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Abstract

The large-conductance Ca2+- and voltage-activated K+ (MaxiK, BK, BKCa, Slo1, KCa1.1) channel

role in cell signalling is becoming apparent as we learn how the channel interacts with a

multiplicity of proteins not only at the plasma membrane but in intracellular organelles including

the endoplasmic reticulum, nucleus and mitochondria. In this review, we focus on the interactions

of MaxiK channels with seven transmembrane G-protein coupled receptors, and discuss

information suggesting that the channel big C-terminus may act as nucleus of signalling molecules

including kinases relevant for cell death and survival. Increasing evidence indicates that the

channel is able to associate with a variety of receptors including β-adrenergic receptors, G-protein

coupled estrogen receptors, acetylcholine receptors, thromboxane A2 receptors and angiotensin II

receptors, which highlights the varied functions that the channel has (or may have) not only in

regulating contraction/relaxation of muscle cells or neurotransmission in the brain but also in cell

metabolism, proliferation, migration and gene expression. In line with this view, MaxiK channels

have been implicated in obesity and in brain, prostate, and mammary cancers. A better

understanding of the molecular mechanisms underlying or triggered by MaxiK channel

abnormalities like overexpression in certain cancers may lead to new therapeutics to prevent

devastating diseases.
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MaxiK channel distinctive characteristics

MaxiK channels, also known as BK/BKCa/Slo1/KCa1.1 channels, are encoded by the

KCNMA1 gene and characterized by a large conductance to potassium, their sensitivity to

voltage and Ca2+ and ubiquitous expression. In addition to responding to changes in Ca2+

and voltage, MaxiK channels also sense gases, lipids, and associate with a multiplicity of

plasma membrane and intracellular proteins being linkers of membrane potential, cell

metabolism, and cell signalling [21, 41, 70].

MaxiK channel essential structure consists of four α-subunits, each formed by 7

transmembrane segments and a large C-terminus that constitutes about two thirds of the

protein [46] (Fig. 1). This tetrameric structure can be complemented with regulatory

subunits. In mammals, the auxiliary subunits, β1-β4 and the recently discovered, γ1-γ4, can

greatly modify channel performance including its response to pharmacological agents,

kinetics, and Ca2+/voltage sensitivities. For example, β4 makes channels resistant to

iberiotoxin blockade [47], γ1 (also named LRRC26) makes channels resistant to mallotoxin

activation [3], β2 produces MaxiK channels that inactivate with time [84], β3b produces

channels with very fast inactivation producing currents that appear to activate fast and

rectify [81, 89], β1 increases Ca2+ /voltage sensitivity when free Ca2+ facing the inside of

the channel is beyond 1 μM [45], while γ1-γ4 produce channels with increased voltage

sensitivity even without Ca2+ [91, 92]. Functional diversity of MaxiK channels is also

conferred by alternative splicing of both α- and β-subunit mRNAs and by posttranslational

modifications like phosphorylation and lipidation [1, 76, 99].

In spite of its ubiquitous expression, the genetic ablation of MaxiK α-subunit in mice was

not lethal indicating that animals developed compensatory mechanisms to substitute for

MaxiK potential vital function in organs where it is normally expressed and/or that MaxiK is

not essential to sustain life but rather it may serve to fine tune numerous body functions. In

line with this view, more and more reports show MaxiK multiple physiological roles and

involvement in a wide variety of diseases. In this respect, the lack of the α-subunit produces

body deficiencies that, although not fatal, on the long run, decrease the quality of life. For

example, mice lacking the α-subunit suffer from incontinence, erectile dysfunction,

hypertension, altered circadian rhythm, and age-dependent hearing deficiencies [48, 49, 62,

63, 86].

MaxiK cellular compartmentalization

Immuno-mapping or electrophysiological methods indicate that in most cells MaxiK

channels are expressed at the plasma membrane with adult cardiomyocytes being an

interesting exception. In addition to its plasma membrane targeting, MaxiK channels can

also localize to intracellular organelles like the endoplasmic reticulum, nucleus and

mitochondria (Fig. 2) [67, 68, 70, 90]. The latter opens the tantalizing possibility that MaxiK

channels might play a role in regulating mitochondria function and consequently cell death.

