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Abstract
Advances in breast cancer (BC) treatments have resulted in significantly improved survival rates.
However, BC chemotherapy is often associated with several side effects including cognitive
dysfunction. We applied multivariate pattern analysis (MVPA) to functional magnetic resonance
imaging (fMRI) to find a brain connectivity pattern that accurately and automatically distinguishes
chemotherapy-treated (C+) from non-chemotherapy treated (C−) BC females and healthy female
controls (HC). Twenty-seven C+, 29 C−, and 30 HC underwent fMRI during an executive-
prefrontal task (Go/Nogo). The pattern of functional connectivity associated with this task
discriminated with significant accuracy between C+ and HC groups (72%, p = .006) and between
C+ and C− groups (71%, p = .012). However, the accuracy of discrimination between C− and HC
was not significant (51%, p = .46). Compared with HC, behavioral performance of the C+ and C−
groups during the task was intact. However, the C+ group demonstrated altered functional
connectivity in the right frontoparietal and left supplementary motor area networks compared to
HC, and in the right middle frontal and left superior frontal gyri networks, compared to C−. Our
results provide further evidence that executive function performance may be preserved in some
chemotherapy-treated BC survivors through recruitment of additional neural connections.
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INTRODUCTION
Cognitive dysfunction is increasingly recognized as a common side effect of breast cancer
(BC) chemotherapy (Ahles, 2012; Janelsins et al., 2011; Rodin & Ahles, 2012; Wefel,
Saleeba, Buzdar, & Meyers, 2010; Wefel & Schagen, 2012). Neuroimaging studies of BC
chemotherapy have significantly increased our understanding regarding these cognitive
difficulties by indicating alterations of prefrontal cortex and hippocampus as well as
distributed functional and structural networks (de Ruiter et al., 2012; Deprez, QJ; Billiet,
Sunaert, & Leemans, 2013; Ferguson, McDonald, Saykin, & Ahles, 2007; Hosseini,
Koovakkattu, & Kesler, 2012; Kesler, Janelsins, et al., 2013; Kesler, Bennett, Mahaffey, &
Spiegel, 2009; Kesler, Kent, & O’Hara, 2011; McDonald, Conroy, Ahles, West, & Saykin,

Copyright © INS. Published by Cambridge University Press, 2013.

Correspondence and reprint requests to: Shelli Kesler, 401 Quarry Road, MC5795, Stanford, CA 94305-5795. skesler@stanford.edu.

The authors report no conflict of interest.

NIH Public Access
Author Manuscript
J Int Neuropsychol Soc. Author manuscript; available in PMC 2014 April 01.

Published in final edited form as:
J Int Neuropsychol Soc. 2014 April ; 20(4): 391–401. doi:10.1017/S1355617713001173.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2010; McDonald, Conroy, Ahles, West, & Saykin, 2012; Silverman et al., 2007) [see
(Reuter-Lorenz & Cimprich, 2013) for a review of functional studies].

A majority of previous neuroimaging studies used mass univariate analyses. We aimed to
extend and advance this literature by using multivariate pattern analysis (MVPA). MVPA
more closely matches the covarying nature of neural systems providing greater power for
separating groups than univariate or behavioral methods (Hoeft et al., 2011). This increased
power stems from MVPA’s ability to use subtle signals across voxels that tend to be
undetectable by univariate analyses (Kamitani & Tong, 2005). This increased sensitivity is
especially important for the study of chemotherapy-related cognitive dysfunction, which
tends to be subtle or difficult to detect with objective measures (Vardy, 2009).

MVPA applies machine learning algorithms to identify patterns in data that accurately
differentiate between groups or conditions (Haynes & Rees, 2006; O’Toole et al., 2007;
Orru, Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012; Pereira, Mitchell, & Botvinick,
2009). MVPA is increasingly used to classify individuals to develop diagnostic and
prognostic models based on neuroimaging biomarkers. For example, neuroimaging MVPA
has been shown to accurately distinguish mild cognitive impairment from healthy aging and
dementia (Aksu, Miller, Kesidis, Bigler, & Yang, 2011; O’Dwyer, Lamberton, Bokde, et al.,
2012; Zhang & Shen, 2012; Zhang, Wang, Zhou, Yuan, & Shen, 2011), young APOE4
carriers from non-carriers (O’Dwyer, Lamberton, Matura, et al., 2012), and depressed from
non-depressed subjects (Craddock, Holtzheimer, Hu, & Mayberg, 2009; Zeng et al., 2012),
among others [see (Orru et al., 2012) for a review].

