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Abstract

In smooth muscle cells (SMCs), the intracellular chloride ion (Cl−) concentration is high due to

accumulation by Cl−/HCO3− exchange and Na+, K+, Cl− cotransportation. The equilibrium

potential for Cl− (ECl) is more positive than physiological membrane potentials (Em), with Cl−

efflux inducing membrane depolarization. Early studies used electrophysiology and non-specific

antagonists to study the physiological relevance of Cl− channels in SMCs. More recent reports

have incorporated molecular biological approaches to identify and determine the functional

significance of several different Cl− channels. Both “classic” and cGMP-dependent calcium

(Ca2+)-activated (ClCa) channels and volume-sensitive Cl− channels are present, with TMEM16A/

ANO1, bestrophins and ClC-3, respectively, proposed as molecular candidates for these channels.

The cystic fibrosis transmembrane conductance regulator (CFTR) has also been described in

SMCs. This review will focus on discussing recent progress made in identifying each of these Cl−

channels in SMCs, their physiological functions, and contribution to diseases that modify

contraction, apoptosis and cell proliferation.
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Introduction

Chloride (Cl−) is the predominant extracellular and intracellular anion with intracellular

concentration [Cl−]i varying widely between different cell types. In many cells, such as frog

skeletal muscle, [Cl−]i is similar to that predicted by passive distribution determined by the

Donnan equilibrium [47]. In contrast, in vascular smooth muscle cells (SMCs), [Cl−]i is

much higher than would be expected [14]. [Cl−]i ranging from ~30 to ~50 mM has been

recorded in SMCs using a variety of techniques, including radioisotopes, fluorescent dyes

and ion-selective electrodes (see [57]). High [Cl−]i is maintained by active accumulation

through Cl−/HCO3− anion exchange and Na+, K+, Cl− cotransportation [1, 90]. The

estimated equilibrium potential for Cl− (ECl
−) is between −30 and −20 mV in SMCs [57,

66]. Physiological membrane potential (Em) in vascular and non-vascular SMCs ranges

between ~ −60 mV and ~ −40 mV [6, 44, 83, 85, 86, 118]. Cl− channel activation would

result in Cl− efflux, leading to membrane depolarization, voltage-dependent calcium (Ca2+)

channel activation, an elevation in [Ca2+]i and contraction [18, 46, 65]. In addition to
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modulation of membrane potential and contractility, intracellular Cl− has also been proposed

to regulate intracellular pH and cell volume in SMCs [14].

Cl− channels are subdivided into five families: Transmembrane protein 16 (TMEM16)/

anoctamin (ANO), bestrophins, voltage-gated Cl− channels (CLCs), cystic fibrosis (CF)

transmembrane conductance regulator (CFTR), and ligand-gated Cl− channels, including

glycine and γ–aminobutyric acid (GABA) receptors [30]. This review will summarize

knowledge of TMEM16A/ANO, bestrophins, CLCs, and CFTR due to limited evidence for

other Cl− channel members in SMCs. The predicted membrane topologies for each of these

Cl− channels are illustrated in figure 1. Ligand-gated Cl− channels have been described in

airway SMCs, where both GABAA and GlyR1 channels are expressed and functional [81,

143]. A distinct type of Cl− current (ICl,acid) activated by acidic extracellular pH has also

been reported in aortic SMCs that may be generated by CLC-3 [71, 76].

Functional significance of SMC Cl− currents

Several early studies demonstrated Cl− flux in a variety of different vascular SMC types [11,

108,124, 137]. Noradrenaline (NE) stimulated 36Cl− efflux in rat aorta, portal vein and

rabbit pulmonary arteries [11,108,124]. Subsequent findings showed that NE-induced

depolarization of rat anococcygeus muscle cells was Cl− current-dependent, endothelin (ET)

activated Cl− currents in porcine coronary artery, human mesenteric artery SMCs and

cultured aortic SMCs and histamine activated Cl− currents in rabbit pulmonary artery SMCs

[59, 121, 123].

