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Abstract This study aimed to evaluate how well fluid reason-
ing can be predicted by a task that involves the monitoring of
patterns of stimuli. This task is believed to measure the effec-
tiveness of relational integration—the process that binds mental
representations into more complex relational structures. In
Experiments 1 and 2, the task was indeed validated as a proper
measure of relational integration, since participants’ perfor-
mance depended on the number of bindings that had to be
constructed in the diverse conditions of the task, whereas
neither the number of objects to be bound nor the amount of
elicited interference could affect this performance. In
Experiment3, by means of structural equation modeling and
variance partitioning, the relation integration task was found to
be the strongest predictor of fluid reasoning, explaining vari-
ance above and beyond the amounts accounted for by four
other kinds of well-established working memory tasks.

Keywords Relational integration .Workingmemory . Fluid
reasoning

Fluid reasoning (fluid intelligence, Gf), most often assessed
with matrix problems or visual analogies (Snow, Kyllonen,
and Marshalek 1984), has been assumed to be the core compo-
nent ability in most of the influential models of human intelli-
gence (seeMcGrew 2009). Because of the fact that measures of
working memory capacity (WMC) appear to most strongly
predict Gf, for the last 20 years most researchers’ views (e.g.,

Cowan 2001; Kane et al. 2007a; Oberauer et al. 2007) have
converged on the idea that Gf primarily relies on working
memory (WM)—a mechanism for active maintenance and
transformation of a limited amount of information crucial for
the current task (Cowan 2001).

However, several different methods have been developed
to tap WMC. A classic method, which was derived from the
research on short-term memory (STM), involves tasks that
require memorizing a set of several stimuli, and then either
recalling that set (i.e., recall/span tasks) or deciding whether a
subsequent stimulus was or was not drawn from it (e.g., the
Sternberg task or the change detection paradigm). Despite
early skepticism regarding the plausibility of STM tasks as
bothWMCmeasures and Gf predictors (e.g., Engle, Tuholski,
Laughlin, and Conway 1999), more recent studies have sug-
gested that proper versions of these tasks (i.e., excluding
mnemotechniques like chunking and phonological rehearsal)
can be very useful tools in WM and Gf research. It has been
found that the number of items that people can successfully
maintain in WM predicts a substantial part of variance in Gf
(e.g., Colom, Abad, Quiroga, Shih, and Flores-Mendoza
2008; Unsworth and Engle 2007b).

Another class of paradigmatic WM tests, called complex
span tasks , combine the maintenance of several stimuli for later
recall with a number of simple manual decisions, and appear
especially popular in psychometric research (see Conway et al.
2005; Unsworth and Engle 2007b). Because these tasks also
predict various measures of executive control, like error rates in
the antisaccade task (Unsworth, Shrock, and Engle 2004) and
lapses of attention in the psychomotor vigilance task (Unsworth,
Redick, Lakey, and Young 2010), some investigators (e.g.,
Burgess, Gray, Conway, and Braver 2011; Kane et al. 2007a)
have proposed that the performance in both complex span tasks
and Gf tests depends primarily on the effectiveness of domain-
general control over attention. In consequence, tasks that do not
require any memorization, but instead impose a strong load on
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executive processes, like the antisaccade task, have also been
used with some success as predictors of Gf (Unsworth et al.
2010; Unsworth and Spillers 2010; Unsworth, Spillers, and
Brewer 2009).

In cognitive neuroscience, the so called n-back task has
gained much popularity as a WMC measure (see Owen,
McMillan, Laird, and Bullmore 2005). This task requires con-
tinuous memory updating and simple decision-making about
whether the current stimulus in a stream of stimuli does or does
not match the stimulus presented n stimuli back. Although
some researchers have suggested that n-back tasks measure a
somewhat different aspect of WM than do complex span tasks
(Kane et al. 2007b), more recent studies have shown that latent
variables based on scores from the former and the latter mea-
sures are statistically indistinguishable (Schmiedek,
Hildebrandt, Lövdén, Wilhelm, and Lindenberger 2009).

In contrast to the aforementioned views about the proper
measurement of WMC, Oberauer et al. (2007) proposed that
the driving force of strong WMC–Gf correlations is neither
the sheer storage of information, even in the context of pro-
cessing, nor the executive control of that storage. In line with
analogous theorizing (Halford, Wilson, and Phillips 1998;
Hummel and Holyoak 2003; Waltz et al. 1999), Oberauer
et al. (2007; Oberauer, Süß, Wilhelm, and Wittmann 2008)
proposed that the fundamental mechanism that determines
both WMC and fluid reasoning is the human capacity to set
and maintain the flexible, temporary bindings between chunks
held in WM, or between them and their respective positions
within somemental structure. For instance, these positions can
constitute concrete coordinates like serial positions during
recall, or they can be abstract placeholders in some schema
required in a reasoning task (so-called role-filler bindings).
Due to temporary bindings, a person is able to integrate
elementary relations into novel arbitrary relational structures.
Creating such structures is the essence of relational thinking—
thinking driven by the way objects are assigned to certain
roles in situations, and not by objects’ intrinsic features.

For the purpose of measurement of the effectiveness of
relational integration, Oberauer and colleagues (Oberauer,
Süß, Schulze, Wilhelm, and Wittmann 2000; Oberauer et al.
2008) have developed versions of a so-called relation-monitor-
ing task (henceforth called the relation integration task). In
such a task, a participant observes a constantly changing pattern
of stimuli that is available perceptually (no need for storage in
WM), and detects stimuli matching a simple rule. For example,
the task may consist of the presentation of a three-by-three
matrix of words, and may require the pressing of a button if
and only if three words in a row, column, or diagonal line
rhyme. Other versions require three numbers that end with the
same digit to be found, or recognizing four dots that form a
square within a pattern of several dots. A few studies showed
that the latent variables loaded by the relation integration tasks
are at least as strong predictors of fluid reasoning as are complex

spans (Buehner, Krumm, and Pick 2005; Buehner, Krumm,
Ziegler, and Pluecken 2006; Krumm et al. 2009; Oberauer
et al. 2008; Süß, Oberauer, Wittmann, Wilhelm, and Schulze
2002), and much better predictors than both STM and executive
control tasks (Chuderski, Taraday, Nęcka, and Smoleń 2012).

However, two questions regarding the relational integration
hypothesis seem to have so far gained too little attention. First,
no research has been conducted on the properties of relation
integration tasks. Although n -back (e.g., Kane et al. 2007b;
Schmiedek et al. 2009) and complex span (e.g., Conway et al.
2005; Unsworth and Engle 2007a, 2007b) tasks have under-
gone substantial examination, testing the ways in which the
parameters of these tasks influence various indices of task
performance, as well as the strength of their correlations with
Gf, no similar questions have been posed with regard to the
measures of relational integration.