In our recent study, we showed that MVPA of default mode network connectivity accurately
distinguishes chemotherapy-treated (C+) from non-chemotherapy treated (C−) BC survivors
and healthy controls with 90–91% accuracy (Kesler, Wefel, et al., 2013). Given that this
previous study was the first to apply MVPA to chemotherapy-related cognitive dysfunction,
it is useful to evaluate alternate potential classifiers. Therefore, in the present study, we
applied MVPA to functional magnetic resonance imaging (fMRI) of prefrontal-executive
connectivity. We used a common fMRI paradigm, the Go/Nogo task to measure prefrontal-
executive neurocircuit function (Menon, Adleman, White, Glover, & Reiss, 2001;
Simmonds, Pekar, & Mostofsky, 2008).

We focused on evaluation of prefrontal-executive neurocircuitry for several reasons. First,
prefrontal dysfunction is thus far the most consistent finding among previous neuroimaging
studies irrespective of imaging modality and even when whole-brain methods are used
(Bruno, Hosseini, & Kesler, 2012; de Ruiter et al., 2011, 2012; Ferguson et al., 2007; Kesler
et al., 2009, 2011; McDonald et al., 2010, 2012; Silverman et al., 2007). Second, executive
function and memory deficits are the most common cognitive impairments in BC
chemotherapy (Vardy, 2009; Wefel & Schagen, 2012) and these skills rely on distributed
prefrontal cortex networks (Eichenbaum, 2000; Leh, Petrides, & Strafella, 2010).

Third, the Go/Nogo task has been previously used in BC patients to evaluate pre-treatment
neurobiologic status (Scherling, Collins, Mackenzie, Bielajew, & Smith, 2012). Specifically,
Scherling and colleagues demonstrated reduced activation in several prefrontal-executive
network regions before adjuvant chemotherapy in patients compared to controls (Scherling
et al., 2012). Our study expands upon that of Scherling et al. by distinguishing between BC
women with and without history of chemotherapy treatment and examining long-term
survivors, thus emphasizing potential persistent cognitive dysfunction. We also focused on
connectivity in prefrontal circuits rather than activation.

Fourth, prefrontal cortex abnormalities have been associated with self-report of executive
function impairments (Kesler et al., 2011; McDonald et al., 2012). These findings suggest

Hadi Hosseini and Kesler Page 2

J Int Neuropsychol Soc. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that prefrontal status may be a sensitive biomarker for patients’ cognitive complaints.
Finally, executive-prefrontal deficit is the best predictor of medication adherence in BC
patients (Stilley, Bender, Dunbar-Jacob, Sereika, & Ryan, 2010) and thus may be indirectly
associated with health status. Therefore, we expected that a MVPA algorithm could be
reliably trained to distinguish C+ from C− and healthy female controls (HC) based on
connectivity within prefrontal-executive neurocircuitry. We hypothesized that the algorithm
would have significant accuracy as defined by the proportion of correct classifications
(positive and negative) as well as significant specificity (true negatives) and sensitivity (true
positives).

MATERIALS AND METHODS
Participants

We enrolled 56 primary (stages I–IIIA) female BC survivors in this study, 27 C+ and 29 C−,
as well as 30 HC (see Table 1). This sample was included in previous studies by our group
(Bruno et al., 2012; Hosseini et al., 2012; Kesler, Janelsins, et al., 2013; Kesler et al., 2011;
Kesler, Wefel, et al., 2013). BC survivors were recruited via the Army of Women (http://
www.armyofwomen.org/), community-based BC support groups and local media
advertisements. Healthy controls were recruited via the Army of Women and local media
advertisements.

There were no significant differences between the groups in age (F = 0.74; p = .48),
education (F = 1.43; p = .24) or minority status (χ2 p > .23). The C− and C+ groups did not
differ in postmenopausal status (p = .27), time off-therapy (p = .6), radiation (p = .40), or
tamoxifen (p = .79). There were significantly more women in the C+ group who were
postmenopausal compared to the HC group, which was expected given that chemotherapy
can induce early menopause (Mar Fan et al., 2010). The number of postmenopausal women
in the C− compared with HC group was non-significantly larger (p = .22). As expected, the
disease stage at the time of diagnosis was significantly higher in the C+ group compared
with C−.