Research using a variety of non-selective Cl− channel antagonists further supported the

concept that Cl− flux contributes to vasoconstriction. 4,4′-diisothiocyanatostilbene-2,2′-

disulphonic acid (DIDS) and indaryloxyacetic acid (IAA-94), but not niflumic acid (NFA),

hyperpolarized and relaxed pressurized rat cerebral arteries [84]. NFA reduced NE-, but not

K+-, induced contractions in rat aorta and mesenteric arteries [16, 17, 62]. Histamine-

induced depolarization and contraction were also attenuated by NFA in rabbit middle

cerebral and basilar arteries, respectively [37, 120]. IAA-94 inhibited ET-induced

vasoconstriction in cultured vascular SMCs [114]. Anion replacement has also been utilized

to strengthen functional evidence obtained using non-specific Cl− channel inhibitors.

Substitution of extracellular Cl− with methanesulfonate potentiated NE-, serotonin-,

endothelin-1- and histamine-induced, but not K+-induced contractions in rabbit basilar

arteries and rat aorta [18, 19, 62]. Lowering extracellular Cl− potentiated pressure-induced

constriction and inhibited histamine-induced contraction in rat cerebral arteries[84, 120].

Substitution with Br− and NO3
−, which are more permeant anions than Cl−, increased

contraction to NE in rat portal vein [125].

In addition to modulating SMC contractility, both volume-sensitive Cl− channels and Ca2+-

activated Cl− channels (ClCa) channels have been proposed to control SMC proliferation

[12, 138, 142]. DIDS, but not IAA-94 or 5-nitro-2,2′-dicarboxylic acid (NPPB), another

non-selective Cl− channel blocker, suppressed ET-1 induced proliferation in cultured aortic

SMCs [138]. In contrast, NPPB and IAA-94, but not DIDS, inhibited insulin-like growth

factor (IGF)-induced proliferation in porcine coronary artery SMCs [12]. Under chronic
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hypoxic conditions NFA and IAA-94 also inhibited proliferation of rat pulmonary artery

SMCs [142].

In summary, studies measuring ion flux and those using non-selective Cl− channel blockers

and extracellular anion replacement suggested that Cl− currents regulate SMC function.

More recent studies have identified some of the proteins that generate and regulate these Cl−

currents and investigated their physiological functions and pathological alterations.

Molecular Identification of Cl− channels in SMCs

1. Classic Ca2+-activated Cl− (ClCa) channels

ClCa currents have been described in a variety of SMC types, including those from human

mesenteric, rabbit ear, pulmonary and coronary arteries, rat portal vein and cultured cells

from rat pulmonary and cultured pig aorta [2, 26, 58, 64, 91, 133, 145]. Non-specific Cl−

channel blockers previously shown to modulate SMC functions were demonstrated to inhibit

whole-cell ClCa currents, supporting relevance [64]. Cl− channel blockers also inhibited

spontaneous transient inward currents (STICs) in rabbit portal vein SMCs [48]. STICS occur

due to the simultaneous activation of multiple Cl− channels by a Ca2+ spark, a local

intracellular Ca2+ transient that occurs due to Ryanodine (RyR)-mediated sarcoplasmic

reticulum Ca2+ release [53]. In some SMC types, including those from airways, Ca2+ sparks

activate both STICs and spontaneous transient outward currents (STOCs), which occur due

to the simultaneous activation of multiple large-conductance Ca2+-activated potassium

(BKCa) channels. A single Ca2+ spark can activate both ClCa and BKCa channel, eliciting an

STOC followed by a STIC [151]. STICs induce depolarization, whereas STOCs

hyperpolarize the membrane potential. Thus, bimodal regulation of ClCa and BKCa channels

by Ca2+ sparks permits fine tuning of membrane potential 150].

ClCa currents exhibit a distinct phenotype. The IV relationship is outwardly rectifying at low

intracellular Ca2+ concentrations ([Ca2+]i) [45]. Elevating [Ca2+]i linearizes the ClCa IV

relationship [65]. The relative permeability of SMC ClCa currents is SCN− > I− > Br− > Cl−

> aspartate [41]. IP3R- or RyR-mediated SR Ca2+ release, Ca2+ entry through voltage-

dependent Ca2+ channels (VDCC) and local Ca2+ influx through transient receptor potential

(TRP) channels have all been demonstrated to activate ClCa currents in SMCs [9, 64–66].