What are the intrinsic MaxiK signals targeting the channel to different cellular

compartments or organelles? This is an active line of research. Currently it is known that

there are several signals within the channel backbone that serve as different checkpoints to
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deliver the protein to the plasma membrane; three of them are located after the Ca2+-bowl in

the regulator of conductance for K+ (RCK) 2 domain and another is located in the linker of

RCK1 and RCK2 domains (Fig. 1, double arrows). The former contains dihydrophobic

motifs (YGDLFCKALK; YNMLCFGI, which is also a caveolin-1 interaction site; and

DLIFCL) known to act as endoplasmic reticulum export signals [2, 5, 31, 88]; while the

latter contains an acidic cluster DDITDPKRI important for trafficking of other potassium

channels [11, 44]

In addition to intrinsic signals in the constitutive MaxiK protein, splice variation of the α-

subunit can add or delete signal sequences modifying the channel localization by facilitating

its retention/targeting to intracellular organelles like the endoplasmic reticulum [11, 26, 43,

97, 98] and mitochondria [68]. A current challenge is to correlate the expression of specific

splice variants to functional effects in native systems. In this respect, a 33 aa insert in

transmembrane domain 1 containing CVLF trafficking signal that retains MaxiK in the

endoplasmic reticulum of HEK293T cells [97, 98] is increased in rat aging corpora

decreasing the channel surface expression [14]; this property may contribute to aging-related

changes in male sexual activity. Another example is a 27 aa encoding exon, named

ALCOREX (Fig. 1), which produces channels in HEK293 cells that develop a transient

sensitivity to alcohol that is higher and more persistent than the one observed for the

insertless channel. Importantly, MaxiK channel activation by alcohol decays in ~10 min

which correlates with decreased ALCOREX expression in hypothalamo-neurohypophysial

system explants exposed to alcohol [57]. This 27 aa insert also confers MaxiK channels its

ability to be activated by arachidonic acid in growth hormone secreting neurons, GH3 cells

[34].

Interestingly, intron containing cytoplasmic mRNAs can also contribute to differences in

channel expression levels and electrical activity in hippocampal neurons. This regulatory

mechanism seems to provide a way for specific and local expression of MaxiK variants

containing the 59 aa splice insert, STREX (Fig. 1) [7, 8]. Another regulatory mechanism for

splice variant expression is via microRNA-9 (miR9), which can be upregulated by exposure

to alcohol, immunodeficiency virus and methamphetamines in the brain [57, 73].

Membrane receptors and MaxiK channels

Biologically active substances like hormones, peptides, and lipids bind to membrane

receptors triggering the activation of signalling molecules, many of which are kinases and

phosphatases, to regulate multiple cellular events like contraction/relaxation, cell

proliferation, migration and gene expression.

MaxiK channels are known to be functionally coupled to a variety of plasma membrane

receptors like β-adrenergic receptors, ACh receptors, thromboxane A2 receptors, angiotensin

II receptors, and to the G-protein coupled estrogen receptor 1. The functional coupling

between MaxiK channels and membrane receptors usually uses intermediary proteins as G-

proteins and protein kinases that serve to transduce the signals received by the receptor to

induce changes in channel activity which can be inhibitory or excitatory depending on the

receptor being stimulated or the hormonal status of the tissue. Recently, we uncovered a new
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transduction mechanism that utilizes direct protein-protein interactions between the

Thromboxane A2 receptor and the MaxiK channel that is independent of G-protein

activation and results in channel inhibition (“trans-inhibition”) [35].

The coupling between membrane receptors and MaxiK channels has been mostly studied in

smooth muscle where muscle relaxants like β-adrenergic agents and estrogen induce MaxiK

channel activation and constrictors like Acetylcholine, Thromboxane A2, and Angiotensin II

result in channel inhibition.