BC survivors were excluded for history of relapse or prior chemotherapy treatment.
Individual chemotherapy regimens included adriamycin/cytoxan/taxol or taxotere = 21,
cytoxan/methotrexate/5-fluorouracil = 4 and adriamycin/cytoxan+cytoxan/methotrexate/5-
fluorouracil = 2. Additionally, 26 women were treated with tamoxifen and 35 received
radiation therapy. Four participants in the C+ group and six in the C− group were still taking
tamoxifen at the time of assessment. No patients had received other anti-estrogen treatments.
All participants were excluded for diagnosed psychiatric, neurologic or comorbid medical
conditions that are known to affect cognitive function as well as MRI contraindications or
major sensory deficits (e.g., blindness). This research was completed in accordance with the
Helsinki Declaration. The study was approved by the Stanford University Institutional
Review Board and all participants provided informed consent.

Go/Nogo Paradigm
The details of the Go/Nogo experiment are described in a previous study (Menon et al.,
2001). Briefly, the task consisted of a 30-s rest block, alternating 26-s blocks of Go and
Nogo conditions, followed by another 30-s rest block. During the Go/Nogo blocks,
participants viewed a series of letters once every 2 s (stimulus presentation: 500 ms, inter-
stimulus interval: 1500 ms). In the Go blocks, participants were asked to respond to every
stimulus by pressing a button. The Go condition measures sustained attention (Menon et al.,
2001). In the Nogo blocks, participants were asked to press the button for all the letters
except for the letter X. The letter X was not part of the presented stimuli during the Go
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blocks. The Nogo condition measures both sustained attention and response inhibition
(Menon et al., 2001).

fMRI Data Acquisition
MRI scanning was performed on a GE Discovery MR750 3.0 Tesla whole body scanner (GE
Medical Systems, Milwaukee, WI). fMRI scans were acquired while participants were lying
supine in the scanner. Stimuli were presented using E-Prime software (Psychology Software
Tools). Behavioral responses (accuracy, reaction time) were recorded using a four-button
fiber optic finger switch system.

fMRI data were acquired using a T2* weighted gradient echo spiral pulse sequence
(repetition time = 2000 ms; echo time = 30 ms, flip angle = 80° and 1 interleave; field of
view = 200 × 200 mm2, matrix size = 64 × 64, in-plane spatial resolution = 3.125). Thirty-
two axial slices (3-mm thick, 1 mm skip) covering the whole brain were acquired. Number
of data frames collected was 160, thus the total scan time was 5:20. An automated high-
order shimming method based on spiral acquisitions was used to reduce field heterogeneity
(Glover & Lai, 1998). To coregister and normalize functional images with a standardized
template, a high-resolution T1-weighted fast spoiled gradient echo anatomical scan was
acquired for each individual (relaxation time: minimum, echo time: minimum, flip: 11
degrees, inversion time: 300 ms, bandwidth: ±31.25 kHz, field of view: 24 cm, phase field
of view: 0.75, slice thickness: 1.5 mm, 125 slices, 256 × 256 at 1 excitation, scan time: 4:26
min).

Two other task-based fMRI scans, a resting state fMRI scan and a diffusion-weighted scan
were also acquired for some participants during the MRI session (total duration = 1 h).
Participants were also administered a battery of neuropsychological measures
(approximately 1.5 h) on the day of the MRI as described in our previous studies (Bruno et
al., 2012; Hosseini et al., 2012; Kesler, Janelsins, et al., 2013; Kesler et al., 2011). These
data are not reported here.

fMRI Data Analyses
Image preprocessing was performed using Statistical Parametric Mapping 8 (SPM8;
Wellcome Department of Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/
spm/), as described in our previous publications (Kesler et al., 2009, 2011). First, effects of
small head movements were corrected by realigning functional volumes using least square
minimization. Realigned functional volumes were then coregistered to individuals’
anatomical images. Anatomical volumes were then segmented and normalized to a standard
MNI template and the transformation parameters were applied to the functional volumes. To
reduce the effect of noise, the normalized functional volumes were spatially smoothed with
an 8-mm full-width at half-maximum (FWHM) Gaussian filter. Images were visually
assessed for correct spatial normalization.

Accuracy (percent correct) and response time in milliseconds were collected during the Go/
Nogo task. To determine the effects of group and task condition on performance, we
conducted a two-way analysis of variance (Nogo vs. Go × C+ vs. C− vs. HC) in SPSS 19.0
(www.spss.com). The threshold for statistical significance was set at p < .05.

MVPA Feature Selection and Extraction
We used 12 cortical regions of interest (ROIs) from the Automated Anatomical Labeling
(AAL) atlas using the WFU PickAtlas Toolbox (Tzourio-Mazoyer et al., 2002). ROIs
included the bilateral inferior frontal (triangular part) (IFTr), middle frontal (MFG), superior
frontal (SFG), medial frontal (MedSF), inferior parietal (IPL), and supplementary motor
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area (SMA). These regions were consistently reported in previous neuroimaging studies of
the Go/Nogo task (Mostofsky et al., 2003; Simmonds et al., 2008), including one study of
women with BC (Scherling et al., 2012). These regions also are known to subserve
executive function (Leh et al., 2010). The ROIs were resliced to the same dimension as that
of the functional images.