Some of these regulatory mechanisms appear to be cell type-specific, as blockers of non-

selective cation channels but not VDCCs, inhibited ClCa currents in cerebral artery SMCs

[9]. In contrast, Ca2+ entry through VDCCs activated ClCa currents in rat portal vein and

rabbit coronary artery SMCs [64, 92]. Extracellular Ca2+ removal had no immediate effect

on ClCa currents in pig aorta and rabbit ear artery and portal vein SMCs, suggesting that

external Ca2+ was not a primary direct source for activation [2, 26, 132].

Studies illustrating that Ca2+ sparks activate spontaneous transient inward Cl− currents

(STICs) in rabbit portal vein, rat coronary artery and tracheal SMCs provide direct evidence

that intracellular Ca2+ release can activate ClCa channels, at least in some SMC types [40,

51, 131, 151]. However, STICs do not occur in many SMC types, including those that

generate Ca2+ sparks and express ClCa channels. These findings indicate that some SMC

types locate ClCa channels in close proximity to sites of intracellular Ca2+ release and more
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specifically, nearby RyR channels that generate Ca2+ sparks [53]. Such organization permits

local control of ClCa channel activity. In contrast, other SMC types appear to position ClCa

channels away from Ca2+ spark sites, eliminating this regulatory mechanism.

Bestrophins, CLCs, CLCAs and a tweety-3 homolog have been proposed to generate ClCa

currents [66]. Tweety appeared to be an unlikely candidate due to its relatively high

conductance [113]. Similarly, recombinant CLCA channels generate currents that were

kinetically distinct from ClCa currents in SMCs [66]. The voltage-dependence of

recombinant bestrophins or CLCs were also dissimilar to those of SMC ClCa currents [45,

87, 111]. Recently discovered TMEM16A/ANO1 channels displayed properties similar to

native ClCa channels [10, 105, 141]. TMEM16A/ANO1 channel message and protein have

been described in rat cerebral, pulmonary and carotid artery, murine portal vein, and

cultured rat pulmonary artery SMCs [21, 72, 117]. Evidence supporting the contribution of

TMEM16A/ANO1 channels to ClCa currents include that recombinant channels and native

SMC ClCa currents exhibit similar Ca2+ dependence and IV linearization by an elevation in

[Ca2+]i (Figure 2)[10, 72, 82, 106, 117]. TMEM16A/ANO1 knockdown reduced ClCa

current density in rat cerebral artery and cultured pulmonary artery SMCs [72, 117]. Cell

swelling and membrane stretch activated TMEM16A/ANO1 currents in cerebral artery

SMCs [9]. Selective TMEM16A/ANO1 knockdown attenuated intravascular pressure-

induced cerebral artery depolarization and vasoconstriction [9]. T16Ainh-A01, a

TMEM16A/ANO1 inhibitor, relaxed methoxamine-contracted murine and human blood

vessels, suggesting that agonists can activate these ion channels to induce contraction [22].

These studies provide strong evidence that TMEM16A/ANO1 channels generate classic

ClCa currents in SMCs.

TMEM16A/ANO1 channels also appear to generate functional ClCa currents in non-vascular

SMCs. TMEM16A/ANO1 is expressed in sheep, rat and mice urethral SMCs [103].

Electronic field stimulation (EFS)- and NE-induced uterine contractions were inhibited by

NFA and exposure to Cl− free Krebs solution [103]. The authors suggested that TMEM16A/

ANO1 regulates the development and maintenance of excitatory contractile responses in

urethral SMCs [103]. TMEM16A/ANO1 is expressed in airway SMCs and activation

contributes to methacholine-induced contraction [146]. Benzbromarone, a TMEM16A/

ANO1 blocker, inhibited methacholine-induced contraction of mouse and human airway

SMCs [50]. TMEM16A/ANO1 is also expressed in interstitial cells of Cajal (ICC), which

control SMC contraction and induce rhythmic slow waves in the gastrointestinal tract [38,

49, 52, 104]. In TMEM16A knockout mice, rhythmic contractions are reduced or absent in

gastric and small intestine SMCs [49, 52].