Second, relation integration tasks have been compared to
competing Gf predictors only to a limited extent. For example,
Oberauer et al. (2008; see also Buehner et al. 2005; Buehner
et al. 2006; Süß et al. 2002) tested their relation-monitoring
tasks against complex span tasks and task-switching tests, and
found that the predictive power of relation monitoring was
comparable to the power of the former tasks, but much better
than the power of the latter tasks. However, this study was
undermined by the fact that the task-switching paradigm has
been assessed as a poor measure of executive control (e.g.,
Logan and Bundesen 2003). Krumm et al. (2009) compared
the relation integration task to the wide range of measures of
storage capacity (including both simple and complex spans),
sustained attention, and mental speed. They found that relation
integration predicts Gf even when all of the latter variables are
accounted for, but they failed to obtain a homogeneous
inhibition/attention control factor using three different execu-
tive control tasks (the Stroop, antisaccade, and stop-signal
tasks). Chuderski et al. (2012), in their Study 2, showed that
relational integration seemed to be a better Gf predictor than the
scope and the control of attention (the latter factor being validly
measured with the Stroop and antisaccade tasks), though this
study did not include complex span tasks. Thus, the compre-
hensive evaluation of the predictive power of all four widely
used types of WM measures described above (i.e., STM, com-
plex span, attention control, and n-back tasks) with regard to
Gf, in comparison to relational integration, seems to call for
more data.

Consequently, the goals of the present research were to study
a novel version of the relation integration task, in order to
examine (a)whether the level of performance in this task can
be determined by the need to construct and/or integrate bind-
ings among mental representations, and not only by the need to
select and maintain those very representations; (b)to what
extent such performance can be explained by the amount of
executive control that may be required for coping with interfer-
ence present in the trials of this task; (c)whether versions of the
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relation integration task differing in difficulty would or would
not differ in predictive power with regard to reasoning; and (d)
whether this task might or might not be a better Gf predictor
than other WM tasks. The body of data cited above suggests
that relational integration could be a highly fruitful line of
investigation pertaining to WM and its links to Gf. Thus, the
tasks developed in order to tap relational integration need
especially careful examination. Answering the questions above
could lead cognitive science to a better understanding of the
crucial mechanisms and constraints of WM, and could also
shed some new light on the causes of the close links between
WM and general intelligence.

Rationale and general method

What is so crucial about finding three matching items or four
symmetrically located dots that in previous studies has made
the relation-monitoring task such a powerful WMC measure?
Three explanations seem likely.

First, Oberauer et al. (2008) may be right, and the perfor-
mance in this task may primarily reflect the binding and/or
integration of a few pieces of information in WM. For exam-
ple, the task may require integrating “item X is bound to the
upper-left location,” “... is also bound to the central-left loca-
tion,” and “... is also bound to the bottom-left location” into
one relational structure that encodes all of the information:
“upper-left, central-left, and bottom-left locations form a col-
umn containing an item X.” Once such a structure is integrat-
ed, it may be relatively simple to detect the match of the
current pattern to the predefined relation, whereas without that
structure in mind, one can easily miss the match. So, under the
relation integration hypothesis, the increase in the number of
bindings will make the relation-monitoring taskmore difficult,
and people who represent and/or integrate bindings better will
score higher on that task.

Second, the integration of relations may primarily require
the maintenance of prospective objects (e.g., those that par-
tially satisfy the relation) within the scope of attention, while
perceptually scanning the stimulus pattern for the remaining
objects. So, before a cognitive system can relate all those
objects, it may have to transfer their representations from
perception to the WM’s scope of attention. Thus, the load
caused by the number of objects to be related, and not neces-
sarily the need to establish bindings among them, may deter-
mine the difficulty of the relation integration task. Since the
variants of the task used so far have required the relating of
three (syllables, digits) or four (dots) objects, which were
values around the mean scope of attention in the population
(Cowan 2001; Luck and Vogel 1997), a certain portion of the
population may possess an insufficient scope of less than three
or four slots to perform the task without error. The remaining
portion may have enough capacity, and thus the relation

integration task would correlate with other WM tasks, as well
as with fluid intelligence tests.

Finally, the relation-monitoring task involves the presenta-
tion of a relatively complex pattern of stimuli (e.g., 27 digits in
the number version of the task) that need to be scanned, and in
some cases selected, while at the same time other stimuli may
be competing for selection (e.g., three identical digits not placed
in one row, column, or diagonal line). In consequence, the task
may require a substantial amount of attention control: to carry
out scanning, selection, interference resolution, and inhibition.
According to the executive-attention theory of WM and Gf
(Kane et al. 2007a), these very requirements may cause signif-
icant correlations among this task and WM and Gf tests.

In order to discriminate between the possibilities presented
above, I modified the original word and number relation
integration tasks in such a way that I was able to manipulate
(a)the number of bindings to be integrated, (b)the number of
objects to be related, and (c)the level of interference imposed
by the stimuli in the task. As a result, which factor(s) had a
significant impact on response accuracy in the modified rela-
tion integration tasks (Exps. 1–3) could be observed.

Experiment 1

Method

Participants

A total of 112 people, randomly assigned to groups, partici-
pated (73 women, 39 men; mean age = 24.4 years, SD = 5.2,
range 19–45 years). All of them were recruited via publicly
accessible social networking websites. For their participation,
each person received the equivalent of €5 in Polish zloty.
Participants were tested in groups of several people.

Materials and procedure

Modified, no-memory versions of the alphanumeric monitoring
task introduced by Oberauer et al. (2000) were used. The task
consisted of the presentation of a continuous sequence of
symbol patterns (trials). Each trial included a 3 × 3 array
(approx. 6 × 6 cm in size) of three-symbol strings (each string
approx. 1.5 × 1.2 cm in size). In one version of the task (50 trials
preceded by five training trials), the strings in the sequence
contained three letters out of a set of ten consonants. In the
subsequent version (also 50 trials, no training) they were three-
digit numbers. In one (“three-same”) group of participants, they
were asked to detect whether three strings ending with the same
letter/digit were located in one row or column. In another
(“three-different”) group, they were required to respond if three
strings ending with three different letters/digits were located in
one row or column (note that both three-object conditions of the
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modified task, in contrast to Oberauer et al.’s 2000, original
task, did not require participants to monitor the diagonal lines
for the target patterns). In the third (“five-same”) group, partic-
ipants had to find five identical ending letters/digits forming a
cross, a “letter T” pattern, or a “letter T” pattern rotated by 90,
180, or 270 deg. Finally, the fourth (“five-different”) group was
instructed to find five different ending letters/digits placed in
one of the five patterns above.

In each group, half of the arrays matched a predefined rule,
requiring the user to press the space button. Exactly three or five
strings fulfilled the rule, in the three- or five-object conditions,
respectively, and all other letters/digits in an array were ran-
domly chosen, with the constraint that they could not match the
rule. In the other half of the arrays, no patterns matched the rule.
Participants were instructed to respond only to trials that in-
cluded the target relation, and to withhold their responses in all
other (i.e., no-relation) trials. So, responses given in the latter
trials were interpreted as false alarm errors. In order tominimize
the influence on the results of either processing speed or visual
search efficiency, in each trial 5.5 s (plus a 0.1-s blink separating
the subsequent arrays) were allowed. Also, in order to decrease
the amount of information changed from trial to trial, one to
four strings (at random) in each subsequent array were the same
as in the preceding array (i.e., not all stimuli changed from trial
to trial). Examples of the arrays in each task condition are
presented in Fig. 1.

The four groups constituted the 2 × 2 experimental design,
with two factors manipulated between participants: the num-
ber of target objects (either three or five) and the type of target

relation (either same or different objects). The dependent
variable was the mean accuracy in the relation trials minus
the mean false alarm rate in the no-relation trials (see
Snodgrass and Corwin 1988).