Functional connectivity data were extracted using the Functional Connectivity Toolbox
(http://www.nitrc.org/projects/conn) (Whitfield-Gabrieli & Nieto-Castanon, 2012) with
CompCor noise correction (Behzadi, Restom, Liau, & Liu, 2007). The individual motion
parameters were also used as covariates. Finally, ROI to ROI temporal correlations based on
corrected BOLD (blood oxygen level dependent) signal were computed for the Nogo blocks
resulting in a 12× 12 correlation matrix, containing normalized Z-scores, for each individual.
We analyzed only the Nogo blocks to include all cognitive aspects of this task (response
inhibition, sustained attention). We did not compare the Nogo blocks with rest since this was
a condition-dependent functional connectivity analysis (Whitfield-Gabrieli & Nieto-
Castanon, 2012). Subtracting the Go images from Nogo images would eliminate group
differences in sustained attention, which is an important component of executive functions.

MVPA Training and Testing
A linear support vector machine (SVM), as implemented by our in-house MVPA Toolbox
(Hoeft et al., 2011; Kesler, Wefel, et al., 2013; Marzelli, Hoeft, Hong, & Reiss, 2011)
(http://ncnl.stanford.edu/tools), was used for pattern classification. The unique characteristic
of linear SVM, compared with other linear classifiers, is that it attempts to maximize the
distance between the data points that are closest to the boundary (support vectors) between
classes (groups). This characteristic makes the classifier work quite efficiently when the
number of samples (and, therefore, the training set) is small (Noble, 2006; Orru et al., 2012).

Separate binary linear SVM classifiers were built for discriminating C+ and HC, C+ and C−,
and C− and HC individuals using the pattern of connectivity in the Nogo blocks. For C+
versus C− or HC, a class vector was constructed comprising either “+1”s (C+) or “−1”s (C−
or HC) depending on which group the participant belonged to. For HC versus C−
classification, a class vector was constructed comprising “+1”s for HC and “−1”s for C−.
Next, the connectivity matrices for each individual were converted to a feature vector
containing 66 unique ROI to ROI connection strengths (12 × 11/2). The SVM uses the
training data that have been previously categorized into groups (i.e., C+, C−, and HC) to
build a model (classifier) that optimally separates the groups. In this way, the SVM learns by
example how to classify the individual subjects. This process involves finding a weight
vector (assigning a weight to each connection) that maximizes the margin of separation
between groups (Orru et al., 2012). Connections with high weights are considered important
contributors to classification. The farther the participant’s data are from the separation
margin (hyperplane), the more different the participant’s functional connectivity pattern is
from that of the comparison group.

The validity of the model (classifier) was tested using leave-one out cross-validation to
avoid overfitting and allow generalization of the model (Hoeft et al., 2011; Pereira et al.,
2009). In each repetition, one subject’s data were left out as a test case, and the remaining
subjects’ data were used to train the classifier. This procedure was repeated such that each
subject was left out once and the accuracy of the model was then estimated as the proportion
of correct predictions. This process allows the training and test cases to remain independent
(Orru et al., 2012). Finally, permutation analysis (5000 times) was performed to empirically
determine whether the obtained classification accuracy was significantly greater than chance
(Marzelli et al., 2011). We adjusted the alpha level for the permutation analysis to p < .017
(Bonferroni corrected) to account for multiple comparisons.
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Connectivity maps were constructed using the mean absolute weights of each feature in the
classifier. The connections were thresholded for visualization purposes to indicate the
connections that carried the greatest weight (> 1 SD) in the classifier (Hoeft et al., 2011).
These connections are referred to as “connections with high classification weights”,
hereafter. As noted above, the SVM weights indicate the contribution of each connection in
discriminating between groups. However, they do not indicate whether the corresponding
functional connectivity is decreased or increased. Thus, for connections with high
discriminative weights, we also quantified their difference in functional connectivity
strength between groups using the ROI-to-ROI normalized Z scores (Greicius et al., 2007).

Effect size of the classifier was quantified using area under the receiver operating
characteristic (ROC) curve, which examines the relationship between true positives and
false positives (Rice & Harris, 2005). Brain maps were created using BrainNet Viewer
software (http://www.nitrc.org/projects/bnv).