β2-adrenergic receptor

Early studies using bilayers and smooth muscle membranes showed that, after biochemical

reconstitution, MaxiK channels can remain associated with β-adrenergic receptors in

complex with G-proteins pointing to stable and multi-protein interactions [64, 80]. Indeed,

association of β2-adrenergic receptors and MaxiK channels has been demonstrated in brain

where they form a large macromolecular complex that includes protein kinase A (PKA),

cytosolic A-kinase-anchoring protein (AKAP79/150), and the L-type Ca2+ channel [38].

Signalling mechanisms triggered by β2-adrenergic stimulation coupled to MaxiK activation

have been studied in smooth muscle reconstituted in lipid bilayers and native cells, and

involve a membrane-delimited action of the α-subunit of Gs (Gsα) on MaxiK channels as

well as protein kinase A mediated phosphorylation of the channel protein [27, 28, 51, 64].

At the molecular level, the target site for PKA-mediated phosphorylation and activation of

MaxiK channels is located in the RCK2 domain (866RQPS*869, numbers are as in GenBank

U11058) [51]. All four MaxiK α-subunits need to be phosphorylated at this site for the

channel to be activated [76]. Evidence for a direct action of PKA on the channel protein, is

its ability to associate with MaxiK channels in the brain and the finding of the corresponding

MaxiK phospho-peptide by proteomic analysis of immunopurified MaxiK also from the

brain [38, 93]. Whether Gsα interacts directly or forms a complex with MaxiK channels

during channel activation is yet to be determined.

Interestingly in non-pregnant myometrium, PKA can also cause inhibition of the MaxiK

channel [56] but the triggering membrane receptor/mechanism of this response is unknown.

The molecular correlate of the PKA-inhibited MaxiK channel is a channel isoform that

contains the STREX insert, which introduces an additional site for PKA dependent

phosphorylation [77]. Only a single STREX containing MaxiK α-subunit is required for

PKA-dependent inhibition of channel activity but the constitutive S869 site must be

dephosphorylated. Importantly, STREX is more abundant in non-pregnant myometrium and

decreases with estrogen levels or pregnancy [102] explaining why, in non-pregnant

myometrium, the majority of MaxiK channels are inhibited by PKA whereas during mid-

pregnancy they are activated [56] probably contributing to the maintenance of uterine

quiescence for a successful pregnancy.

G-protein coupled estrogen receptor 1

The G-protein coupled estrogen receptor 1 (GPER1) is a recently discovered seven

transmembrane receptor that is activated by estrogen. GPER1 plays a role in protecting the
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myocardium from ischemic insult by the activation of salvage kinase pathways and

prevention of mitochondrial dysfunction [10, 15, 52]. Using its agonist G1, it has been

shown that in coronary smooth muscle, GPER1 stimulation results in an increased MaxiK

channel activity. This increased channel activity correlates with relaxation of precontracted

vessels by G1, which can be prevented by iberiotoxin, a MaxiK channel blocker [95].

Whether GPER1 and MaxiK channels interact closely with each other and/or the

identification of signalling pathways used by GPER1 to modulate MaxiK channel activity

are still open questions.

Muscarinic acetylcholine receptor M2

Initial evidence for acetylcholine receptor Gi-mediated inhibitory coupling to MaxiK

channels was given in ileum and tracheal myocytes [13, 29]. However, a positive regulation

has also been observed in canine tracheal myocytes [82] perhaps due to experimental

conditions lacking GTP for proper coupling with G proteins. Although PKC dependent

inhibition of MaxiK channels is well known, its role as an inhibitory pathway induced by

muscarinic M2 receptors was only addressed recently. In HEK cells as well as in tracheal

myocytes, M2-mediated inhibition of MaxiK channels involves two mechanisms; i) a

membrane delimited Gβγ mediated inhibition, and ii) phospholipase C/PKC activation.