Hypotheses

By introducing the three- and five-different conditions, I aimed
to increase the number of bindings between the ending letters/
digits (the target objects). I assumed that in the three- and five-
same conditions, target objects can be compared incrementally,
and only two bindings might be sufficient to encode the even-
tual relational structure. That is, in these trials, participants had
to detect that the first and second objects were the same and to
construct a respective item–item binding (e.g., “two Xs in an
n th row”), and then to compare the next object with the
information that was encoded by the binding (“is a third object
also X”?). In contrast, this incremental processing did not seem
possible in the three- or five-different trials, because there was
no common letter/digit, and one binding might have to be
constructed for each pair of target objects (e.g., “a first object
in a row is different from a second one,” “a second object is
different from a third one,” but also “a third object is different
from a first one”). Such a construction should result in a load of
three bindings in the three-different trials, and as many as ten
bindings in the five-different trials (i.e., the number of two-
element combinations of a five-element set). Alternatively, if in
the three- and five-different trials participants dealt with the task
by forming item–context bindings, specifically by binding all
stimuli to the respective positions in the row/column or the
cross/T pattern, the latter pattern would resulted in as many as
five simultaneous bindings. In either case (i.e., either item–item
or item–context bindings), the number of necessary bindings in
the five-different condition (i.e., either ten or five bindings)
exceeded the WMC of most participants. In consequence, the
relational-integration hypothesis predicts that increasing the
number of objects that underlie the target relation would not
influence accuracy when the same objects have to be looked for
(i.e., always only two bindings are necessary), but would dras-
tically decrease accuracy when different objects have to be
found (i.e., because more objects result in more bindings). In
contrast, if the bare number of target objects that have to be
simultaneously attended to in order to be compared determines
the difficulty of the relation integration task (see Oberauer et al.
2008, p.650), accuracy would decrease in similar ways in both
the five-same and five-different conditions, in comparison to
the three-same and three-different conditions, respectively.

Results and discussion

First, I verified that no significant difference in the ratio of
false alarms to all errors (i.e., the beta parameter) could be
found between groups, all ps > .6. Then, a 2 × 2 ANOVA in
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902  113  399

Fig. 1 Sample target trials of the relation-monitoring task (as used in Exp.1),
for each conditionwith regard to the number of strings to be detected (three or
five) and the predefined rule to be followed (find the same or different end
letters/digits). Gray boxes (absent in the real task) indicate target strings. The
top row includes samples of the number variant of the task, whereas the
bottom row contains instances of the letter variant
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accuracy indicated that both main effects were significant—
that is, the effect of three (M = .56) versus five (M = .45)
objects, F(1, 108) = 7.77, p = .006, η2 = .07, and of the same
(M = .73) versus different (M = .27) objects, F (1, 108) =
144.91, p < .001, η2 = .57. Most importantly, however, the
pattern of results was explained by the two-way interaction
between the factors, F(1, 108) = 6.84, p = .010, η2 = .06,
which indicated that the former factor had no influence when
the same objects were detected (both Ms = .73), F (1, 108) =
0.018, p = .892, η2 = .0003, but drastically decreased perfor-
mance when different objects were searched for (M = .38 vs.
M = .18, in the cases of three and five objects, respectively),
F(1, 108) = 12.02, p = .001, η2 = .23.

Since the accuracy observed in all groups nicely correlated
with the supposed number of bindings that were necessary to
fulfill each condition (i.e., two, two, three, and five/ten—the
latter number depending on assuming either the item–context or
the item–item interpretation of binding performance—in the
three-same, five-same, three-different, and five-different condi-
tions, respectively), the conclusion stating that the relation
integration task indeed taps the difficulty of relational integra-
tion seems to be the most plausible. This conclusion is also
consistent with the fact that in Experiment1 a very strong effect
emerged of the same- and different-object conditions, because
between the former and latter conditions the number of to-be-
integrated bindings seems to have increased by 100%, if we
accept the item–context interpretation of binding performance
(i.e., it increased from 2 to [3 + 5]/2 = 4 bindings, on average),
or even by 225%, in light of the item–item interpretation (i.e.,
from 2 to [3 + 10]/2 = 6.5 bindings, on average). Importantly,
the number of objects (either three or five) that supposedly
needed to be maintained within the scope of attention had no
influence on performance in the same-object condition.

Experiment 2

The difficulty of the relation integration task may also be
linked to the amount of interference, for example the number
of items in arrays that match only some conditions of a target
rule (i.e., are all identical or all different, but not placed in end
locations nor within a row/column/cross/T patttern). A posi-
tive relation between the similarity of targets and distractors,
and the difficulty of processing targets is predicted, for in-
stance, by Duncan and Humphreys’s (1989) theory of visual
search. This could partially explain the results of Experiment
1, as much more interference can be expected when detecting
different objects (because there will be plenty of patterns of
different objects, as each symbol is represented by only 10%
of objects in the array) than when looking for the same objects
(because only those 10% of identical objects will constitute
distractors). If the experimentally controlled increase in the
number of distractors (identical digits/letters placed in arrays,

but not forming key relations) can decrease the hit rate in the
relation trials (e.g., because the target relation cannot be fil-
tered out) and/or increase the false alarm rate (e.g., because
false alarms may be committed on the basis of partial
matches), resulting in a negative effect on the overall accuracy,
this might indicate that the relation integration task, at least to
some extent, reflects not only relational integration, but also
coping with interference. In Experiment2, I aimed to test this
possibility. Moreover, by using a within-subjects design with
regard to the three-same versus five-same conditions, any
influence of individual differences on the comparison of these
two conditions could be eliminated.

Method

Participants

A total of 40 people participated (26 women, 14 men; mean
age = 23.9 years, SD = 3.6, range 19–33 years). All other
recruitment and testing conditions were the same as in
Experiment1.

Materials and procedure

The three-same and five-same conditions were applied to each
participant, in a random order. Each condition contained 60
number and 60 letter trials, and each was preceded by ten
number training trials. Apart from that, the task was identical
to that from Experiment1, with one exception, which consti-
tuted the key manipulation: In a random half of the arrays, all
stimuli besides the three/five identical digits/letters in the
relation trials were chosen randomly (the low-interference
condition). In contrast, in the other half of the arrays (the
high-interference condition; for an example, see Fig. 2), 12
stimuli in that set were identical (if it was the relation trial, they
were also identical to a digit/letter in the target relation). Those
additional identical stimuli, however, could not be placed in
ending positions of one row/column or cross/T-pattern
(depending on the condition). It was expected that if coping
with interference is important for performance in the relation-
monitoring task, the large number of fake (almost correct)
target patterns should negatively affect accuracy, in compari-
son with the low-interference condition.

Results and discussion

Although the power of the experiment had been increased, the
factor associated with the number of objects to be related—
three (M = .79) versus five (M = .74)—was still not able to
reach the adopted level of significance, F (1, 39) = 3.75,
p = .060, η2 = .09. I observed a trend toward a decrease in
accuracy with an increasing number of objects (Δ = –.05),
which with an increased sample would probably turn into a
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significant effect, and which might result from a relatively
more complex instruction in the five-object condition (i.e., the
need to detect cross/T patterns instead of more uniform rows
and columns). However, it did not even approach the dramatic
decrease in the different-object condition of Experiment1
(Δ = –.21). Regarding the interference factor, the low-
(M = .76) and high- (M = .77) interference trials barely
differed in accuracy, F (1, 39) = 0.72, p = .40, η2 = .02.