Finally, for connections with high classification weight, we performed an exploratory
correlation analysis to identify the association between their connectivity strengths and
behavioral performance in the Nogo task within each group, separately. In addition, we
explored the relationship between clinical and treatment factors in the C+ group with task
performance and distance from the hyperplane.

RESULTS
Behavioral Results

Mean Go/Nogo task accuracy and response time for each group are shown in Figure 1.
There was a significant effect of condition (F1,166 = 5.4; p < .05). However, the main effect
of group (F1,166 = 0.19; p = .83) and group by condition interaction (F1,166 = 0.24; p = .79)
were not significant. The response time data also showed a significant effect of condition
(F1,166 = 82.9; p < .001) but no significant effect of group (F1,166 = 0.06; p = .97) or group
by condition interaction (F1,166 = 0.11; p = .89).

MVPA Results
For C+ versus HC classification, the SVM classifier achieved significant classification
accuracy (72.0%; p = .006), sensitivity (70.0%; p = .007), and specificity (73.0%; p = .007).
The area under the ROC curve was 0.72. Similarly, for C+ versus C− classification, the
SVM classifier achieved significant classification accuracy (71.4%; p = .012), sensitivity
(70.4%; p = .013), and specificity (72.4%; p = .017). The area under the ROC curve was
0.71. The classification accuracy for C− versus HC did not reach significance (50.9%; p = .
46). The area under the ROC curve was 0.51.

The contribution of each functional connection (absolute SVM weights) to the classifier is
shown in Figure 2, Table 2, and Table 3. Connections involving right middle frontal gyrus,
right supplementary motor area, and right inferior parietal lobule had the greatest weights (>
1 SD) for discriminating C+ and HC, and those involving right middle frontal gyrus and left
superior frontal gyrus had the greatest weight for discriminating C+ and C− groups.

The between group differences (C+ vs. HC and C+ vs. C−) in functional connectivity
strengths for regions with high SVM weights are shown in Figure 3. Of 45 connections with
high classification weights, 23 connections showed decreased (cool colors) and 22
connections showed increased connectivity (warm colors) in C+ versus HC comparison. For
C+ versus C− classification, six of nine connections showed increased connectivity.
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Exploratory Correlation Results
Within each group, an exploratory correlation analysis was performed to identify the
relationship between participant’s behavioral performance in the Nogo task and the strength
of connections with high classification weights.

C+ versus HC Classification
In the C+ group, Nogo accuracy was significantly correlated with the connectivity strength
between right middle frontal gyrus and right inferior parietal lobule (r = 0.43; p < .05)
(Figure 4A). The corresponding connectivity strength for these regions was higher in the C+
than in HC group as noted in Figure 3A. No significant correlations were observed in the
HC group. Specifically, the correlation between connectivity strength of right middle frontal
gyrus and right inferior parietal lobule and accuracy in the Nogo task was not significant
within the HC group (r = 0.27; p = .14). The difference in correlations was also not
significant between groups (z = 0.65; p = .26).

C+ versus C− Classification
Within the C+ group, the strength of connectivity between right middle frontal gyrus and left
inferior frontal gyrus was significantly correlated with Nogo response time (r = 0.39; p < .
05) and significantly negatively correlated with Nogo accuracy (r = −0.42; p < .05) (Figures
4B and 4C). The corresponding connectivity strength for these regions was higher in the C+
than in C− group as noted in Figure 3B. The correlation between connectivity strength of
right middle frontal gyrus and left inferior frontal gyrus and Nogo response time and
accuracy was not significant within the C− group (r = −0.04; p = .84 for response time; r =
0.15; p = .44 for accuracy). The between-group differences in correlations were significant
for accuracy (z = 1.99; p < .05).

We did not find any significant correlation between C+ clinical/treatment status and their
performance in the task. However, a significant correlation was found between C+’s
distance from the hyperplane and their cancer stage (Spearman’s r = 0.4; p < .05).

DISCUSSION
We investigated whether the multivariate pattern of neural connectivity during an executive
function task (Go/Nogo) could distinguish chemotherapy-treated from non-chemotherapy
treated BC survivors and healthy women. While task performance of the C+ group was
comparable to that of C− and HC, the SVM classifier achieved significant accuracy,
sensitivity, and specificity in discriminating C+ from C− and HC groups. Classification
performance resulted in ROCs of 0.71–0.72, which are considered large effects (Rice &
Harris, 2005). These findings suggest that altered functional connectivity during an
executive function task may represent a sensitive indicator of cognitive dysfunction in C+.
In prospective studies, MVPA classifiers could be used to predict individuals who will have
persistent cognitive impairment using baseline neuroimaging data. This method has been
used successfully in other conditions, such as the prediction of conversion from mild
cognitive impairment to dementia (Aksu et al., 2011).