Purified transducin Gβγ-mediated inhibition of MaxiK channel activity occurs

independently of activation of PLCβ isozymes, intracellular Ca2+ concentration, or

expression of MaxiK β1-subunit. Further, Gβγ can associate with MaxiK channels as it is

possible to coimmunoprecipitate all proteins in HEK cells expressing the recombinant

proteins [100]. PKC phosphorylation of MaxiK channel α-subunit occurs in the C-terminus

at consensus PKC sites 642S*PKKK646 and 1097KS*R1099 with only one channel subunit

requiring phosphorylation for channel inhibition [101]. Phosphorylation at 642*S but

not 1098*S was detected by proteomic analysis due to missing sequence information in this

region [93].

Thromboxane A2 and Angiotensin II receptors

Thromboxane A2 prostanoid receptor (TPR) and Angiotensin II type 1 receptor (AT1R) are

G-protein coupled receptors (GPCR) that play important roles in the development of

vascular diseases such as heart angina, hypertension and stroke due to the potent

vasoconstrictor effects of their agonists, Thromboxane A2 (TXA2) and Angiotensin II (Ang

II). In models of chronic vascular disease (e.g. hypertension, aortic regurgitation,

atherosclerosis), TPR and AT1R gene ablation ameliorate disease symptoms (i.e. reduces

blood pressure, cardiac hypertrophy, age-related progression of atherosclerosis)

underscoring TPR and AT1R role in the pathogenesis of vascular disease and end-organ

injury [17–19]. The functional interaction between these receptors and MaxiK channels was

first made evident in experiments performed in lipid bilayers using coronary smooth muscle

membrane vesicles, where thromboxane A2 as well as angiotensin II produced the inhibition

of channel activity [65, 79]. The inhibition of MaxiK channel activity by angiotensin II

presumably via AT1R was later observed in coronary myocytes [42]. Interestingly, in lipid

bilayers the inhibition of channel activity occurred without the addition of GTP suggesting

the involvement of a G-protein independent mechanism(s) [65, 79]. In line with this view

and as mentioned earlier, we recently demonstrated that in fact TPR trans-inhibits MaxiK
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channels independent of G-protein activation and via a mechanism that likely involves direct

protein-protein interaction(s) between the receptor and the α-subunit of the channel. The

MaxiK-TPR association utilizes the voltage-sensing-conduction cassette of the channel α-

subunit and the first intracellular loop and C-terminus of the receptor [35]. Figure 2A–C

shows the colocalization of TPR and MaxiK channel α-subunit at the cell surface of human

coronary myocytes.

The MaxiK channel-TPR association also includes the channel β1 regulatory subunit.

Interestingly, the β1-subunit can independently associate with the receptor and the channel

α-subunit leading to the interesting hypothesis that β1-subunit could alter TPR function.

Supporting this view, we found that β1 gene ablation produces blood vessels with twice the

sensitivity to thromboxane A2, i.e. aortic strips showed an EC50 to thromboxane A2 agonist,

U46619, of 18 nM in the wild type animals and an EC50 of 9 nM in the β1 null mice [36].

Whether the β1-subunit also associates with other G-protein coupled receptors, modifying

their vasoconstricting/vasorelaxing potencies remains open to research. Also, a detailed

study of how angiotensin II modifies MaxiK channel activity and whether AT1R is in close

contact with the channel are topics that need scrutiny.

MaxiK and cell signalling

The coupling of MaxiK channels with 7 transmembrane receptors described above

necessarily link MaxiK channels with cell signalling events, like activation of PKA and

PKC. Moreover, direct protein-protein interactions have been found between the channel

and focal adhesion kinase (FAK), and cytosolic phospholipase A2 (cPLA2), as well as

regions in MaxiK channel necessary for association with PKA complexes and spleen

tyrosine kinase (SyK) (Fig. 1 and Table 1). This information in combination with recent

proteomic data indicates that aside from its role in K+ conduction, MaxiK channel may

provide surface contact for a variety of proteins. In this view, MaxiK channel could act as

“coordinator” or “linker” of signalling events.