Experiment2 delivered two null effects. First, replicating
the results of Experiment1, accuracy did not substantially
decrease with the increasing number of to-be-related objects.
Second, the increased level of interference had no impact on
accuracy. Taking into account the results of both experiments,
it could be concluded that what primarily affects accuracy in
the relation-monitoring task is the load imposed on the mech-
anisms responsible for the construction, maintenance, and/or
integration of bindings among the target objects, which de-
pends on the number of bindings that have to be dealt with in
parallel. At the same time, neither the actual number of objects
in the target patterns nor the number of distractors present
within the patterns could affect that accuracy.

Experiment 3

Experiment3 had two goals. First, by using a large sample of
participants and each of the most widely used WMC mea-
sures, described in the introduction (i.e., complex span tasks,
n -back tasks with highly effective lures, STM tasks, and
antisaccade tasks), this experiment was aimed at evaluating

the relative plausibility of the relation-monitoring task as a
predictor of fluid reasoning, and also its validity as a WMC
measure. Additionally, my other goal was a comparison be-
tween the strengths of the Gf correlations yielded by the five-
same and three-different conditions, and with reference to the
three-same condition, asking whether either increasing the
number of objects or altering the type of the rule might change
the predictive power of the monitoring task (the five-different
condition was not applied, because of the floor effects ob-
served in Exp.1).

Method

Participants

A total of 243 people participated (142 women, 101 men;
mean age = 24.3 years, SD = 5.0, range 18–45 years). For
participation, each person received the equivalent of €15 in
Polish zloty. All other recruitment and testing conditions were
the same as in Experiments 1 and 2.

Materials and procedure

The study was administered in two sessions, each lasting 4 h
(including proper intrasession breaks), both taking place on
the same day (with a 1-h intersession break), and applied in a
random order. One session consisted of the relation-
monitoring task, applied first, as well as several other com-
puterized WM tasks, including four complex span tasks, four
STM tasks, three antisaccade tasks, and three n -back tasks
(and also two Stroop tasks and a stop signal task, unreported
here). The other WM tasks were administered in a fixed order,
in such a way that one task from a particular class of tasks (i.e.,
complex span, STM, antisaccade, or n -back) was applied
early in the session, one or two in the middle of the session,
and one late in the session, in order to balance the amounts of
automatization and tiredness/boredom regarding each class of
tasks. Always, two subsequent tasks involved different types
of materials (i.e., figural, spatial, letter, or number). In the
other session, four intellectual ability tests were administered.
The order of the tests was as follows: the paper-and-pencil
relational discovery test (related to another project and
unreported here), the computerized figural analogy test,
Raven’s matrices, and the paper-and-pencil figural analogy
test.

Relation-monitoring task The three-same, five-same, and
three-different conditions of the letter and number versions
of the taskwere applied to each participant in the samemanner
as in Experiment1 (meaning that the number trials preceded
the letter trials in each condition), with two exceptions: The
numbers of number/letter trials were decreased to 40/40 trials
in each condition of the task, and the three-same condition was
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Fig. 2 Sample trials of the relation-monitoring task in the high-interfer-
ence condition (used in Exp.2), with regard to the number of strings to be
detected (three or five) and the presence (relation trials) or absence (no-
relation trials) of the target relation. Gray boxes (absent in the real task)
indicate target strings in the relation trials. The left column includes
samples of the number variant of the task, whereas the right column
contains instances of the letter variant
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presented first (as a baseline condition), whereas the order of
the two remaining conditions was random. This change was
introduced in order to eliminate the effects of the order of
conditions on the comparison of the Gf correlations yielded by
each of the two latter conditions, while minimizing the meth-
od variance related to the relation-monitoring task as a whole.
The dependent variable, calculated separately for each of the
three conditions of the task, was the same as in Experiments 1
and 2.

Complex span tasks Adapted versions of the operation span,
reading span, and symmetry span tasks (Conway et al. 2005)
were applied. Each task required participants to memorize a
sequence of three to seven (i.e., set size) stimuli. Each stimulus
was presented for 1.2 s apiece, out of nine possible stimuli for
that task. Each stimulus was followed by a simple decision
task, presented until a response was given, but for the maxi-
mum of 9 s. After two two-stimulus training trials, three trials
for each set size (in increasing order) were presented in each
complex span task. The operation span task required the
memorization of letters while deciding with a mouse button
whether an intermittent simple arithmetical equation (e.g.,
“2 × 3 – 1 = 5?”) was or was not correct. The modified reading
span task consisted of memorizing digits while checking
whether letter strings (e.g., “EWZTE,” “KTANY”) began
and ended with the same letter. The spatial span task involved
memorizing locations of a red square in a 3 × 3 matrix while
deciding which of two presented bars was larger (the differ-
ence was always 25%). Also, a figural span task was applied,
but due to the use of the same material—geometric figures—
as in my Gf tests, its scores were not included in the present
study (in order not to attribute the correlation between com-
plex span and Gf to the shared modality).

The response procedure in each task consisted of the
presentation of as many 3 × 3 matrices as was a
particular set size, in the center of the computer screen,
from left to right. Each matrix contained the same set of
all nine possible stimuli for a given task. A participant
was required to point with the mouse at those stimuli
that had been presented in a sequence, in the correct
order. Participants had no time limit for responding.
Only a choice that matched both the identity and ordi-
nal position of a given stimulus was taken as the correct
answer. The dependent variable for each complex span
task was the proportion of correctly pointed-out stimuli
to all stimuli presented in the task.

STM tasks I used a modified change detection paradigm
(Luck and Vogel 1997), in three tasks: the letter, number,
and color versions. A figural version was also applied, but it
was omitted for the same reason as the figural complex span
task. Each of the 60 trials of the task (plus two training trials)
consisted of a virtual 4 × 4 array filled with a few stimuli

(i.e., only some cells in the array were filled). The stimuli
were ten Greek symbols (e.g.,α, β, χ, etc.), the digits 0 to 9,
or squares in ten sufficiently distinctive colors. Each stim-
ulus was approximately 2 × 2 cm in size. The number of
stimuli within the array could be five, seven, or nine items.
The array was presented for a period equal to the number of
its items, multiplied by 200 ms, and then followed by a
black square mask of the same size as the array, presented
for 1.2 s. In a random 50% of the trials, the second array was
identical to the first, whereas in the remaining trials, both
arrays differed by exactly one item at one position, which
was always a new item (not an item from another position).
If the arrays differed, the new item was highlighted by a
square red border. If they were identical, a random item was
highlighted. The task was to press one of two response keys,
depending on whether the highlighted item differed or not in
the two arrays. The second array was shown until a response
was given or until 4 s had elapsed. The trials were self-
paced. The score on this task was the estimated sheer ca-
pacity of the STM buffer (the k value; Cowan 2001), calcu-
lated as the difference between the proportions of correct
responses for arrays with one item changed and incorrect
responses for unchanged arrays, multiplied by the set size.
The total score was the mean k in the task.