The Nogo condition was more difficult than the Go condition for both groups, as expected.
However, no significant between-group differences were observed in accuracy or response
time. However, the absence of group difference in task performance or neuropsychological
tests does not necessarily suggest that the underlying neurocircuitry is normal (Reuter-
Lorenz & Cimprich, 2013). Neuroimaging evidence suggests that performance may be
preserved in some women with BC through compensatory neural processes (Cimprich et al.,

Hadi Hosseini and Kesler Page 7

J Int Neuropsychol Soc. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2010; Ferguson et al., 2007; Kesler et al., 2009) that cannot be detected by behavioral
measures (McDonald et al., 2012; Reuter-Lorenz & Cimprich, 2013).

Despite the absence of group difference in task performance, the MVPA classifier could
accurately differentiate between C+ and C− or HC groups based on the pattern of prefrontal-
executive network connectivity. The regions that showed the highest contribution to the C+
versus HC classification were the right middle frontal gyrus, right supplementary motor area
and right inferior parietal lobule, and those that highly contributed to distinguishing C+ and
C− groups were the right middle frontal gyrus and the left superior frontal gyrus.
Multimodal neuroimaging evidence suggests that the supplementary motor area plays a role
in conflict detection/resolution within the response generation network (Aron, Behrens,
Smith, Frank, & Poldrack, 2007). Patients with lesions to the superior frontal regions
showed increased incorrect responses to the Nogo stimulus (Picton et al., 2007). The
frontoparietal network is critical for executive function and attention orientation as well as
manipulating and monitoring information in working memory (Leh et al., 2010). Alterations
in frontal and parietal structural connectivity have been reported for C+ in previous studies
(Deprez et al., 2011, 2012). Additionally, our previous data showed changes in topological
properties of prefrontal regions in both resting-state functional and structural association
networks in C+ (Bruno et al., 2012; Hosseini et al., 2012).

Examination of functional connectivity strengths revealed a profile of both hypo- and hyper-
connectivity in the C+ group compared to HC and C−. Increased connectivity between the
middle frontal gyrus and inferior parietal lobule was significantly associated with increased
Nogo performance in the C+ group. This observation suggests a potential compensatory
mechanism that helps C+ survivors preserve their performance during certain tasks.
Consistent with these findings, previous fMRI studies reported hyper-activation during
executive task performance in C+ survivors (Ferguson et al., 2007; McDonald et al., 2012).
For example, Ferguson and colleagues (2007) compared twins with and without BC during
an n-back working memory performance. Compared with the healthy twin, the C+ twin
recruited much broader brain regions during task performance, even at very low load
conditions (Ferguson et al., 2007).

However, studies have also shown hypo-activation during other executive tasks (de Ruiter et
al., 2011; Kesler et al., 2011). These differences in findings could reflect several factors
including the nature and difficulty level of the task and/or specific sample characteristics. A
recent review of fMRI studies in BC demonstrated a pattern of hyper-activation, or
recruitment of additional neural resources, at low task difficulty (Reuter-Lorenz &
Cimprich, 2013). As task difficulty increases, women with BC may be unable to maintain
this compensatory response (Reuter-Lorenz & Cimprich, 2013), resulting in decreased
activation or connectivity. The authors also suggest that neural compensation may mask
behavioral performance effects (Reuter-Lorenz & Cimprich, 2013), which is consistent with
our findings.

It should also be noted that studies showing hypo-activation tend to involve very long-term
survivors (5 or more years off-therapy) (de Ruiter et al., 2011; Kesler et al., 2011). However,
progressive decline is supported by neuropsychological data (Wefel et al., 2010) and is
observed in other conditions that affect cognitive function. For example, increased
functional connectivity is demonstrated during early phases of amnestic mild cognitive
impairment followed by decreased connectivity later on (Bai et al., 2011; Jones et al., 2011).
Our previous studies of network topology in long-term C+ survivors demonstrate decreased
brain network efficiency, which may reduce the ability to coordinate neural responses to
cognitive demands and compensate for neurologic dysfunction (Bruno et al., 2012; Hosseini
et al., 2012). Longitudinal studies of BC that include long-term follow up assessments are

Hadi Hosseini and Kesler Page 8

J Int Neuropsychol Soc. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



necessary to examine changes in neurocircuitry response over time and how these changes
may impact cognitive status.