Back in 2006, our review listed near 20 proteins that had been recognized as MaxiK α-

subunit partners including plasma membrane and cytosolic proteins [41]. Today this list has

grown to the hundreds thanks to the establishment of the proteomics technology which has

revealed that MaxiK channel is in complex with proteins not only at the plasma membrane

or cytosol but also with proteins in organelles like the endoplasmic reticulum, nucleus and

mitochondria [24]. Interestingly, this approach has revealed the association of MaxiK

channels with kinases relevant for cell death and survival, like Akt, glycogen synthase

kinase-3β (GSK-3β) and phosphoinositide-dependent kinase-1 (PDK1) opening the

intriguing possibility that MaxiK channels are also operators of cell life and dead. In

addition, proteins that associate with MaxiK channels also include proteins linked to other

cellular processes like metabolism, development, traffic, transport and apoptosis (Figure 3)

[71].

Many protein partners of MaxiK α-subunit have been detected/confirmed by

coimmunoprecipitation, including Akt, GSK-3β, PDK1, Src, β2-adrenergic receptors,

transient receptor potential canonical 1 (TRPC1), and its modulatory β1- and γ1-subunits
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among others [30, 41, 71, 91]. In these cases, a direct protein-protein interaction has not

been established and, thus indirect interactions cannot be strictly ruled out. Table 1

summarizes those proteins where direct protein-protein interactions have been reported or

where MaxiK regions critical for protein associations have been identified. Although many

of these interactions may be conserved in different cell types, a big challenge is to determine

where, how and when MaxiK channels interact with specific proteins for cell-specific

functions and how failures in these interactions may lead to disease.

New views in MaxiK channel physiology and human disease

The majority of studies have been directed to elucidate the physiological role of MaxiK

channels expressed at the plasma membrane. However, MaxiK channels are also expressed

in intracellular organelles like the mitochondria (Fig. 2D–G), where their physiological role

is beginning to be understood [24, 70]. These advances together with the linkage of MaxiK

channel defects to human disease are highlighted below.

Role in mitochondria—In cardiac mitochondria, pharmacological evidence indicates that

MaxiK channel opening improves mitochondrial respiratory function and protects the heart

from ischemic insult [4, 90]; in mitochondria from an astrocytoma cell line, their electrical

activity is coupled to the respiratory chain [6], and in pulmonary artery smooth muscle,

11,12-epoxyecidosatrienoic acid induced vasoconstriction and mitochondrial depolarization

has been linked to mitochondrial MaxiK (mitoBKCa) and its association with its β1-subunit

[40].

The molecular correlate of mitoBKCa was unknown until recently. As expected from its

electrophysiological properties, we found that mitoBKCa is encoded by the same gene

(Kcnma1) encoding its plasma membrane counterpart and is formed by α-subunits of about

140 kDa. A C-terminal spliced exon (named after the 3 last aa DEC) (Fig. 1) is required for

the channel mitochondrial targeting. Using the MaxiK α-subunit knockout animal, we also

confirmed that opening of these channels with NS1619 protects the heart from ischemic

insult. Mechanisms underlying this protection are enhanced performance of mitochondria

and cardiac neurons [68, 87]. These findings together with the fact that MaxiK channels

associate with the salvage kinase Akt and with GSK3β [71] an integrator of signals whose

phosphorylation prevents mitochondrial permeability transition are strong arguments in

favor of a role of MaxiK channels in cardioprotection and support a possible role in cell

survival.