N-back tasks The stimuli in the three 4-back tasks, adapted
from Chuderski and Nęcka (2012), were 16 consonants,
two-digit numbers, or figures (though the latter were the
same materials used in the Gf tests, I retained that task in
order to avoid calculating the n -back latent variable on the
basis of only two n -back tasks), each approximately 2.5 ×
2.5 cm in size, presented for 1.2 s plus a 0.6-s mask. A total
of 80 stimuli were presented serially to the participants in
each session. Two sessions were used in each task, preceded
by the 40-stimulus training. Each session included eight 4-
back target repetitions of stimuli and eight 1-back lure
repetitions. No other stimuli could be repeated in a time
window of ten stimuli. Participants were instructed to re-
spond to 4-back repetitions and to suppress responses to all
other repetitions as well as responses to nonrepeating items.
The dependent variable for each task was the mean accuracy
for target repetitions minus the mean false alarm rate for
lures (Snodgrass and Corwin 1988).

Antisaccade tasks Each antisaccade task consisted of five
training and 40 test trials. In order to increase the load on
attention control, the tasks were slightly modified in compar-
ison to the most commonly applied version (e.g., Unsworth
et al. 2004): A participant’s eyes could be directed to three
locations (instead of one), and each test trial consisted of four
events. First, a cue presented for 1.5 s informed that a target
would be presented in the top, middle, or bottom of the side
opposite to a flashing square (e.g., “Look at the bottom corner
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opposite the flashing square,” in Polish). Next, a fixation point
was presented at the center of the screen for 1–2 s. Then, a
rapidly flashing black square (3 cm in size) was shown in the
middle of the left or right side of the screen, about 16 cm from
the fixation point, for 0.15 s. Finally, depending on the task, a
small dark gray arrow pointing left, down, or right (the spatial
version), a digit 1, 2, or 3 (the number version), or a string
“left,” “down,” or “right” (the letter version) was presented in
the location opposite to the square for only 0.2 s and was then
replaced by a mask. The visual angle from both the square and
the arrow/digit/string to the fixation point was 14º. The task
was to look away from the flashing square, to detect the
direction of the arrow or the identity of the digit/string, and
to press the key associated with the stimulus. The trials were
self-paced. The dependent variable in each task was mean
accuracy.

Raven’s Advanced Progressive Matrices The test (Raven,
Court, and Raven 1983) consists of 36 items that include a
3 × 3 matrix of figural patterns that is missing the bottom-right
pattern, and eight response options, which are the patterns that
can potentially match the missing one. The participant’s task
was to discover the rules that govern the distribution of
patterns and to apply them to response options in order to
choose the one and only right pattern. Sixty minutes were
allowed for the test. The score was the total number of cor-
rectly answered items.

Figural analogy test This test (Orzechowski and Chuderski
2007) includes 36 figural analogies in the form “A is to B as C
is to X,” in which A, B, and C are types of relatively simple
patterns of figures, A is related to B according to two, three,
four, or five latent rules (e.g., symmetry, rotation, change in
size, color, thickness, number of objects, etc.), and X is an
empty space. The task is to choose one figure from a choice of
four that relates to figure C as B relates to A. The administra-
tion time was 45 min. As with Raven’s matrices, the total
number of correct answers was taken as the score.

Computerized figural analogy test This test is a computerized
and substantially modified version of the paper-and-pencil
analogy test. The test includes 48 figural analogies in the form
“A is to B as C is to X,” in which A, B, and C are types of
relatively complex patterns of figures, each including either
five or eight figures (depending on the test item). In each item,
A is related to B according to two to eight latent rules (rota-
tion, change in location, color, thickness, filling, etc.), and X
has to be selected by clicking with a mouse on one of seven
alternative answer patterns. The one and only pattern that
should be chosen is the one that relates to pattern C as B
relates to A. After two training items, the participants were
allowed up to 4 min to solve each test item. The total number
of correct answers was taken as the score.

Results

Descriptive statistics and reliabilities for all tasks analyzed are
presented in Table 1. All measures had proper distributions
and acceptable reliability. It is worth noting that the accuracy
in the five-same condition of the relation-monitoring task was
significantly higher than that in the three-different condition,
t (242) = 21.63, p < .001, Cohen’s d = 1.39, replicating the
results of Experiment1 with the use of a much larger sample.
This result again supported the predictions of the relational
integration hypothesis, suggesting that the former condition
yields higher accuracy because it requires integrating only two
bindings, whereas the latter involves three bindings, although
the former requires attending to five objects, whereas the latter
requires attention to only three objects.

Table 2 includes the matrix of correlations among all var-
iables. First, with the use of partial correlations, I tested
whether either of two control variables, age and level of
anxiety—the latter assessed with two administrations (applied
in the middle of the first and second sessions) of the Polish
adaptation of the State–Trait Anxiety Inventory questionnaire
(Spielberger, Gorsuch, and Lushene 1970)—influences the
pattern of correlations between WM tasks and Gf scores. It
was found that neither variable significantly influenced any
correlation coefficient between a WM task and a Gf test (the
largest Δr = .05, n.s.). Second, virtually no differences were
found in the Gf correlations between the three conditions of
the relation integration task. The respective values, which
were calculated for a factor loaded by three Gf tests (eigen-
value = 2.12) and the scores in the three-same, five-same, and
three-different conditions, were r = .479, .430, and .471,
respectively (no difference between any pair of these correla-
tions was significant).

Next, I turned to latent-variable analysis. The fit of all of the
models described below was evaluated by four indices of fit (for
the justification of the criterion values, see Hu and Bentler 1999;
Kline 1998): the ratio of the chi-squared (χ2) statistic to the
number of degrees of freedom (χ2/df; should not surpass 2.0),
Bentler’s comparative fit index (CFI; should exceed .90), the
root-mean square error of approximation (RMSEA; should not
exceed .08) and its 90% confidence interval, and the standard-
ized root-mean square residual (SRMR; should be less than .08).
A measurement model (see Fig. 3)—which tested whether the
latent variables representing particular classes of WM tasks (i.e.,
the relational integration, complex span, STM span, n-back, and
antisaccade variables, each loaded by three scores) were easily
discriminable—had a good fit, N = 243, χ2(80) = 149.88,
χ2/df = 1.87, CFI = .962, RMSEA = .057 [.042– .072],
SRMR = .041. All latent variables significantly correlated, but
each variable was clearly distinguishable from all other vari-
ables, as setting any correlation coefficient to unity significantly
decreased the the fit of the model, with the minimum decrease
in the goodness of fit equaling Δχ2(1) = 27.40, p < .001.
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The correlations between the calculated WM latent vari-
ables and the fluid-reasoning variable, the latter loaded by three
ability tests, are presented in Table 3. I used structural equation
modeling to predict the latter variable by all of the former
variables (see Fig. 4), N = 243, χ2(120) = 201.94, χ2/df =

1.68, CFI = .963, RMSEA = .051 [.038–.064], SRMR =
.041. The only two significant predictors were the relational
integration and complex span variables, and the former yielded
a numerically stronger regression path than did the latter,
Δr = .118—though that difference was not significant, as

Table 1 Descriptive statistics and reliabilities for the measures used in Experiment3