Among features that distinguished between C+ and C−, the connectivity strength between
right middle frontal gyrus and left inferior frontal gyrus showed a positive correlation with
Nogo response time and a negative correlation with accuracy in the C+ group. Multiple
studies have shown the involvement of inferior frontal cortex in response inhibition (Aron et
al., 2007; Picton et al., 2007; Swick, Ashley, & Turken, 2008). This observation may reflect
over-inhibition of responding in chemotherapy-treated BC survivors during tasks with low
difficulty that results in higher response time and lower accuracy in Nogo blocks.

Within the C+ group only, we found a positive correlation between distance from the
hyperplane and cancer stage. Data that are more distant from the hyperplane are those that
are more distinguishable from the comparison group. Therefore, the results suggest an
association between disease severity and alterations in connectivity pattern in C+.
Consistently, our previous data showed a significant correlation between disease severity
and hypo-activation in the left prefrontal regions in C+ but not C− (Kesler et al., 2011).
Disease severity tends to be highly interrelated with treatment intensity; patients with high
stage at diagnosis are more likely to receive chemotherapy (Du & Goodwin, 2001).

We did not find a pattern of prefrontal connectivity that could distinguish between C− and
HC despite previous research suggesting that cancer pathology as well as other adjuvant
treatments (radiation, tamoxifen) may contribute to cognitive changes in BC independently
from chemotherapy (Eberling, Wu, Tong-Turnbeaugh, & Jagust, 2004; Kesler et al., 2011;
McDonald et al., 2012; Phillips et al., 2012; Scherling, Collins, Mackenzie, Bielajew, &
Smith, 2011; Scherling et al., 2012). Compared to previous studies, the present findings
were based on examination of functional connectivity rather than functional activation. Our
results could suggest that cancer pathology, radiation, and/or hormonal blockade treatments
may affect regional activation but are not sufficient to impact the connectivity of larger-scale
brain networks. Additionally, MVPA involves a different inferential question compared to
univariate methods. MVPA is concerned with the reliability of the difference between two
groups whereas univariate analysis is concerned with whether or not there is a between-
group difference (O’Toole et al., 2007). The Go/Nogo task may not be the best for
distinguishing C− from HC. Studies demonstrating differences between C− and HC with
respect to prefrontal function used tasks measuring other executive functions (working
memory, cognitive flexibility) (Kesler et al., 2011; McDonald et al., 2012). Further research
is required to identify the different profiles of brain changes that may be associated with
individual and combined candidate mechanisms of cognitive difficulties in BC.

While our current results were associated with strong effect sizes, our previous MVPA
results suggest that default mode network (DMN) connectivity may provide a better
classifier of chemotherapy-related cognitive difficulty. DMN connectivity distinguished C+
from both C− survivors and HC with 90–91% accuracy with ROCs of 0.97–0.98 (Kesler,
Wefel, et al., 2013). This is consistent with previous research suggesting that resting state
DMN connectivity is highly sensitive to disease states (Sheline et al., 2010). In future
studies, evaluation of various neuroimaging classifiers against other models (e.g.,
neuropsychological or treatment variables) and combined models (neuroimaging +
neuropsychological variables) could reveal the most precise classifiers.

Our study is limited by its cross-sectional design. Prospective, longitudinal designs are
required to determine individual differences in neural connectivity that may contribute to
individual cognitive outcome. Our subject recruitment materials specifically mentioned
cognitive dysfunction and therefore the sample may have been biased toward survivors who
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were concerned about their cognitive function. The Go/Nogo task is a well-established,
commonly used fMRI paradigm that is brief and easy to implement. However, other fMRI
paradigms may yield alternate results. Our MVPA feature selection was based on previous
studies of the Go/Nogo task as well as literature regarding prefrontal-executive
neurocircuitry but alternate features might provide alternate results.