Recent studies suggest that alterations in TMEM16A/ANO1 function contribute to

cardiovascular pathology. ClCa currents were elevated in pulmonary artery SMCs of rats

exposed to hypoxia for 7 days [70]. TMEM16A/ANO1 mRNA/protein and ClCa currents

were elevated in pulmonary artery SMCs of rats with chronic hypoxic pulmonary

hypertension (CHPH) [112]. ClCa currents and TMEM16A/ANO1 expression were also

increased in conduit and intralobar pulmonary artery SMCs from monocrotaline (MCT)-

treated rats, another pulmonary hypertension model [32]. NFA and T16Ainh-A01 both

attenuated an elevation in serotonin-induced vasocontraction in pulmonary arteries from
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both CHPH and MCT rats [32,112]. In contrast, TMEM16A/ANO1 protein and ClCa

currents were both lower in basilar artery SMCs isolated from 2-kidney, 2-clip

renohypertensive (2k2c)-rats [130]. The authors concluded that TMEM16A/ANO1 is a

negative regulator of cell proliferation and may be important in hypertension-induced

cerebrovascular remodeling.

In an ovalbumin (OVA)-sensitized mouse model of chronic asthma, TMEM16A/ANO1

expression was higher, suggesting contribution to airway hyperresponsiveness [146]. NFA

and benzbromarone prevented airway hyperresponsiveness and augmented airway SMC

contraction. Agonist-mediated contraction was also attenuated in airway SMCs of

TMEM16A/ANO1−/ − mice [146]. An increase in TMEM16A protein expression and ClCa

channel activity was observed in asthmatic mouse models and human asthmatic patients,

although this increase in protein was primarily observed in epithelial, not smooth muscle,

cells [50].

In summary, studies suggest that TMEM16A/ANO1 channels generate ClCa currents and

activation leads to membrane depolarization and constriction in both vascular and non-

vascular SMCs. Diseases are associated with altered TMEM16A/ANO1 expression and

functionality, with differential changes described that may depend on multiple factors,

including the pathology involved.

2. cGMP-dependent ClCa channels

A ClCa current distinct from classic ClCa that requires cGMP for Ca2+ activation was

initially discovered in rat mesenteric artery SMCs [93]. Subsequently, this current has been

described in multiple vascular and colonic SMCs [55, 73, 74]. cGMP-dependent ClCa

currents are voltage-independent and require lower [Ca2+]i for activation than classic ClCa

currents [74, 94]. Halide permeability is also different to classic ClCa currents, at Br− > I− >

Cl− [74, 94]. cGMP-dependent ClCa currents are highly sensitive to Zn2+ and relatively

insensitive to both NFA and DIDS, effective classic ClCa blockers [73]. cGMP-dependent

and classic ClCa current densities are approximately equal in SMCs from many vascular

beds, although deviations from this stereotype have been described [74].

cGMP-dependent ClCa currents should induce membrane depolarization and

vasoconstriction. Such an effect is counterintuitive to the recognized actions of cGMP-

mediated PKG activation, which activates several K+ channels, including BKCa, leading to

membrane hyperpolarization and relaxation, [73,116]. Conceivably, cGMP-dependent ClCa

currents act as a break to oppose the cGMP-mediated vasodilation, permitting an additional

level of fine tuning of membrane potential and contractility.

The molecular identity of cGMP-dependent Cl− channels is unclear, but bestrophins, a

family of four proteins (1 through 4), can control this current. Cl− currents generated by

recombinant bestrophins are Ca2+-activated, but do not resemble those of classical ClCa

(Figure 3)[4, 13, 97, 111]. Bestrophin-3 mRNA and protein are present in rat mesenteric

arteries, rat aorta and cultured A7r5 cells [75]. In contrast, bestrophin-1 and -2 are weakly

expressed in these tissues [75]. In line with these observations, studies have focused

primarily on identifying physiological functions of bestrophin-3 in SMCs [8]. Bestrophin-3
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is found in rabbit, but not rat, pulmonary arteries suggesting species-specific expression

[66]. The presence of bestrophin protein has been described to match that of cGMP-

dependent ClCa currents in SMCs. Bestrophin-3 knockdown reduced cGMP-dependent ClCa

currents in cultured A7r5 cells and rat mesenteric artery SMCs, but did not alter classic ClCa

currents [75]. Vasomotion in rat mesenteric arteries was reported to have a strong Cl−-

dependency that required cGMP [5, 93]. Replacement of extracellular Cl− with less

permeable aspartate inhibited vasomotion in rat mesenteric arteries [5]. Consistent with a

role for bestrophins, bestrophin-3 knockdown reduced synchronized vasomotion, but not

tonic contractility, in rat mesenteric arteries [8]. ClCa current has not been uniformly

observed after bestrophin-3 expression in heterologous expression systems, therefore it is

unclear whether the protein forms a prototypical ion channel or is an accessory subunit [88,

96].