Task M SD Range Skew Kurtosis Reliability

Relat. integr.: 3-same 0.75 0.17 0.00–1.00 –1.37 2.18 .85

Relat. integr.: 5-same 0.69 0.18 0.00–1.00 –0.97 1.54 .83

Relat. integr.: 3-different 0.41 0.23 –0.17–0.93 –0.33 –0.50 .82

Operation span 0.68 0.18 0.05–0.99 –0.72 0.20 .87

Reading span 0.78 0.16 0.09–1.00 –0.76 2.20 .86

Spatial span 0.52 0.18 0.05–0.97 –1.30 0.03 .85

Letter STM 2.44 1.42 –1.33–6.40 0.17 –0.17 .73

Number STM 4.63 1.43 –0.63–7.00 –1.07 1.05 .83

Color STM 2.84 1.41 –0.87–6.00 –0.34 –0.39 .71

Letter 4-back 0.24 0.40 –0.93–1.00 –0.39 –0.55 .91

Number 4-back 0.19 0.28 –0.81–0.80 –0.94 1.30 .84

Figural 4-back 0.18 0.35 –0.87–0.94 –0.52 –0.19 .89

Letter antisaccade 0.58 0.26 0.00–1.00 –0.73 –0.67 .94

Number antisaccade 0.48 0.23 0.00–1.00 0.04 –0.81 .90

Arrow antisaccade 0.59 0.24 0.05–1.00 –0.26 –1.02 .92

Raven 21.77 6.79 3–35 –0.48 –0.14 .88

Paper analogies 22.12 6.69 6–35 –0.24 –0.80 .86

Computerized analogies 21.81 11.83 0–48 0.40 –0.84 .93

N = 243 for all tasks. Relat. integr. = relational integration task. STM = short-term memory task. Reliability = Cronbach’s alpha.

Table 2 Correlation matrix of measures used in Experiment3

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1. Relat. integr.: 3-same –

2. Relat. integr.: 5-same .53 –

3. Relat. integr.: 3-different .54 .52 –

4. Operation span .47 .39 .46 –

5. Reading span .40 .35 .38 .70 –

6. Spatial span .41 .35 .31 .57 .51 –

7. Letter STM .38 .21 .25 .38 .34 .35 –

8. Number STM .43 .25 .31 .38 .45 .40 .42 –

9. Color STM .47 .39 .33 .39 .33 .44 .40 .43 –

10. Letter 4-back .32 .34 .32 .39 .35 .36 .26 .24 .37 –

11. Number 4-back .21 .28 .27 .22 .21 .12a .28 .17 .26 .50 –

12. Figural 4-back .33 .35 .35 .31 .26 .34 .22 .23 .32 .70 .55 –

13. Letter antisaccade .49 .43 .43 .44 .51 .45 .35 .38 .41 .40 .24 .36 –

14. Number antisaccade .38 .39 .43 .43 .35 .40 .37 .32 .36 .30 .17 .29 .70 –

15. Arrow antisaccade .47 .40 .40 .50 .45 .52 .37 .36 .39 .42 .19 .36 .82 .81 –

16. Raven .50 .42 .43 .45 .40 .47 .32 .40 .46 .29 .22 .32 .42 .46 .46 –

17. Paper analogies .40 .34 .36 .47 .37 .43 .24 .25 .35 .21 .11b .23 .37 .38 .36 .67 –

18. Computerized analogies .32 .33 .41 .41 .31 .38 .22 .18 .29 .19 .17 .23 .31 .30 .32 .50 .51

N = 243. Relat. integr. = relational integration task. STM = short-term memory task. All ps < .05, except a p = .062 and b p = .085.
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was indicated by the model that constrained both path coeffi-
cients to be the same, Δχ2(1) = 0.38, p = .462.

However, due to the high amount of multicollinearity
among the two significant predictors, the comparison above
was not the best method to assess these predictors’ relative
strengths. So, I calculated two models with only one predictor
(either the relational integration or complex span variable),
two predicted variables (fluid reasoning and the other WM
variable), and with the disturbance terms of the predicted
variables left free to correlate. Such an analysis could answer
the question of whether the relational integration variable can
account for additional variance in fluid reasoning (i.e.,
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Fig. 3 The measurement model, including latent variables (ovals)
representing variance shared by triples of the relational integration tasks,
complex span tasks, short-term memory (STM) tasks, n-back tasks, and
antisaccade tasks. Boxes represent manifest variables (particular tasks).

Values between the ovals and boxes represent relevant standardized factor
loadings (all ps < .001). Values between the ovals represent relevant path
coefficients among the latent variables (all ps < .001)

Table 3 Correlations between latent variables representing classes of
WM tasks and the fluid reasoning variable, in Experiment3

WM latent variables r

Relational integration tasks .707

Complex span tasks .669

Short-term memory tasks .656

N-back tasks .390

Antisaccade tasks .549

N = 243.
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Fig. 4 Structural equation model in which the fluid intelligence endog-
enous latent variable, loaded by scores on three intelligence tests, is
predicted by five exogenous latent variables representing relational inte-
gration, complex span, short term memory (STM), n -back, and
antisaccade tasks. The small oval represents a disturbance term. All
standardized factor loadings were significant (ps < .001). Solid lines
between the ovals represent ps < .001, whereas dashed lines depict
ps > .07
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whether the correlation between respective disturbances was
significant) above and beyond the variance shared by complex
spans and Gf. Both models had a very good fit, N = 243,
χ2(24) = 34.61, χ2/df = 1.44, CFI = .988, RMSEA = .043
[.0–.072], SRMR = .036, and are presented in Fig. 5. The
relational integration explained twice as much Gf variance
(6.0%) that was not explained by the complex span variable
as the complex span variable explained (3.0%), with regard to
the Gf variance left unexplained by relational integration.
However, both amounts of unexplained variance were relative-
ly small, and the difference between them was not significant.

When the complex spans were substituted with STM tasks
in the models from Fig. 5, the disturbances of the STM span
variable and the Gf variable correlated only marginally
(r = .129, p = .041), whereas the correlation between the
disturbances of the relational integration and Gf variables
was similar (r = .207, p = .002) to when they were predicted
by the complex span variable (the total amount of Gf variance
explained by the model equaled R2 = .49). When scores on
either the antisaccade or n -back tasks were used instead of
complex spans, the correlation between their latent variables
and Gf disturbances was no longer significant (the amount of
Gf variance explained was R2 = .50).

In another analysis, I calculated a broad WM storage factor,
composed of all of the STM and complex span measures, and
allowed it also to load on the relation integration tasks.
Furthermore, I allowed the attention control factor (calculated
from the antisaccade tasks) to load on the latter tasks. Such an
analysis aimed at testing whether relation integration contrib-
uted to Gf because of its overlap with storage and/or control
aspects of WM, or whether it constituted an independent
contribution after both of these elements had been controlled
for (for an analogous model including the storage, mental
speed, and relation integration [coordination] variables, see
Krumm et al. 2009, Fig. 3). I excluded the n-back tasks from
that analysis, because their interpretation as storage versus

control tests was less clear, as their scores need to be based
on both hit and lure trials (in order to account for a decision bias
that affects hit vs. lure performance in that task). The model,
depicted in Fig. 6, N = 243, χ2(80) = 185.08, χ2/df = 2.31,
CFI = .943, RMSEA = .075 [.061– .089], SRMR = .044,
showed that the relation integration task significantly predicted
Gf (r = .237, p = .001), even if the variance common to tasks
meant to tap storage as well as to indices intended to capture
control was partialed out. It is worth noting that relation inte-
gration tasks’ loads on the control latent variable were weak
(two nonsignificant and one marginal), suggesting, in line with
the results of Experiment2, that these tasks involve little atten-
tion control.

