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Many epidemiologic studies identify contrasts between an “always-exposed” population and a “never-exposed”

population. Such “exposure effects” are perhaps most valuable in discussing individual lifestyle changes, or in clin-

ical care; theymay be less valuable in estimating the potential effects of realistic public health interventions. Various

methods, among them population attributable fractions and generalized impact fractions, attempt to obtain more

policy-relevant estimates of “population intervention” effects, but such methods remain rare in the epidemiologic

literature. Here, we describe the use of the parametric g-formula as a tool for the estimation of population interven-

tion effects in longitudinal data. Our discussion is motivated by a previous study of the effect of incident pregnancy

on time to virological failure among human immunodeficiency virus-positivewomen initiating antiretroviral therapy in

South Africa between 2004 and 2011. We show that 1) interventional estimates of effect can be estimated in lon-

gitudinal data using the parametric g-formula and 2) exposure effects and population interventional effects can have

dramatically different interpretations andmagnitudes in real-world data. Epidemiologists should consider estimating

interventional effects in addition to exposure effects; doing so would allow the results of epidemiologic studies to be

more immediately relevant to policy-makers and to implementation science efforts.

causal inference; generalized impact fraction; implementation science; population attributable fraction; population

intervention effects

Abbreviations: CI, confidence interval; DMPA, depot-medroxyprogesterone acetate; HAART, highly active antiretroviral therapy;

HIV, human immunodeficiency virus; NNT, number needed to treat; RD, risk difference.

Causal inference in real-world, observational data pre-
sents significant challenges. Among these is the need for ex-
changeability (1), including issues of both confounding and
selection bias, positivity (2–4), and treatment-version irrele-
vance (5–7). When exposure is affected by prior covariates,
the presence of covariates which serve as both confounders
and mediators of causal effects (sometimes simultaneous-
ly) requires the use of newer methods such as inverse
probability-weighted marginal structural models (8, 9) or
the parametric g-formula (10–12).

When all of these conditions are met and the correct meth-
ods are used, the most frequent use of these methods (e.g., see
Westreich et al. (13)) is to identify exposure effects—that is,
effects which represent the impacts of particular exposures
at the individual level (averaged over a population). For

example, we might ask what would happen if an entire pop-
ulation of human immunodeficiency virus (HIV)-positive
persons were exposed to antiretroviral therapy during the
entirety of follow-up, as compared with being unexposed to
antiretroviral therapy during the same period (i.e., “always
treated” vs. “never treated”) (12, 14, 15). Such exposure ef-
fects, sometimes called average treatment effects, imagine 2
unrealistic counterfactual populations: one in which every-
one is treated for the entire duration of follow-up (regardless
of side effects, recovery rate, and so on) and one in which no
one is treated for the duration of follow-up (regardless of
declining health). Despite the unrealism of these counterfac-
tuals (and potential difficulties in generalizing such esti-
mates), such exposure effects can be valuable. They are
perhaps most valuable in discussing individual lifestyle
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choices or in making clinical decisions (16). They may be
less valuable in assessing what effects a realistic public-
health intervention might have in the same population.
Various authors have called for increased attention to epi-

demiologic estimates of alternative population intervention
effects (17) (alternatively, interventional effects), including
some in these pages (18, 19), but such methods have not
yet been widely adopted; methods for such interventional es-
timates have not been widely explored in longitudinal data.
Here, we discuss the use of causal methods—in particular,
the parametric g-formula (10–12)—as a tool for the estima-
tion of population intervention effects in longitudinal data.
Our discussion is motivated by a previous study of the effect
of incident pregnancy on time to virological failure among
HIV-positive women initiating highly active antiretroviral
therapy (HAART) in Johannesburg, SouthAfrica.We describe
the data set and the previous analysis and exposure estimate,
as well as the substantive and methodological challenges in-
volved in mapping this exposure estimate to a more inter-
ventional or actionable estimate. First, we briefly review
antecedent methods and further describe distinctions be-
tween exposure effects and interventional effects.