In addition to regulating vasomotion, bestrophin-3 has been demonstrated to inhibit H2O2-

induced apoptosis in basilar artery SMCs [55]. Bestrophin-3 knockdown reduced cell

viability, whereas bestrophin-3 overexpression prevented apoptosis. Supporting a protective

role, bestrophin-3 overexpression reduced ER stress-induced cell death in cultured renal

epithelial cells [68].

In summary, both cGMP-dependent and independent ClCa currents have been observed in

vascular SMCs [74]. Data indicate that two distinct ClCa channels generate these currents,

including that bestrophin-3 tissue distribution closely matches that of cGMP-dependent ClCa

currents [75]. The majority of research on bestrophins in SMCs has been in mesenteric

arteries. Future studies should investigate bestrophin functions in other vascular beds and

whether bestrophins form a prototypical ion channel or an accessory subunit to another ion

channel protein. Although bestrophin-3 locates near the cell surface in mesenteric artery

SMCs, other bestrophin family members (bestrophin-1 and -2) are intracellular proteins

when expressed in heterologous expression systems[8, 61, 97]. Conceivably, in SMCs of

different vascular beds, other bestrophin proteins may be expressed and perform additional

physiological functions.

3. Volume-Sensitive Cl− Channels

In many cell types, cell swelling stimulates compensatory K+, Cl− and H2O efflux as a

mechanism to reestablish cell volume [31]. Volume-sensitive Cl− channels are expressed in

many cell types, including vascular SMCs, and appear to contribute to this process [42].

Although controversy exists as to whether Cl− channel-3 (ClC-3), a member of the ClCn

gene family, operates as a prototypical ion channel, this protein has been proposed to act as

a volume-sensitive Cl− channel (Figure 4)[54]. Currently, ClC-3 is the only molecular

candidate for a volume-sensitive Cl− channel in SMCs. Therefore, evidence supporting

ClC-3 will be summarized in this section.

ClC-3 message was detected in canine pulmonary and renal artery SMCs [140]. Hypotonic

solution activated an outwardly rectifying Cl− conductance with a similar phenotype to

cardiac myocyte ClC-3, including anion permeability and inhibition by DIDS and

extracellular ATP [27, 140]. Similar data were obtained when studying cultured human

aortic and coronary artery vascular SMCs, and isolated canine pulmonary artery and colonic
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SMCs [25, 28, 63]. ClC-3 overexpression elevates volume-regulated Cl− currents in aortic

SMCs [76]. Intracellular dialysis of ClC-3 antibodies abolished volume-activated Cl−

currents in canine pulmonary artery SMCs [127]. ClC-3 knockdown inhibited volume-

sensitive Cl− currents in A10 vascular SMCs [129, 149]. PKC activators differentially

regulate swelling-activated Cl− currents in rabbit portal vein versus canine pulmonary artery

SMCs and cardiac myocytes, an effect that may be attributed to differences in intracellular

signaling pathways involved [148]. ClC-3 expression and volume-sensitive Cl− currents

were larger in femoral artery than vein SMCs, perhaps due to differences in venous and

arterial blood pressures to which these vessels are exposed [56].

Other evidence questions whether ClC-3 acts as a volume-sensitive Cl− channel in SMCs.

ClC-3 expression in Xenopus oocytes and HEK-293 cells did not produce volume-sensitive

Cl− currents, suggesting results may be cell type-dependent [33, 76, 109]. When expressed

in immortalized cell lines, ClC-3 was an intracellular channel that was not volume-regulated

[69, 89, 135]. There is also variability in the contribution of ClC-3 to ClCa currents in

different cell types. For example, ClC-3 knockout reduced ClCa currents in aortic SMCs, but

had no effect in parotid acinar cells [3,36]. Cell-specific differences may arise due to

variability in CaMKII activation, as ClC-3 regulation is CaMKII-dependent in aortic SMCs

[36]. Further uncertainty derives from data indicating that volume-sensitive Cl− currents in

pulmonary artery SMCs and other cell types, including cardiac myocytes, are unaltered in

ClC-3 knockout (Clcn3−/ −) mice [3, 39, 110, 128, 139]. One explanation for this finding

may be that ClC-3 knockout leads to compensatory upregulation of other volume-regulated

ion channels [139]. Consistent with this concept, mRNA for ClC-1 and ClC-2, but not ClC-4

or ClC-5, is elevated in Clcn3−/− mice atrial myocytes [139].