Role in human disease—During the last decade, genetic studies in humans have

revealed mutations and genomic amplification of MaxiK channel gene leading to a variety

of diseases involving the brain, metabolism, and cell proliferation/migration.

i. Brain disease. Paroxysmal movement disorder and generalized epilepsy was the

first disorder correlated to a mutation in MaxiK channels. The mutation within the

RCK1 domain neutralizes a negatively charged residue (D369-G). Out of 13

individuals affected with the disease, all carried the neutralizing mutation, which

produces channels with higher sensitivity to Ca2+ in heterologous expression. This

feature would accelerate the repolarization of action potentials and explain an
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increase in neuronal firing rate in the disease [16]. MaxiK channel dysfunction has

also been associated with autism and mental retardation. These maladies have been

related, in one case, to a chromosomal translocation event that resulted in silencing

of one copy of the gene and thus, reduced MaxiK expression; while in another case

a conserved mutation (A73-V) was found in the first intracellular loop [32].

ii. Metabolic disease. Genome-wide association analyses identified the MaxiK

channel gene as linked to human obesity in 5 from 6 case-control cohorts (total of

4214 obese vs. 5417 lean individuals). Moreover, MaxiK transcript expression was

increased in adipose tissue and isolated fat cells from obese individuals [22]. These

findings open a new line of research to understand the metabolic pathways linked

to MaxiK expression and function.

iii. Cardiovascular disease. Severe hypertension has been linked to a polymorphism in

an intronic sequence of MaxiK channel gene, and a haplotype with an additional

polymorphism (in the fourth exon, C864T) has been linked to increased risk of

myocardial infarction in addition to systolic and general hypertension. However,

the C864T haplotype corresponds to a synonymous single nucleotide

polymorphism Phe229Phe, and the polymorphism in the intronic sequence did not

generate a MaxiK channel isoform. Although there seems to be no functional

effects, these mutations may serve as genetic markers of increased risk for

cardiovascular disease [78]. In line with the view that the MaxiK channel itself is

not modified in human hypertension, a recent report from Chinese patients with

hypertension show that this was the case; instead in this population, MaxiK channel

regulatory β1-subunit was the one that was reduced causing the expected decrease

in the channel Ca2+ sensitivity and voltage-dependence of activation [94].

iv. Cancer. MaxiK channel overexpression has been correlated with the malignancy of

human gliomas; accordingly, its inhibition reduced glioma cell growth. A key

factor in the development of glioma seems to be a distinctive 34 aa splice variant

insert (Fig. 1, arrow, sequence in red), which to our knowledge has not been

detected in healthy cells. This 34 aa insert is in tandem with a previously reported

29 aa spliced exon (Fig. 2, arrow, sequence in gray) producing channels with

higher Ca2+ sensitivity [39, 85]. The glioma MaxiK isoform (gBK) is expressed at

the cell membrane, mitochondria, Golgi, and endoplasmic reticulum and is also

found in other types of tumor cell lines derived from duodenal, colon,

hepatocellular and pancreatic cancers. Importantly, this molecular information has

provided the tools to generate gBK peptide-specific cytotoxic T lymphocytes and

kill cells expressing gBK [20].

Amplification of MaxiK channel gene is another mechanism that has been correlated with

cancers; specifically with prostate and breast cancers. Obviously, it is important to elucidate

the mechanisms triggered by this genomic amplification as breast cancers associated with

MaxiK gene amplification are those of high tumor grade, high cell proliferation and poor

prognosis [9, 53]. Moreover, it would be relevant to determine the molecular composition of

MaxiK in breast cancer cells and to determine whether it contains the gBK isoform.
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Concluding Remarks

From the stand point of cell signalling, it is intriguing the multitude and variety of molecules

that can form complexes with MaxiK channels underscoring the necessity to understand the

dynamics of these connections and their physiological consequences. One highlight in this

regard, is the interaction of MaxiK channels and G-protein coupled receptors with opposite

functions in smooth muscle, relaxation and constriction. When do these interactions take

place and are they affected in disease or during aging are few of the questions that would be

important to address in the future. At the molecular level, the soluble C-terminus of the

channel α-subunit represents two thirds of the protein, and thus, may provide a significant

surface contact for direct protein-protein interactions. Future studies need to identify which

of the hundreds of proteins found by proteomics to associate with MaxiK channel α-subunit,

may serve as scaffolds directly binding to the channel and thus, facilitating the association

with other proteins and/or relay of signals to other signalling clusters.