METHODS

Antecedent methods and challenges

There is a history in epidemiology of pursuing estimates of
effect which map more directly onto policy: a class of esti-
mands sometimes called population intervention effect esti-
mates (17). The population attributable fraction (20–24)
(and the population attributable risk difference or “attribut-
able community risk” (25, 26)) is the best known of these,
comparing disease risk in the observed population over a
given period (with the observed level of an exposure; also
the community risk) with the risk that would be observed
in a counterfactual population in which 100% of the exposure
had been removed. Our usage here, involving a fixed time pe-
riod, maps to the “excess risk” of Greenland and Robins (27).
While an estimate of “observed level of exposure versus no

exposure” is closer to what might be observed under a realis-
tic intervention (compared with always exposed vs. never ex-
posed), it is nonetheless unlikely in most cases that there
exists an intervention that is able to remove all of a given ex-
posure from a population. Recognizing this, Walter (28) and
thenMorgenstern and Bursic (29) extended the population at-
tributable fraction to the generalized (or potential) impact
fraction (alternately, the generalized attributable fraction),
which compares disease risk in the observed population
with the risk that would be observed in a counterfactual pop-
ulation in which a proportion f of the exposure had been
removed, where 0 ≤ f ≤ 1. The population attributable frac-
tion is then a special case of the generalized impact fraction
when f = 1.
A generalized impact fraction can be used as a first tool for

estimating population intervention effects. Consider the ef-
fect of smoking on incidence of all-cause mortality. If we
knew that raising cigarette taxes by $1 per pack would
lower the prevalence of smoking by 20%, we could estimate
a generalized impact fraction comparing all-cause mortality

under current smoking levels (X) with all-cause mortality
under counterfactual smoking levels resulting from the pro-
posed intervention (0.8 × X).
As implied immediately above, the generalized impact

fraction may treat the population as uniform with respect to
the effect of the intervention. It is plausible, however, that
raising a cigarette tax may cause low-income smokers to
quit with a higher probability than high-income smokers
(30). If, in addition, the effect of smoking is heterogeneous
by income level (e.g., if smoking-induced heart attacks are
more likely to be fatal among persons with less access to
health care), the generalized impact fraction may be mislead-
ing with respect to the population intervention effect of inter-
est. In particular, the generalized impact fraction may be too
general in assuming that the 20% reduction in exposure hap-
pens at random, rather than in a targeted fashion. A targeted
impact fractionmight instead attempt to estimate the effect of
an intervention which would be targeted at (and subsequently
taken up by) different subpopulations at different intensities.
Such targeted estimates were explored (not under this

name) by Ouellet et al. (31) and Morgenstern and Bursic
(29) and then later by others (32–35). Recent work byMuñoz
and van der Laan (36) addressed the closely related issue of
stochastically targeted population intervention effect esti-
mates using targeted maximum likelihood estimation. These
authors worked in time-fixed data; similar effects (sometimes
targeted) havebeenestimated in longitudinal databyTaubman
et al. (11), Cain et al. (37), Danaei et al. (38), and Cole et al.
(39).
While regression-based approaches to estimating inter-

vention effects go back at least as far as Deubner et al. (25)
and later Greenland and Drescher (40), more recent work
has discussed using Robins’ g-methods (including inverse
probability-weighted marginal structural models and doubly
robust methods) to estimate both population attributable (41,
42) and generalized impact (43) fractions. Separately, Ahern
et al. (18) used the parametric g-formula (g-computation al-
gorithm (44)) to assess the effects of plausible interventions
in real-world data in a time-fixed setting.
Here, we use the parametric g-formula in longitudinal data

(11, 12) to estimate the effects of both generalized and tar-
geted interventions on increased access to and uptake of
highly effective contraception among HIV-positive women
receiving HAART in sub-Saharan Africa. Because ratio mea-
sures are often regarded as inferior to difference (absolute)
measures for assessing public health benefit (26, 45, 46),
we follow the approach of Wacholder (26) and estimate abso-
lute measures of intervention effects—specifically, risk dif-
ferences (RDs). Thus, the quantities estimated here will be
exposure RDs, population attributable RDs, generalized im-
pact RDs, and targeted impact RDs. We address numbers
needed to treat in the Discussion section.