Volume-regulated Cl− channels may depend on an association between ClC-3 and NADPH

oxidase (Nox)-dependent reactive oxygen species (ROS) signaling in SMCs [76]. ClC-3

locates to membrane of organelles, including endosomes, where it regulates Nox1-mediated

ROS generation [43, 80]. ClC-3 acts as a Cl−/H+ exchanger that neutralizes electron flow

generated by Nox1 [80]. SMCs from ClC-3−/− mice did not generate endosomal ROS or

activate transcription factor nuclear factor (NF)-κB in response to tumor necrosis factor

(TNF)-α and interleukin (IL)-1β [80]. As a result, volume-regulated Cl− current was not

activated by TNF-α and IL-1β in ClC-3−/ − mice [76].

Evidence has been provided that ClC channels control SMC function. In pig artery SMCs,

ClC-2 knockdown suppressed IGF-1-induced proliferation [12]. ClC-3 knockdown inhibited

endothelin-1 (ET-1)-induced aortic SMC proliferation by arresting the cell cycle [115, 126].

Aortic SMCs from Clcn3−/− mice proliferated more slowly than those from wild-type

controls [80]. TNF-α and carotid artery injury both stimulated ClC-3 expression with injury-

induced carotid artery neointimia formation reduced in Clcn3−/− mice [15]. ClC-3

overexpression inhibited apoptosis in pulmonary artery SMCs [20].

ClC-3 is associated with changes in SMC function during disease. A hypotonicity-induced

decrease in [Cl−]i and an increase in rat basilar artery SMC size correlated with hypertension

in 2k2c rats, suggesting that volume-sensitive Cl− channels are more active and may be

involved in vascular remodeling [107]. ClC-3 mRNA and protein were both elevated in
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pulmonary artery SMCs of rats with experimentally-induced pulmonary hypertension [20].

Static pressure stimulated ClC-3 expression, volume-sensitive Cl− currents and proliferation

in aortic SMCs and these changes were attenuated by Cl− channel blockers and ClC-3

knockdown [95]. Ca2+-independent Cl− currents, but not ClCa currents, were larger in

proliferating pulmonary artery SMCs from rats exposed to hypoxia, suggesting that

antagonists of this current may be useful in the treatment of pulmonary hypertension [70].

Volume-sensitive Cl− currents increased as femoral artery SMCs switched from a contractile

to proliferative state during vascular remodeling [56]. ClC-3 mRNA and protein were higher

in aortic SMCs of diabetic rats than controls, suggesting that the channel may be associated

with pathology [34]. Although the contribution of ClC-3 to volume-regulated Cl− currents is

controversial and requires additional study, ClC-3 may represent a therapeutic target in

SMC-associated diseases, including during proliferative vascular disease.

In summary, whether ClC-3 generates volume-sensitive Cl− channels in vascular SMCs is

controversial. It is unclear whether ClC-3 is located primarily intracellular or in the plasma

membrane. This uncertainty arises, in part, due to the presence of swelling-activated Cl−

currents in cells of Clcn3−/− mice [3, 76]. However, ClC-3 is expressed in SMCs and both

knockdown and knockout result in physiological changes [140]. ClC-3 expression levels are

also altered in disease states. Further studies are required to determine SMC CLC-3 cellular

localization and whether ClC-3 is a Cl− channel or an accessory protein.