Finally, the increasing evidence about the role of MaxiK channels in human disease

including obesity and cancer offer opportunities to understand the mechanisms of human

disease and design new strategies for their potential cure.
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Figure 1. MaxiK α-subunit sequence: interacting regions and protein partners
Amino acid sequence ending with QEERL corresponds to “insertless” hSlo; numbering

starts at the third Methionine (M3) (NCBI # U11058). Highlighted are 3 possible start sites

M1–M3 [83], the 7 transmembrane domains S0–S6, the pore region, the whole C-terminus,

the regulator of K+ conductance (RCK) domains 1 (RCK1; gray) and 2 (RCK2; pink), the

calcium bowl, export signals (dashed double arrows, yellow), and examples of regions

reported to date to be involved in direct or indirect protein interactions. For a complete list

of interacting proteins and references see Table 1. For clarity, interacting sequences in Table

2 that include large portions of the protein were omitted in this figure. Arrows mark the

position of the glioma-specific 33 aa splice insert (red) upstream a 29 aa splice insert (gray),

of the 59 aa splice insert encoded by the STREX exon, of the 27 aa splice insert known as

ALCOREX [57], and of the 50 aa C-terminal exon named after the last three amino acids,

DEC. Three C-terminal isoforms are shown; the sequences of the DEC containing isoform

correspond to the mouse brain isoform, mbr5 [66]. For the crystal structure of the C-

terminus, see [96].
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Figure 2. MaxiK α-subunit expression at the plasma membrane in smooth muscle cells and in
cardiac mitochondria
A–C. Freshly dissociated human coronary arterial myocyte double-labeled with anti-MaxiK

monoclonal (A) and anti-thromboxane A2 receptor polyclonal (B) antibodies. The overlay

(C) shows co-localization of both proteins at the plasma membrane. D. Super-resolution

fluorescence images of Percoll-purified cardiac mitochondria [69] labeled for endogenous

MaxiK α-subunit (mitoBKCa) with anti-MaxiK polyclonal antibody as described in [68].

Note distinct punctae of mitoBKCa clusters. Images were acquired with a custom-made

stimulation emission depletion (STED) microscope and pseudocolored for presentation. E–
F. Low resolution confocal fluorescence images of purified mitochondria showing the

specificity of the anti-MaxiK antibody (green) with only background signals in mitochondria

from the knockout animal (Kcnma1−/−). The inset in F shows the same field double labeled

with mitotracker (red). G. Electron micrograph of the purified mitochondria preparation.

Images were acquired at 0.0575 μm/pixel in (A–B, E–F) and at 0.0035 μm/pixel in (D), and

were median filtered to reduce non-specific background as described earlier [36].
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Figure 3. MaxiK channel potential functions uncovered by associated protein partners
Proteomic analyses have revealed that MaxiK channels not only associate with β and γ

regulatory subunits but also with a large variety of proteins involved in diverse cellular

functions [24, 71]. Note that proteomics cannot differentiate between direct (binding to the

channel) or indirect interactors. We hypothesize that MaxiK α subunit association with some

proteins may be relatively steady like with regulatory α and γ subunits, while association

with other partners (symbols) could be dynamic (incoming arrows); in both cases,

interactions may be tissue-specific and distinct depending on gender, age and health-status

among others. Examples of MaxiK associated proteins known to be involved in: 1) signaling

are 14-3-3 proteins, visinin-like protein 1 [71], G-protein coupled receptors [35]and kinases

like PKA complex [75], and Akt (protein kinase B); 2) traffic are tubulin [54], calretinin

[71], the small GTPase Rab11b [72], actin [103]; 3) development/differentiation are

prohibitin, Thy-1 membrane glycoprotein precursor [71], Syk [59]; in transcription/

translation are protein C14orf166 homolog and heterogeneous nuclear ribonucleo-proteins