Substantive example

We update an analysis from a prior study which found el-
evated hazards and risks of virological failure on HAART
among HIV-positive women who experienced an incident
pregnancy (13). Previously we studied antiretroviral therapy-
naive women aged 18–45 years who were nonpregnant at
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HAART initiation, following 5,494 women for 11,600 person-
years. The exposure of incident pregnancy after HAART
initiation was treated as once-exposed, always-exposed, im-
plying that the effects of experiencing pregnancy may
occur postpregnancy (e.g., a resistance mutation acquired
during pregnancy leads to virological failure subsequent to
childbirth). Virological failure was defined as either failure
to achieve virological suppression of plasma HIV-1 RNA
to less than 400 copies/mL within 6 months of HAART ini-
tiation or a viral rebound to more than 400 copies/mL after
initial suppression (47). Because of concerns about time-
varying confounding affected by prior exposure, the main
analyses were performed using marginal structural models
(8) fitted with inverse probability weights (3, 9); these anal-
yses adjusted for demographic and clinical factors, including
age, employment status, and baseline and updated measures
of weight, body mass index (weight (kg)/height (m)2), hemo-
globin concentration, CD4 cell count and percentage,
antiretroviral therapy regimen, and drug adherence. In this
analysis, the crude hazard ratio was 1.37 (95% confidence in-
terval (CI): 1.08, 1.73), and the weighted (marginal structural
model) hazard ratio was 1.34 (95% CI: 1.02, 1.78), suggest-
ing that pregnancy caused an increased rate of virological
failure and that there was little confounding by measured co-
variates. Further details are available elsewhere (13).

We updated this analysis to include a total of 7,534 women
followed for 16,600 person-years, an increase due both to
new HAART initiation over time and to continued follow-up
of previous HAART initiators. In this updated analysis, we
used a viral load cutoff of 1,000 copies/mL instead of 400
copies/mL to guard against transient viral load increases
(“blips”) without clinical implications (potential false-
positive outcomes). Because the crude estimate of effect
proved durable in the original publication, we focused on
the crude estimate in this reanalysis, considering 4 variables
in the modeling process: time since treatment initiation, the
outcome of virological failure, the exposure of incident preg-
nancy (again, under a once-exposed, always-exposed as-
sumption), and age (which has a strong effect on incidence
of pregnancy). In addition, we simplified our modeling of
time from a restricted 4-knot cubic spline (as in the original
analysis (13)) to simpler linear and quadratic terms for
month.

Limitations of previous work

To the extent that the crude (and marginal structural) mod-
els assessed a true causal effect of pregnancy on time to viro-
logical failure in the previous work (13) (particularly to the
extent that the identifiability assumptions (1–7) were met),
they pertained to a contrast in potential outcomes (48, 49):
comparing the hazard of virological failure resulting from ex-
posing all women in the population to pregnancy with the
hazard of exposing no women in the population to preg-
nancy. This is similar (though not identical (50)) to the esti-
mand that would be obtained from a randomized trial (with
perfect adherence (51)) in which half of these women were
assigned to pregnancy at trial initiation and the remainder
were assigned to never experiencing pregnancy during
follow-up.

As discussed above, the exposure estimand does not translate
directly to an intervention: It is difficult to imagine real-world
interventions which would ensure that all of the observed
women would experience pregnancy during the follow-up pe-
riod (much less at the beginning of that period). Similarly, there
exist no ethical or practical real-world interventions which
would prevent all incident pregnancy in this cohort.

From exposures to interventions

However, there do exist interventions which might prevent
a portion of the incident pregnancy.What intervention is pos-
sible in this setting, and what effect might it have in this pop-
ulation? Here, we can imagine introducing highly effective
contraception into the HAART clinic and encouraging up-
take at the time of HAART initiation or thereafter among
women who actively do not wish to become pregnant. We
might propose providing injectable contraception (e.g.,
depot-medroxyprogesterone acetate (DMPA)), which is
widely accepted in South Africa and throughout the region
(52, 53), to women interested in preventing pregnancy.
Women who actively did not want to become pregnant
would accept DMPA at a higher level; women who were un-
certain or undecided about their pregnancy intentions would
accept DMPA at a lower level; and women who actively de-
sired a pregnancy would typically refuse DMPA. Such an in-
tervention would (counter to fact) prevent some proportion of
observed pregnancies: those which were not actively sought
(henceforth, unintended). We note that there might be unin-
tended consequences of the proposed intervention; these are
addressed in the Discussion.

In the current data, pregnancy intentions are unmeasured.
However, Schwartz et al. (54) reported that in a Johannesburg
maternity unit, 62% of pregnancies were unplanned. For il-
lustrative purposes, we will take this figure as an estimate
of the percentage of women who might want to prevent preg-
nancy in our proposed intervention. Wewill then estimate the
intervention-specific 5-year generalized impact RDs for viro-
logical failure under interventions guided by this (admittedly,
still somewhat unlikely) 62% figure. Below we describe sev-
eral ways in which we implement this intervention in prac-
tice. For comparative purposes, we also estimate the 5-year
population attributable RD, comparing the observed expo-
sure with a counterfactual scenario in which there is no
exposure.