Finally, using the family of nested structural equation
models, I estimated the amounts of variance explained sepa-
rately by the relational integration (RI), complex span (CS),
antisaccade (AS), and STM variables, as well as the amounts
predicted jointly by two (e.g., RI + CS), three (e.g., RI + CS +
STM), and all four (i.e., RI + CS + STM+AS) of the variables
(see Table 4). Then, by means of the technique of variance
partitioning (see Chuah and Maybery 1999), for each variable
I estimated the contribution to Gf variance that was unique to
that variable or that was shared by it with other variables (for
the sake of clarity, and due to its minimal contribution to Gf, I
excluded the n -back variable from that analysis). For exam-
ple, the part of variance unique to the relational integration
variable was computed by subtracting the amount of Gf
variance predicted by all four variables minus the amount of
Gf variance predicted by the complex span, antisaccade, and
STM variables. The variance shared by the four variables was
the remaining Gf variance after both unique variances and the
variances shared by pairs and triples of variables were
subtracted from the amount of Gf variance predicted by the
four variables.

The results of variance partitioning are presented in Fig. 7
(note that only amounts of shared variances that were
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Fig. 5 Left panel: Structural equation model in which the fluid intelli-
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relational integration latent variable. All standardized factor loadings
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(ps < .001). Right panel: Analogous structural equation model in which
the fluid intelligence and relation integration variables are predicted by
the complex span variable
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Table 4 Amounts of Gf variance explained by all possible combinations
of predictors used in Experiment3

Predictors R2

RI, CS, STM, AS .565

RI, CS, STM .563

RI, CS, AS .561

RI, STM, AS .536

CS, STM, AS .506

RI, CS .556

RI, STM .529

RI, AS .514

CS, STM .495

CS, AS .473

STM, AS .459

RI .498

CS .442

STM .429

AS .300

N = 243. RI = relational integration tasks.

CS = complex span tasks. STM = short-term

memory tasks. AS = antisaccade tasks.

RI = 5.9%
CS = 2.9%

STM =
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Fig. 7 Diagram indicating the amounts of the shared and unique variance
in fluid intelligence accounted for by the relation integration (RI), com-
plex span (CS), short-term memory (STM), and antisaccade (AS) tasks.
The numbers are based on the regressions from Table 4
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significant—i.e., 1.8% or larger—are included in this figure).
Out of the 56.5% of Gf variance accounted for by all predic-
tors, STM (0.4%) and AS (0.2%) uniquely contributed negli-
gible amounts of Gf variance, whereas CS (2.9%) and RI
(5.9%) uniquely explained larger amounts of Gf vari-
ance. The largest part of the explained Gf variance
(24.4%) was jointly accounted for by all four predictors,
whereas another 10.8% was shared among RI, CS, and
STM. Small but significant amounts of variance were
shared between RI and STM (2.9%), RI and CS (1.8%),
and CS and STM (1.8%), whereas all other amounts
were not significant (0.3%–1.6%).

Discussion

The present experiment indicated that the relational integra-
tion task is a plausible measure of WMC, which shares much
of its variance with two other standard WMC measures—the
STM and complex span tasks. Also, the study showed that the
relational integration task strongly predicts fluid reasoning,
and its different versions can account for comparable amounts
of Gf variance. The relation integration task appeared to be a
numerically better predictor of fluid reasoning than was the
complex span task; the former task tapped a few percent of
variance that could not be accounted for by the latter task. The
complex span task is believed to primarily reflect the atten-
tional control component of WM, so the relation integration
task seems to predict fluid reasoning above and beyond what
can be predicted by referring to attentional control. This
conclusion is supported by the fact that both the n -back task
including lures and the antisaccade task, which both probably
tap attention control, were poor predictors of Gf, when com-
pared to the relation-monitoring task.

Furthermore, the relation integration task also accounted
for significant additional Gf variance when variance related to
the storage aspect of WM tasks, which was aimed to reflect
the individual scope of attention, was controlled for. Thus, it
seems that the relational integration task taps processes that
are important for fluid reasoning, but that constitute something
that is beyond the sheer ability to maintain as much informa-
tion as possible within the scope of attention.

General discussion

To sum up the results of Experiments 1–3, in Experiments 1
and 3 the relational integration task was shown to primarily
measure the process of constructing, maintaining, and inte-
grating the flexible, temporary bindings in WM, as the per-
formance in this task was strongly affected by the postulated
number of bindings that had to be maintained and/or integrat-
ed (but not the number of objects possibly maintained in the
scope of attention nor by the amount of interference present

during visual scanning for objects). Experiment3 supported
the view that the measure of relational integration is a plausi-
bleWM task, as it shares a large amount of variance with other
well-established measures ofWMC, and it is a better predictor
of fluid reasoning than are any of these measures. Such a high
predictive power was achieved even though the relation inte-
gration task neither requires any memorizing of stimuli nor
involves significant executive control.

The presented study may help in finding an answer to the
following question: What do the well-established WM tasks
really measure? It is noteworthy that the complex span as well
as indices of both the scope (i.e., the STM task) and the control
(i.e., the antisaccade task) of attention uniquely or jointly
accounted for only 6.7% of the variance in fluid reasoning,
whereas the remaining 43.9% of variance explained by these
measures was shared with relational integration. However, in
light of the results of Experiments 1 and 2, it is unlikely that
the 43.9% of variance that was shared by the relation-
monitoring task, standard WM task, and reasoning tests was
shared due to common requirements of these tasks that would
pertain to either the scope or control of attention (or both),
because it was demonstrated that performance in the relation-
monitoring task depended on factors loading neither the scope
nor the control of attention. Thus, it does not seem that
accuracy in that task reflects the effectiveness of attentional
mechanisms to a large extent.

On the contrary, the present results seem to be consistent
with the view (Oberauer et al. 2007,2008) proposing that
scores on standard WM tasks, like STM tasks or complex
spans, may at least partly reflect the need to construct, main-
tain, and/or integrate the temporary bindings between memo-
rized stimuli and some other contextual information. Taking as
an example the complex span task, it obviously requires bind-
ing of the current stimulus to its serial position, and
maintaining such a binding for all items and the whole duration
of the trial, since a properly memorized stimulus that is recalled
at an incorrect position will constitute an error. However, such
requirements for processing bindings may be even more im-
portant. For instance, during recall, participants may have to
bind the already-recalled items to the tag noting that they had
been recalled, in order to inhibit recalling them again (Farrell
and Lewandowsky 2012). Similarly, still unrecalled items may
have to be bound to the tag indicating that they are waiting for
recall. Moreover, in the STM tasks, stimuli in the memory set
may not only be linked to context, but also bound together, as
suggested by the interactive effects in visual STM tasks (i.e.,
tasks that were also used in the present study). These effects,
strongly implied by recent research on the structured nature of
bothWM and long-termmemory representations (for a review,
see Brady et al. 2011), are caused by the fact that alongwith the
individual items, participants also encode in WM the whole
structure describing these items (e.g., visual layout, including
perceptual grouping, as well as ensemble statistics for items).
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So, the presented results, as well as some influential computa-
tional models of WM tasks (e.g., Murre, Wolters, and Raffone
2006; O’Reilly et al. 2003), together suggest that WM tasks,
like complex spans or change detection tasks, may to some
extent rely on constructing and integrating proper bindings in
WM, and not only on the sheer maintenance of particular
items, nor on the control of access to them.

