, the
epidemiological study of Laribi and co-workers also showed
that over the last decade, the age-standardized death rate
following heart failure was unrelated to sex differences, in
seven European countries (Figure 3, Laribi et al., 2012). Such
data must not divert the efforts necessary to improve or

develop therapeutic approaches to treatment of cardiac dis-
eases that take into account gender-related differences.
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