Schwartz et al. also studied predictors of unmet need for
contraception (54); this will allow some targeting of our in-
terventional estimate. For example, in the study by Schwartz
et al., a 5-year increase in age was associated with a preva-
lence ratio of 0.78 for unmet need for contraception (we ig-
nore uncertainty in this estimate) (54). Thus, we may see
greater uptake of our intervention among younger women;
we therefore estimate a 5-year targeted impact RD as well.
We likewise describe below how we incorporate this infor-
mation in practice.

As implied by the use of the phrase “intervention-specific”
above, there are as many interventional estimates of effect as
there are plausible interventions. In this application, we im-
plemented (that is, coded) the proposed intervention in sev-
eral ways. First, we lowered the risk of becoming pregnant by
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62% at each monthly visit (intervention 1). Second, we as-
sumed that 62% of the women, chosen randomly and fixed
at baseline, used DMPA successfully to prevent pregnancy
throughout follow-up (a risk of 0) and that risk of pregnancy
stayed at observed levels in others (intervention 2). Third, we
coded an intervention in which each woman was offered
DMPA every month. If the offer was taken up, DMPA was
assumed to lower risk of pregnancy to 0 for 3 months; other-
wise, pregnancy stayed at observed levels (intervention 3).
The per-month probability that an individual woman would
take up DMPA in a given month was 0.32, which gave us
approximately 62% of all person-time covered by DMPA
in the simulation. Finally, the age-targeted intervention re-
fined generalized intervention 3 only, by changing the prob-
ability of DMPA uptake according to age (see equation A4 in
Appendix).

Statistical approach

We used the parametric g-formula (10–12, 39) to estimate
these interventional effects. A formal description of and tech-
nical details on the method are given in the Appendix and in a
previous paper by Westreich et al. (12). As in previous work
(12), we used our implementation of the g-formula to simu-
late the observed data as closely as possible using the “natural
course scenario.” In addition to providing limited validation
of the parametric assumptions of the g-formula, this natural
course scenario provides the risks against which our pro-
posed interventions can be best compared. Sensitivity analy-
ses interrogating key assumptions are described below. In
implementation, all point estimates were estimated in Monte
Carlo samples of size 30,000 from the original 7,534 women;
95% confidence intervals were estimated as the standard de-
viation of 200 bootstrap resamples.

RESULTS

The study population comprised 7,534 women, who con-
tributed a total of 199,393 person-months (16,616 person-
years) to this analysis, of which 19,478 person-months (9.8%)
were exposed (coincident with or subsequent to an incident
pregnancy). Baseline characteristics of these women are
shown in Table 1. The women experienced a total of 806 in-
cident pregnancies; more than half of these months fell
within 14 months of HAART initiation, and incidence of
pregnancy was strongly age-stratified (see Figure 1). The
women experienced 1,526 virological failure events (at a
viral load cutoff of 1,000 copies/mL), of which 183 (12%)
occurred during exposed person-time. Figure 2 shows the
crude cumulative incidence of the outcome (viral failure)
by exposure status.
The crude hazard ratio for the association between incident

pregnancy (always vs. never) and time to virological failure
in the updated data from a standard analysis was 1.38 (95%
CI: 1.17, 1.61), comparing favorably with the hazard ratio of
1.37 (95% CI: 1.08, 1.73) from the previous analysis (13).
The crude hazard ratio was similar when data were limited
to women who were alive and receiving care at 6 months
and when using the viral load cutoff of 400 copies/mL (as
in the previous analysis (13)) rather than 1,000 copies/mL.
The crude RD, estimated from the complement of the
Kaplan-Meier curves, was 9.5% (95% CI: 4.4, 14.6).
The g-formula approximately recaptured the always-versus-

never exposure RD from the marginal structural model, with
a crude hazard ratio of 1.42 and a crude exposure RD of
10.1% (95% CI: 4.6, 15.6). The natural course g-formula es-
timated a total of 11% of person-time exposed and 0.007
events per month of follow-up, which compares well with
the observed 10% of person-time exposed and 0.008 events
per month of follow-up.