In summary, our findings demonstrate that MVPA is a very promising tool for examining
BC chemotherapy-related cognitive dysfunction. Methods like MVPA with increased
sensitivity are especially important for this field given that cognitive deficits may be difficult
to detect and/or masked by compensatory responses. If used in prospective studies, MVPA
could potentially identify individuals at the highest risk for persistent cognitive dysfunction.
These patients could then be prioritized for regular neuropsychological surveillance and
possible early or preventative intervention. Our results also increase our understanding of
the neurobiologic mechanisms underlying cognitive impairment in C+. Specifically, we
demonstrated an altered pattern of functional connectivity during an executive function task.
Consistent with previous studies, our findings suggest that performance during certain tasks
may be preserved in some C+ survivors via recruitment of additional frontoparietal
neurocircuitry. The identification of demographic, neurobiologic, medical, and/or other
factors that enhance or maintain this compensation will be essential for the development of
interventions.
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Fig. 1.
Behavioral results. Mean accuracy (percent correct) and response time in Go and Nogo
blocks for C+, C−, and HC groups. For accuracy data, there was a significant main effect of
condition (p < .05) but no significant main effect of group (p = .83) and group by condition
interaction (p = .79). For response time data, there was a significant main effect of condition
(p < .001) but no significant main effect of group (p = .97) and group by condition
interaction (p = .89). The error bars indicate the standard deviation from the mean.
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Fig. 2.
Multivariate pattern classification of Nogo functional connectivity in (A) C+ compared to
HC, and (B) C+ versus C−. For visualization purposes, only the connections with high
classification weights (> 1 SD) are shown. Connectivity pattern in the right middle frontal
gyrus, right supplementary motor area and right inferior parietal lobule showed the highest
overall contribution to C+ versus HC classification, and connectivity pattern in the right
middle frontal and left superior frontal gyri showed the highest overall contribution to C+
versus C− classification. The colorbar represents the absolute weight of each connection in
classification.
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Fig. 3.
Difference in functional connectivity between (A) C+ and HC and (B) C+ and C− for
connections with high discriminant weights. Positive (negative) values indicate connections
that are higher (lower) in C+ than in HC (or C−).
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Fig. 4.
Correlation between performance and functional connectivity. (A) C+ participants with
higher Nogo accuracy showed higher connectivity between right middle frontal gyrus and
right inferior parietal lobule (r = 0.43; p < .05). (B) C+ participants with higher response
time in Nogo task showed higher connectivity between right middle frontal gyrus and left
inferior frontal gyrus (r = 0.39; p < .05). (C) C+ participants with lower Nogo accuracy
showed higher connectivity between right middle frontal gyrus and left inferior frontal gyrus
(r = −0.42; p < .05).
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Table 1

Demographic data for the C+, C−, and HC groups

C+ (N = 27) C− (N = 29) HC (N = 30)

Age (years) 55.7 (7.2) 58.2 (7.5) 56.4 (8.9)

Education (years) 15.9 (2.7) 16.7 (2.3) 16.9 (2.0)

Minority status 7.4% 3.4% 3.3%

Post menopause 90.9%HC 75.0% 61.5%

Tamoxifen 44.4% 48.3% NA

Radiation 70.4% 55.2% NA

Disease stage 1, 2, 3 20%, 68%, 12%C* 75%, 25%, 0% NA

Time off-therapy (years)* 5.4 (5.6) 6.3 (6.6) NA

Note. Data are shown as mean (standard deviation) except where noted.

C+ = chemotherapy-treated; C− = non-chemotherapy treated; HC = healthy control.

HC
Significantly different from HC group (p < 0.05).

C
− Significantly different from C− group (p < 0.01).

*
Time off-therapy refers to chemotherapy and/or radiation.
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Table 2

Overall contribution of each ROI in discrimination of C+ and HC, aggregating the weights of connections
involving each ROI

Region Overall SVM weight

R Middle frontal gyrus* 5.99

R Supplementary motor area* 5.87

R Inferior parietal lobule* 5.13

L Inferior parietal Lobule 4.84

L Inferior frontal gyrus 3.83

L Middle frontal gyrus 3.47

L Medial frontal gyrus 3.40

R Medial frontal gyrus 3.2

L Superior frontal gyrus 3.20

L Supplementary motor area 3.02

L Superior frontal gyrus 2.26

R Inferior frontal gyrus 1.67

*
Indicates regions with overall contribution of 1 SD greater than mean.

ROI = region of interest; C+ = chemotherapy-treated; treated; HC = healthy control SVM, support vector machine.
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Table 3

Overall contribution of each ROI in discrimination of C+ and C−, aggregating the weights of connections
involving each ROI

Region Overall SVM weight

R Middle frontal gyrus* 8.33

L Superior frontal gyrus* 7.18

L Inferior frontal gyrus 6.82

L Medial frontal gyrus 6.00

R Medial frontal gyrus 5.84

R Supplementary motor area 5.75

L Supplementary motor area 5.60

R Inferior frontal gyrus 5.01

L Inferior parietal lobule 5.00

L Middle frontal gyrus 4.88

R Inferior parietal lobule 4.55

L Superior frontal gyrus 3.89

*
Indicates regions with overall contribution of 1 SD greater than mean.

ROI = region of interest; C+ = chemotherapy-treated; C−= non-chemotherapy treated; SVM = support vector machine.
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