4. CFTR

The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated ATP-

gated anion channel, has primarily been studied in epithelial cells, where it was originally

identified [98]. CFTR channels have subsequently been found in a number of other cell

types, including neurons, cardiac myocytes and endothelial cells [35, 119, 136]. CFTR

functions in SMCs were initially proposed from experiments using highly non-specific

pharmacological modulators [23, 67, 147]. Subsequent studies using immunofluorescence

and Western blotting demonstrated CFTR expression in rat thoracic aorta and

intrapulmonary artery [101, 102]. cAMP pathway and CFTR activators both activated iodide

efflux in cultured vascular SMCs and relaxed precontracted, depolarized endothelium-

denuded aortic and intrapulmonary artery rings via a mechanism sensitive to CFTRinh-172, a

more selective CFTR blocker[100,102]. cAMP pathway agonists and pharmacological

CFTR activators stimulated iodide efflux in depolarized cultured aortic SMCs of wild-type

mice, but not in cells of CFTR−/− mice [100]. Vasoconstrictors also contracted aortic rings

from CFTR−/− mice more than those from CFTR+/+ mice [100]. These studies suggested that

stimulation of the cAMP pathway and CFTR activation was functional when the SMC

membrane potential was more positive than the ECl. Under this condition, CFTR channel

activation appears to oppose vasoconstriction. A study demonstrating that myogenic tone is

enhanced in both CFTR−/− cerebral and mesenteric arteries supports the concept that CFTR

activation hyperpolarizes membrane potential [77].

CFTR is also expressed in non-vascular SMCs [78, 122]. cAMP pathway agonists and

CFTR activators stimulated iodide efflux and induced CFTRinh-172-sensitive relaxation of

tracheal SMCs [122]. CFTR knockdown attenuated histamine-induced intracellular Ca2+
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release in airway SMCs [78]. CFTR−/− mice also exhibit ileal SMC phenotypes that vary

when studied on different mouse strains [99]. Furthermore, CFTR channel knockout results

in small intestine circular smooth muscle dysfunction 7 days postnatal in mice [24].

SMC dysfunction, including bronchoconstriction, airway hyperresponsiveness, gastric

dysmotility and intestinal obstruction may contribute to the cystic fibrosis disease phenotype

[78]. Thus, CFTR modulators may have therapeutic benefit by acting on airway SMCs.

Conceivably, CFTR activators may also have antihypertensive actions, although many

questions still remain regarding function in SMCs. CFTR knockout may induce many

different compensatory mechanisms that could modify contractility. Conceivably, CFTR

may regulate other Cl− channels in vascular SMCs. CFTR expression inhibits both volume-

sensitive Cl− and ClCa current in bovine pulmonary artery endothelial cells and upregulation

of its expression results in a corresponding downregulation in both channels in recombinant

cells [60, 123, 134]. Whether similar regulating mechanisms exist in SMCs is unclear, but

possible.

Importantly, CFTR channels have not been directly measured in SMCs using

electrophysiological techniques, including patch-clamp electrophysiology. Similarly, SMC-

specific inducible CFTR−/− knockout mice should be studied and systemic blood pressure

measurements performed. Such data would provide stronger support for physiological

functions of vascular SMC CFTR.

Conclusions

Research has focused primarily on discovering the molecular identity, physiological

functions and pathological significance of cation channels expressed in SMCs. In contrast,

little is known of anion channels, specifically Cl− channels that are expressed in SMCs. This

knowledge gap has arisen, in part, due to a lack of specific Cl− channel modulators and

uncertain molecular identity of the proteins present. Recent discoveries of TMEM16A/

ANO1, bestrophin, ClC-3 and CFTR expression in SMCs has provided new insights (Figure

5). Identification of these proteins has permitted the use of molecular biology techniques to

inhibit Cl− channel expression and study effects on SMC function. Evidence suggests that

multiple Cl− channel types are expressed in SMCs. These channels can control physiological

functions, including contractility and proliferation, and can contribute to SMC pathologies.

Future Directions

Future studies should aim to identify intracellular signaling pathways that regulate different

Cl− channels in SMCs and downstream functional effects of such modulation. Many ion

channels have one or more auxiliary and regulatory subunits and these proteins can, in some

cases, exhibit SMC-specific expression (e.g. KCa channel β1 subunits [7]). It is possible that

Cl− channels have auxiliary subunits, although this remains to be determined. Similarly,

whether some proteins identified are pore-forming Cl− channels or accessory subunits is

unclear, including some bestrophins and ClC proteins. Similarly, different Cl− channels may

interact and regulate each other directly, for example through heteromultimer formation, and

indirectly, via signaling networks. Many of these research directions will benefit from the
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discovery of specific Cl− channel modulators and animals with inducible, SMC-specific

genetic alterations of the proteins under investigation. The next decade should see a

significant increase in knowledge of Cl− channel signaling, physiology and pathology in

SMCs.
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Fig 1. Predicted membrane topologies of Cl− channels described in vascular SMCs
TMEM16A/ANO1 was adapted from [144], although an alternative membrane topology has

been suggested [144]. Bestrophin modified from ref [79], ClC-3 from ref [29] and CFTR

from ref[152].
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Fig 2. Original electrophysiological recordings of recombinant TMEM16A/ANO1 and SMC
ClCa currents
Whole-cell currents of TMEM16A-expressing HEK-293 cells in different free [Ca2+]i [106].