Table 1. Selected Characteristics of 7,534 HIV-Positive Women Initiating Highly Active Antiretroviral Therapy in

Johannesburg, South Africa, From April 1, 2004, to March 31, 2011, at Baseline and Over Follow-upa

Characteristic
Subjects (n = 7,534) Person-Years (n = 16,616)

Median (IQRb) No. % Median (IQR) No. %

Follow-up time, years 20 (9–42)

Deaths 562 7.5

Age, years 33 (29–38) 35 (31–40)

Body mass indexc 22.2 (19.4–25.7) 24.5 (21.6–28.2)

CD4 count, cells/mm3 95 (36–165) 298 (176–448)

Viral load, copies/mLd

≤1,000 39 2.7 22,655 88.2

1,001–10,000 239 16.5 1,087 4.2

>10,000 1,167 80.8 1,957 7.6

Abbreviations: HIV, human immunodeficiency virus; IQR, interquartile range.
a Figures for “over follow-up” include baseline observations.
b 25th–75th percentiles.
c Weight (kg)/height (m)2.
d At baseline, 81%of patients weremissing data on viral load, and all thosewith a viral load of <400 copies/mLwere

excluded as likely treatment-experienced. During follow-up, we assessed viral load only when a viral load

measurement was taken.
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Weused the g-formula to estimate the RD comparing the ob-
served risk with several counterfactual scenarios, summarized
in Table 2. The population attributable RD (comparing ob-
served risk with a counterfactual in which no one was exposed
topregnancy)was1.3%(95%CI: 0.0, 2.6).Thenweestimated3
generalized impact RDs (comparing observed risk with a coun-
terfactual in which 62% of all exposure to pregnancy was pre-
vented) under each of the 3 generalized interventions described

above. Here, the RD was 0.5% (95% CI: −0.5, 1.6) under
interventions 1 and 2 and 1.0% (95%CI:−0.1, 2.0) under inter-
vention 3. Last, we estimated the targeted impact RD (compar-
ing observed risk with a counterfactual in which 62% of all
exposure to pregnancy was prevented differentially by age;
see equation A4). Here, the RDwas 0.6% (95% CI:−0.5, 1.6).

In sensitivity analysis, we estimated RDs comparing ob-
served risk with a counterfactual situation in which 31%

Figure 1. Cumulative incidence of pregnancy (n = 806 incident preg-
nancies) according to time since HAART initiation among 7,534 HIV-
positive women initiating HAART in South Africa, by baseline age,
2004–2011. HAART, highly active antiretroviral therapy; HIV, human
immunodeficiency virus.

Figure 2. Cumulative incidence of virological failure among 7,534
HIV-positivewomen initiating HAART in South Africa, by time-updated
pregnancy status, 2004–2011. This is an “always versus never” expo-
sure contrast. HAART, highly active antiretroviral therapy; HIV, human
immunodeficiency virus.

Table 2. Estimated Effect of Pregnancy on Time to Virological Failure Among 7,534 HIV-Positive Women Initiating

Highly Active Antiretroviral Therapy in South Africa, 2004–2011

R1 R0 RD (R1−R0), % 95% CI

Exposure RD Always Never 10.1 4.6, 15.6

Population attributable RD Observed Never 1.3 0.0, 2.6

Generalized impact RDa

Intervention 1 Observed Reduceda 0.5 −0.5, 1.6

Intervention 2 Observed Reduceda 0.5 −0.5, 1.6

Intervention 3 Observed Reduceda 1.0 −0.1, 2.0

Targeted impact RDb Observed Reducedb 0.6 −0.5, 1.6

Abbreviations: CI, confidence interval; DMPA, depot-medroxyprogesterone acetate; HIV, human immunodeficiency

virus; RD, risk difference.
a Interventions 1, 2, and 3 are described in the text. Briefly, intervention 1 lowers the per-month risk of pregnancy by

62% in all women; intervention 2 lowers the risk of pregnancy to 0 over the entire follow-up period in 62% of women;

and intervention 3 allows women to use DMPA at any time; if they do so, they do not become pregnant for 3 months.
b Also described more fully in the text; here, we elaborate on intervention 3 (above) such that younger women are

more likely to use DMPA.
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(i.e., half of 62%) of all pregnancy was prevented. General-
ized intervention 1 produced a result of 0.2% (95% CI: −0.8,
1.2); generalized interventions 2 and 3 gave similar results
(RDs of 0.2% in both cases). We estimated the 2-year expo-
sure RD (RD = 6.2%, 95% CI: 1.2, 11.2), the 2-year popula-
tion attributable RD (RD = 0.7%, 95%CI: −0.1, 1.5), and the
2-year generalized intervention RD (for intervention 1; RD =
0.5%, 95% CI: −0.3, 1.0). Finally, we estimated 5-year RDs
using a virological failure cutoff of 400 copies/mL, finding
results similar to those in Table 2 (exposure RD = 8.1%
(95% CI: 2.7, 13.5), population attributable RD = 0.8%
(95% CI: −0.5, 2.1), and (for intervention 1) generalized in-
tervention RD = 0.4% (95% CI: −0.6, 1.4)).