A2/B1 [72]; 4) metabolism are mitochondrial precursors of fumarate hydratase and

superoxide dismutase [Mn], isocitrate dehydrogenase [71]; 5) apoptosis are glycogen

synthase kinase-3β (GSK-3β) and Akt [71]; and 6) transport are Na+/K+ ATPase alpha-1

subunit, vacuolar protein sorting associated protein 28 homolog (VPS28) [71].
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Table 1

MaxiK α subunit domains and protein complexes

Interacting proteins MaxiKα interaction/association motif Method Co-IP or co-labeling Ref

Transmembrane proteins

Direct Interactions

β2-subunit S1 transmembrane domain (aa 112GRVL--YFID133,
#U11058)

prokaryote two-hybrid system in vitro [50]

Thromboxane A2 receptor voltage-sensing-conduction cassette including N-
terminus (aa 1MDAL---YVPE321, #U11058)

FRET coronary smooth muscle [35]

Intracellular proteins

Direct interactions

FAK Whole C-terminus (388IELI---EERL1178, #U13913) yeast two-hybrid system osteosarcoma cells (MG63) [58]

Microtubule-associated protein1A partial C-terminus (aa 746–1144*) yeast two-hybrid system brain, Purkinje cells [55]

β-catenin “S10” hydrophobic segment (941PFAC---TYF962,
numbers as in [61])

yeast two-hybrid system chicken hair cells [33]

Cereblon Partial C-terminus (encompassing RCK1 and part of
RCK2 domains upstream the Ca2+-bowl; aa 394–955
of rSlo*)

yeast two-hybrid system brain, hippocampal neurons [23]

ANKRA C-terminal end (downstream the Ca2+ bowl,
aa 1019SLM--MVYR1210, #AF135265.1)

yeast two-hybrid system brain [37]

Actin FGIYRLRDAHLSTPSQCTKRYVITNPPYEFELVPT purified proteins chick ciliary ganglion [103]

cPLA2 AKPGKLPLVSVNQEKNSGTHILMITEL (in 27 aa
splice insert or ALCOREX)

mammalian two-hybrid system GH3 cells [34]

Rab11b region excluding N- and C-terminus yeast two-hybrid system chick cochlea [72]

Cortactin, CRKL 656P and 667P in RxxPxxxP proline rich motifs overlay assay brain [74]

MAGI-1 C-terminus DEC variant (1111–1171*); sequence in
Fig. 2 is as in [43]

yeast two-hybrid system podocyte cell line [60]

Cavβ1 C-terminus fragments including Ca2+ bowl (884T–
N936) or non-canonical SH3 binding domain (E637–
D677)*

yeast two-hybrid system and
purified proteins

chick ciliary ganglion
neurons

[104]

Direct/Indirect?

Nephrin VEDEC variant* GST pull-down assays podocyte cell line [25]

Syntaxin 1A S0–S1 loop/C-terminus (336YSAVSG----VEDEC1166;
numbers as in Fig. 2)

co-IP brain [12]

Caveolin-1 Caveolin binding motif, YNMLCFGIY co-IP aorta [2]

Tubulin RCK2 to C-terminal end (679MDS---QEERL1113,
#U11058)

pull-down with purified
protein

astrocytes [54]

PKA complex (PKA indirect) leucine zipper 1,
LAELKLGFIAQSCLAQGLSTMLANLFSMRSFIKIE

co-IP brain [75]

SyK ITAM, YGDLFCKALKTYNML co-IP osteosarcoma cells(MG63) [59]

aa, amino acid; ANKRA, Ankyrin-repeat family A protein; co-IP, co-immunoprecipitation; cPLA2, cytosolic phospholipase A2; CRKL, Crk-like
protein; FAK, focal adhesion kinase; ITAM, immunoreceptor tyrosine-based activation motif; MAGI-1, membrane-associated guanylate kinase
with inverted orientation protein-1; PKA, protein kinase A; SH3, Src homology 3; ?, in these cases a direct or indirect interaction has not been
demonstrated; #, NCBI accession number; *, NCBI accession number not given (amino acid numbers are as given in publications and may not
coincide with template used in Fig. 2)
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