Reproduced with permission, from Scudieri P, Sondo E, Caci E, Ravazzolo R, Galietta LJV,

(2013), (Biochem J), (452), (443–455). © the Biochemical Society. Whole-cell recordings of

Cl− currents in cerebral artery SMCs with 200 nM and 1 μM free [Ca2+]i (adapted from ref

[117]).
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Fig 3. Recombinant bestrophin-3 and SMC cGMP-dependent ClCa currents
Whole-cell mBest3 currents expressed in COS-7 cells at a [Ca2+]i of 500 nM [88]. Adapted

with permission from O’Driscoll KE, Hatton WJ, Burkin, HR, Leblanc N, Britton FC (2008)

Expression, localization and functional properties of Bestrophin 3 channel isolated from

mouse heart. Am J Physiol Cell Physiol. 295: C1610–C1624 © the American Physiological

Society (APS). Whole-cell niflumic acid (NFA)-insensitive cGMP-dependent ClCa current

recorded in a mesenteric artery SMC [5]. Adapted with kind permission from Springer

Science+Business Media: Pflügers Archiv European Journal of Physiology, Vasomotion has

chloride-dependency in rat mesenteric small arteries, 457, 2008, 389–404, Boedtkjer DM,

Matchkov VV, Boedkjer E, Nilsson H, Aalkjaer C, Figure 7.
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Fig 4. Recombinant ClC-3 and SMC volume-regulated Cl− currents
Osmotic regulation of whole-cell currents recorded from gpClC3-transfected NIH/3T3 cells

under isotonic, hypotonic and hypertonic conditions [27]. Adapted by permission from

Macmillan Publishers Ltd: [NATURE] (Duan D, Winter C, Cowley S, Hume JR, Horowitz

B. Molecular identification of a volume-regulated chloride channel 390:417–421), copyright

(1997). Volume regulation of whole-cell currents recorded from A10 vascular SMCs under

similar conditions [149]. Reproduced with permission from Zhou JG, Ren JL, Qiu QY, He

H, Guan YY (2005) Regulation of intracellular Cl− concentration through volume-regulated

ClC-3 chloride channels in A10 vascular smooth muscle cells. J Biol Chem 280:7301–730.

© 2008 The American Society for Biochemistry and Molecular Biology. All rights

reserved.”
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Fig 5. Cl− channels present in vascular SMCs
Cl− accumulates in SMCs due to the Na+-K+-Cl− co-transporter (NKCC1) and the Cl−-HO3

−

exchanger-2 (AE2). cGMP-dependent and independent ClCa channels, a volume-sensitive

Cl− channel and the cystic fibrosis transmembrane conductance regulator (CFTR) have been

identified. The molecular identity of the first three channels has been proposed to be

bestrophin, TMEM16A/Ano1 and ClC-3, respectively. Numerous mechanisms of Ca2+

activation of ClCa channels in vascular SMCs have been suggested, including IP3R- or RyR-

mediated SR Ca2+ release, Ca2+ entry through voltage-dependent Ca2+ channels (VDCC)

and local Ca2+ influx through non-selective cation channels (NSCC). Activation of these

channels leads to Cl− efflux and subsequent depolarization of the cell membrane that

activates voltage-dependent Ca2+ channels (VDCC). ClC-3 channels have been proposed to

be activated by membrane swelling. ClC-3 is present in the plasma membrane and in

intracellular compartments, including endosomes. Endosomal ClC-3 channels may regulate

volume-regulated Cl− channels via ROS production. CaMKII inhibits TMEM16A and

activates ClC-3 channels. CFTR is a cAMP-activated ATP-gated anion channel that appears

to be functional when the SMC membrane potential becomes more positive than the Cl−

equilibrium potential. Under this condition, CFTR channel activation would lead to Cl−

influx and oppose vasoconstriction.
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