DISCUSSION

In this work, we have estimated both exposure effects and
population intervention effects for the impact of pregnancy
on risk of virological failure in a population of HIV-positive
women receiving antiretroviral therapy in Johannesburg,
South Africa. Notably, the two types of estimates tell radi-
cally different stories: While the exposure RD at 5 years
was approximately 10%, the population intervention RD
ranged from 1.3% to 0.5%. These RDs can be used (with ca-
veats (55)) to calculate numbers needed to treat (NNTs) of 10
and 77–200.
These estimates differ by more than an order of magnitude,

for a simple reason. Assuming that these estimates of causal
effects are unbiased, the exposure-effect NNT (derived from
an exposure RD) represents the number of pregnancies
(among women who become pregnant) that would have to
be prevented in order to prevent 1 virological failure, while
the population-intervention-effect NNTs (derived from, for
example, a population attributable RD) represents the number
of women in whom we would need to intervene to prevent 1
virological failure, assuming that the intervention must be ap-
plied to the whole population of interest. Viewed in this way,
it is intuitive that applying an NNT derived from an exposure
effect and applying it to a proposed intervention may be
highly misleading (55). In our case, targeting our interven-
tion toward women whowere most likely to become pregnant
did not meaningfully change the NNT, possibly because
these women also comprised the largest subgroup of
women we studied.
The distinction between exposure and population interven-

tion effects is recognized implicitly by most epidemiologists.
We do not anticipate that most readers of this work will be
shocked by this phylogeny, even if they prefer terms other
than “exposure” and “population intervention.” Epidemiolo-
gists have a long history of pursuing population-intervention
estimates of effect. Khoury et al. have discussed “transla-
tional epidemiology” as a type of epidemiology which can
“assess the impact of using candidate applications on pop-
ulation health outcomes” (19, p. 517). Nonetheless, in our
observation the majority of population-based analyses (espe-
cially outside of epidemiology journals) have focused exclu-
sively on exposure effects, eschewing measures such as
population attributable fractions. While such effects can be
helpful for making public health policy, knowing the expo-
sure effect of smoking on incidence of lung cancer allows

clinicians to educate patients. However, this knowledge
may be of less utility in setting larger-scale policy which pro-
motes health at the population level.
Epidemiologists can play a larger role in setting such pol-

icy by paying more attention to interventional estimates of ef-
fect, both by producing such estimates when possible and,
regardless, by increasing transparency and clarity around
what effects are being estimated. We do not in any way be-
grudge epidemiologists their exposure effects (we plan to
keep estimating these as well), but we hope that they will
be more clear in labeling them as such. Doing this can,
among other things, help epidemiology play a central role
in implementation science, which is defined partially as
“the scientific study of methods to promote the integration
of research findings and evidence-based interventions into
health care policy and practice” (56, p. S27).
A critical point worth clarifying is that the targeted inter-

ventions we evaluated in this report made numerous simpli-
fying assumptions. Our 3 generalized interventions took
different approaches to the problem; the similarity in the es-
timates derived from the 3 approaches (all point estimates
within the confidence intervals of all other estimates
(Table 2)) should provide some comfort that the specific ap-
proach taken to coding the intervention is of relatively little
concern in this case. While we have attempted to make
these potential interventions well-defined, the details of
how each intervention is coded (i.e., implemented in SAS
(SAS Institute Inc., Cary, North Carolina)) may affect how
well exposures are truly “well-defined.”
Another simplification is that of “no censoring or compet-

ing risks of death,” which is artificial in the sense that death
will always be an issue in a real-world intervention. For ex-
ample, in the presence of competing risks, some interven-
tions may be “wasted” in persons who (precisely because
of the competing risk) would never have had the outcome
of interest and were therefore “immune” from a causal
types perspective (57, 58). Thus, interventional estimates
which ignore competing risks, as here, are likely to overesti-
mate RDs. Exploration of use of the g-formula to assess com-
peting risks, as well as the role of competing risks in the
estimation of interventional effects, is a subject for future
work.
As with the previous work (13), there were limitations of