Of course, the present results in no way allow the conclu-
sion that relational integration is the only process that is
captured by the well-established WM tasks. In fact, the extant
research on WM surely tells us that active maintenance
(Unsworth and Engle 2007a), attentional control over inter-
ference (Unsworth and Spillers 2010; Unsworth and Engle
2007a), and control over retrievals from secondary memory
(Mogle, Lovett, Stawski, and Sliwinski 2008) are all impor-
tant components of WM that substantially assist with coping
in situations requiring memorizing and transformation of per-
ceptually unavailable stimuli. However, though performance
in WM may rely on multiple mechanisms and processes (see
Conway, Getz, Macnamara, and Engel de Abreu 2011), the
link between relatively simple WM tasks and much more
complex abstract-reasoning tests may be primarily driven by
the relational integration component of WM. Although this
link cannot be driven by relational integration exclusively, as
in the present study the remaining WM tasks were able to
independently account for an additional 6.7% variance in Gf,
and almost half of the Gf variance was unexplained by WM,
still, relational integration may determine the most important
part of that link.

First, the scope of attention (i.e., STM) tasks was not able
to uniquely account for any significant variance in Gf when
the alternative measures of WM were controlled. Its potential
contribution to fluid reasoning was almost entirely captured
by the relation-monitoring tasks, which—as was demonstrat-
ed by Experiments 1 and 2—do not seem to rely on any
maintenance of information within the scope of attention.
Moreover, in light of recent empirical evidence (see Brady
et al. 2011) and the results of computational simulations
(Chuderski, Andrelczyk, and Smoleń 2013; Raffone and
Wolters 2001), it is unlikely that scores on these tasks reflect
only the number of items that can be maintained within
attention, and not the relational structure describing the corre-
sponding pattern governing the stimuli, which consists of
multiple bindings between those items.

Second, though the complex span tasks are often interpreted
as primarily tapping executive attention ability (Kane et al.
2007a), the alternative interpretation that assumes that they are
in a substantial part measures of relational integration is fully
consistent with the present data. For example, one argument
for interpreting complex span in terms of executive attention
ability is based on the fact that it correlates with attention
control tests (e.g., Unsworth et al. 2004; Unsworth et al.
2009). However, in the present study the latent-level

correlation between complex span tasks and antisaccade tasks
(r = .64) was weaker than the correlation between complex
span tasks and the relational integration variables (r = .70).

One potential limitation of the present study concerns the
identification of exactly what low-level cognitive mecha-
nism(s) involved in processing relational structures drive(s)
the link between scores on relational integration tasks and
reasoning. Is the integration of arbitrary bindings the crucial
process, or is maybe the very construction and maintenance of
(as many as possible) temporary bindings the key factor (so
that the requirement to integrate them is less important)? In the
latter sense (as was noticed by a reviewer), the relation inte-
gration task may in fact primarily rely on abstract pattern
detection/recognition—specifically, on comparing the pat-
terns of stimuli to one of several predefined patterns held in
mind. However, it seems unlikely that the performance in the
relation integration task can be reduced to sheer detection of
abstract patterns. Although the possession of predefined pat-
terns (e.g., rows “XX1 XX1 XX1,” “XX2 XX2 XX2,” etc.)
by participants may be at least imaginable in the three-same
condition, in the different-object conditions so many possible
patterns would fulfill the target relation that their encoding and
simultaneous testing by participants seems psychologically
implausible. The selection, binding, and (most probably) in-
tegration of the most promising information “on the fly” may
be the most effective way to cope with the relation integration
task. Nevertheless, the task used in this study did not allow for
orthogonal manipulation of the need for binding construction
versus the need for binding integration, and a question about
which of them was primarily responsible for the task’s strong
relationship with fluid intelligence cannot be decisively an-
swered solely on the basis of this study.

However, one argument for the hypothesis that binding
construction does not suffice for that relationship, and that
the integration of bindings may be necessary, is the fact that
the simple comparison of stimuli (e.g., processing binary
relations, in contrast to processing more complex relations)
neither constitutes a cognitive load strong enough for young
healthy adults nor yields substantial interindividual variation
(Halford, Baker, McCredden, and Bain 2005; Viskontas,
Holyoak, and Knowlton 2005; Waltz et al. 1999). Although
a recent study by Wilhelm, Hildebrandt, and Oberauer (2013)
provided evidence that a task that requires primarily the mem-
orizing of bindings (i.e., encoding associations between pairs
of stimuli from two domains, and then identifying a paired
associate, given the respective stimulus) is an excellent WM
measure and strong Gf predictor, it required memorizing
several (2–6) bindings in parallel, and thus it might have
involved the integration of all presented associations into a
larger mental structure, which surely helped participants to
deal with that task. It seems that answering a question about
which aspect of relational integration tasks (e.g., either bind-
ing construction/maintenance or binding integration, or both)
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is primarily responsible for their excellent characteristics as
WM measures and Gf predictors requires future research (as
well as novel tasks).

Nevertheless, though the identification of the cognitive
mechanisms underlying the strong link betweenWMC and fluid
reasoning is beyond the explanatory power of one study, the
present work replicated and greatly extended results (Oberauer
et al. 2000; Oberauer et al. 2007; Oberauer et al. 2008)
suggesting that such mechanisms may rely on the valid con-
struction and activemaintenance of temporary bindings between
representations crucial for the task at hand, or on their proper
integration into more complex relational structures, or some
mixture of both of these processes. Such a binding/integration
may allow for coping with abstract, novel, and arbitrary situa-
tions, of which WM tasks and Gf tests are the most prominent
examples. As such, the present work seems to constitute impor-
tant progress in understanding the key constraints of WM, as
well as in explaining the nature of human fluid intelligence.

In the latter regard, the study provided new evidence that
clearly supports theories (e.g., Halford et al. 1998; Hummel
andHolyoak 2003; Oberauer et al. 2007;Waltz et al. 1999) that
have proposed that human intelligencemay reflect the domain-
general ability to construct higher-level relational structures
that bind a certain number of more atomic representations
(e.g., perceptual or memorial), are extremely flexible, and
can be effectively abstracted from any intrinsic features of
the low-level representations. This line of research—
explaining intelligence as the ability to conduct role-based
relational reasoning based on the processing of relational roles
explicitly and separately from (perceptual or semantic) features
of entities that fill these roles, and that involves coding the
bindings of entities to their specific roles—is in a way a revival
of Spearman’s (1927) classical idea of the eduction of relations.
This relational-reasoning account has recently gained substan-
tial attention within psychology, and seems to be a very fruitful
framework for future studies on fluid reasoning.
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