this analysis due to the available data. We were unable to use
the most specific outcome definition—defining virological
failure with 2 consecutive measurements of viral load (at ei-
ther cutoff )—because, as discussed in the original report
(13), very few viral loads are confirmed in this setting. Like-
wise, we did not adjust for number of pregnancies occurring
prior to HAART initiation, due to lack of rigorous collection
of these data. In general, these were observational data from a
clinical database; unmeasured confounding remains a threat
to the validity of our analyses and should be kept in mind
while evaluating these effect estimates.
A final point: Hernán and Taubman (59) have discussed

the importance of having well-defined interventions for
causal inference; herewe similarly considered the unintended
consequences of proposed interventions. In this example,
while DMPA is not believed to affect response to antiretrovi-
ral therapy (60), data were scant and such effects cannot be
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entirely ruled out. If use of DMPA in fact increases risk of
virological failure, then an intervention which attempted to
prevent pregnancy with DMPA could increase, rather than
decrease, overall risk. Relatedly, it is unlikely that a woman’s
age is the only factor determining use of contraception; while
we saw no strong differences between our generalized and
age-targeted estimates of interventional effect, this should
not imply that no targeted intervention could improve on a
generalized intervention. Indeed, one may view the develop-
ment of methods to find the optimal targeting as an open
question.

Epidemiology can inform a spectrum of biomedical and
public health interests; tools exist within epidemiology to es-
timate effects relevant to each. Greater clarity in reporting and
interpreting effect estimates, and placing those estimates on
the spectrum of possible effect estimates, is an unmet need.
Improved clarity in this arena—in particular, drawing distinc-
tions between exposure and interventional estimates—will
help epidemiology navigate from patients to policy and
back again, and thus allow epidemiologists to do their job
with optimal impact.
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APPENDIX

The Parametric g-Formula

We begin with a formal description of the observed data. Let uppercase letters represent random variables and lowercase letters
represent realizations. Let i = 1, 2, . . .,N denote the subject and j = 0, 1, . . ., J denote the month of follow-up, withN = 7,534 and
J = 60 months for 5 years. For participant i, let Zij be age measured at visit j− 1. Let Xij = 1 indicate having experienced an in-
cident pregnancy by visit j. LetCij+1 = 1 indicate censoring due to dropout or death by visit j + 1. Let Yij+1 = 1 indicate a diagnosis
of virological failure by visit j + 1. By design, Xi, j=−1 = 0 (all subjects are free of pregnancy at baseline) and Ci0 = Yi0 = 0 (all
subjects are at risk of virological failure at baseline). By definition, if Yij = 1 then Yij+1 = 1 and if Cij = 1 then Cij+1 = 1. By con-
vention, Zi, j=−1 = 0. For each visit j, we assume the following order: Zij, Cij, Yij, Xij. The history of a variable is denoted with an
overbar. For example, �Zij ¼ fZi0; Zi1; : : :; Zijg; note that �Zij therefore includes baseline covariates Zi0. Below, we generally sup-
press the subscript i to simplify notation. Note that Z can be replaced by a vector Z without loss of generality.

The cumulative incidence of virological failure in the observed data by visit j + 1 can be written as follows:

Xj

k¼0

X
�zj

X
�xj

PrðYkþ1 ¼ 1j�Zk ¼ �zk; �Xk ¼ �xk; �Yk ¼ �Ckþ1 ¼ 0Þ ×

Qk
m¼0

PrðCmþ1 ¼ 0j�Zm ¼ �zm; �Xm ¼ �xm; �Ym ¼ �Cm ¼ 0Þ ×
PrðXm ¼ xmj�Zm ¼ �zm; �Xm�1 ¼ �xm�1; �Ym ¼ �Cm ¼ 0Þ ×
gðZm ¼ zmj�Zm�1 ¼ �zm�1; �Xm�1 ¼ �xm�1; �Ym ¼ �Cm ¼ 0Þ ×
PrðYm ¼ 0j�Zm�1 ¼ �zm�1; �Xm�1 ¼ �xm�1; �Ym�1 ¼ �Cm ¼ 0Þ

2
664

3
775

8>>>><
>>>>:

9>>>>=
>>>>;
; ðA1Þ

where Pr(A = a|B = b) is the conditional probability of A = a given B = b, and g(A = a|B = b) is the conditional density of A given B
evaluated at the values A = a and B = b.

The g-formula can be used to consistently estimate the cumulative incidence of virological failure under a hypothetical treat-
ment intervention (61). (As with all methods based on covariate adjustment, the validity of g-formula estimates requires ex-
changeability and positivity conditional on the measured and modeled covariates, as well as treatment-variation irrelevance;
Robins and Hernán (61) provide a formal description of these conditions in longitudinal settings.) For example, we first consider
the static treatment intervention “set the exposure history �Xj ¼ �xj and allow no censoring by loss to follow-up or death.” The
following g-formula can be used to consistently estimate the cumulative incidence of virological failure by visit j + 1 under
an intervention of this form (12, 61):

Xj

k¼0

X
�zj

PrðYkþ1 ¼ 1j�Zk ¼ �zk; �Xk ¼ �xk; �Yk ¼ �Ckþ1 ¼ 0Þ ×

Qk
m¼0

1 ×
1 ×
gðZm ¼ zmj�Zm�1 ¼ �zm�1Þ ×
PrðYm ¼ 0j�Zm�1 ¼ �zm�1; �Xm�1 ¼ �xm�1; �Ym�1 ¼ �Cm ¼ 0Þ

2
664

3
775

8>>>><
>>>>:

9>>>>=
>>>>;
: ðA2Þ

Because the intervention is static (and includes no censoring or competing risks; see Discussion for more on competing risks), the
conditional probabilities of both the treatment and of censoring resolve to 1.We can calculate the exposure risk difference (always
vs. never) as the difference between the g-formula evaluated at �xj ¼ ð1; 1; : : : 1Þ (cumulative incidence under “always exposed to
pregnancy”) and the g-formula evaluated at �xj ¼ ð0; 0; : : : 0Þ (cumulative incidence under “never exposed to pregnancy”) for a
fixed value of j (one equivalent to 5 years).

In contrast, the interventional risk difference will compare the observed cumulative incidence with the cumulative incidence
under either a static intervention or a dynamic intervention. The observed cumulative incidence can simply be taken from ob-
served data; alternately, we can estimate this quantity from equation A1 (the “natural course scenario”). The g-formula for the
cumulative incidence under our interventions can be expressed as

Xj

k¼0

X
�zj

PrðYkþ1 ¼ 1j�Zk ¼ �zk; �Xk ¼ �xk; �Yk ¼ �Ckþ1 ¼ 0Þ ×

Qk
m¼0

1×
fTðP; Zm; PrðXm ¼ xmj�Zm ¼ �zm; �Xm�1 ¼ �xm�1; �Ym ¼ �Cm ¼ 0ÞÞ ×
gðZm ¼ zmj�Zm�1 ¼ �zm�1Þ ×
PrðYm ¼ 0j�Zm�1 ¼ �zm�1; �Xm�1 ¼ �xm�1; �Ym�1 ¼ �Cm ¼ 0Þ

2
664

3
775

8>>>><
>>>>:

9>>>>=
>>>>;
; ðA3Þ

where fT ( ) is a function for the probability of pregnancy given
the intervention T and P is the expected percentage of pregnan-
cies prevented—say, 62% (from Schwartz et al. (54)). If T is
the generalized intervention “offer DMPA to all women

assuming high uptake among those who do not actively
want to become pregnant, uniformly over all ages; and allow
no censoring,” then the function fT can be implemented simply
(see Discussion): If Xm−1 = 1, then Xm = 1, else probability is
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calculated by multiplying the probability of pregnancy at
time m (calculated as in the natural course scenario) by
(1− P).
If T is the targeted intervention—“offer DMPA to all

women assuming that uptake is lowerat older ages,with an up-
take ratio of 0.78 per 5 years of age; and allow no censoring”—
then fT is more complicated and could be estimated as: If
Xm−1 = 1, then Xm = 1, else probability is calculated by mul-
tiplying the probability of pregnancy at time m (calculated as

in the natural course scenario) by

1� elnð pÞþβZS ; ðA4Þ

where β is ln(0.78) and Zs is age centered at 30 years (the me-
dian age in the study by Schwartz et al. (54)) and divided by 5.
Additional technical details on the g-formula are available

elsewhere (12).
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