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Abstract

Arsenic (As) is a prevalent environmental toxin; readily accessible for human consumption and

has been identified as an endocrine disruptor. However, it is not known what impact As has on

female sexual maturation. Therefore, in the present study, we investigated the effects of

prepubertal exposure on mammary gland development and pubertal onset in female rats. Results

showed that prepubertal exposure to 10mg/kg of arsenite (As(III)) delayed vaginal opening (VO)

and prepubertal mammary gland maturation. We determined that As accumulates in the liver,

disrupts hepatocyte function and suppresses serum levels of the puberty related hormone insulin-

like growth factor 1 (IGF-1) in prepubertal animals. Overall, this is the first study to show that

prepubertal exposure to As(III) acts peripherally to suppresses circulating levels of IGF-1 resulting

in delayed sexual maturation. Furthermore, this study identifies a critical window of increased

susceptibility to As(III) that may have a lasting impact on female reproductive function.
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1. Introduction

Arsenic (As) is a well known environmental toxin [1] easily accessible to the human

population through ingestion of contaminated drinking water [2–6] and food [7–10].

Exposure to As has been linked to various deleterious health conditions including cancers

[11–15], neurological conditions [16], skin lesions, cardiovascular disease [17] and diabetes

[18–19]. In many cases, these conditions are predominantly diagnosed in adults as a result of

life-long exposure to toxic levels of the non-essential element. However there is a growing

concern regarding the effects of low-dose (physiological) exposures during childhood

development, a critical window of increased susceptibility to environmental toxins [20–22].

It is estimated that 200 million people worldwide are exposed to As, including a large

number of children [4]. Several studies have reported deleterious health effects in children

exposed to As [23–26]. In the United States, As levels 6-times greater than the EPA safe

drinking water limit (10 ppb) have been detected in organic infant milk and high As

concentrations were also detected in cereal bars, high energy diets [7], rice [8–9] and in

blood taken from children living in rural areas [6]. While conscious efforts have been made

to reduce industrial use and the subsequent environmental impact, these recent studies

culminate to suggest that exposure to this toxin is prevalent. To date, few studies have

focused on childhood low-dose exposure to As and the ramifications this may have on

pubertal development. Impairments in normal endocrine processes that regulate thelarche

(mammary gland development) and menarche (pubertal onset) could have lasting

detrimental effects on reproduction function throughout a women’s life time [27–29]. Thus,

understanding the impact low-level As may have on pubertal developmental processes is of

vital importance to the well-being of that individual later in life.

While many human [16] and animal studies [30] have focused on elucidating the cognitive

effects associated with early As exposure, less attention has been given to the reproductive

developmental effects of As. Inorganic trivalent arsenite (As(III)), the most detrimental form

of As to human health [31], readily crosses the blood brain barrier (BBB) and accumulates

in the brain [32–33]. Thus, it is plausible that As(III) poses a threat to the neuroendocrine

pathways that regulate female pubertal development. Supporting this, chronic exposure to

As(III) has been shown to suppress serum levels of key reproductive hormones including

luteinizing hormone (LH), follicle stimulating hormone (FSH) and estradiol (E2) resulting in

prolonged diestrus in adult female rats [33–34]. Additionally, As readily accumulates in the

liver [35], the organ responsible for the main production of circulating IGF-1 [36], which

has been shown to play a critical role in female pubertal onset [37–39]. Importantly, both E2

and IGF-1 are key reproductive hormones also necessary for normal pubertal mammary

gland development and maturation [40–43]. Although epidemiological data is lacking, a

delay in menarcheal age was reported in women living in the Bengal Delta Plain (India)

exposed to drinking water known to have high levels of inorganic arsenic (iAs) [44].
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However, it was unclear if these women suffered from additional developmental/nutritional

problems associated with As toxicity that might contribute to the reported delay. Overall,

these studies culminate to suggest that As could in fact alter pubertal timing, however no

study to date has shown that As can directly alter the onset of female puberty. Thus, we

hypothesize that exposure to As during a critical developmental window can disrupt key

endocrine processes that regulate female sexual maturation. Therefore, the present studies

assessed whether prepubertal short-term exposure to low-dose As(III) would alter puberty-

related hormones resulting in altered pubertal mammary gland development and the timing

of pubertal onset in female rats. Importantly, we show that As(III) is capable of disrupting

both pubertal mammary gland maturation (thelarche) and the timing of pubertal onset

(menarche) and identify a critical window of vulnerability to this readily available

environmental endocrine disruptor that poses as threat to female reproductive health.

2. Materials and Methods

2.1. Animals and Housing

Adult Sprague Dawley females and males were purchased from Charles River (Wilmington,

MA) and housed under controlled conditions of temperature (23°C), lighting (lights on: 7:00

h; light off: 18:00 h) and ad libitum access to food and deionized (d.i.) water. Adult females

and males were bred to a 1:1 ratio to generate female offspring used in the study. Both the

diet (Harland Teklad 2016 rodent chow; Harlan Laboratories, Indianapolis, IN) and water

had no detectable levels of As based on sample analyses performed in the heavy metals

analysis laboratory of Dr. Parsons at UTPA. All procedures were approved by University of

Texas- Pan American (UTPA) Institutional Animal Care and Use Committee (IACUC) and

in accordance with the National Institutes of Health Guidelines for the Care and Use of

Laboratory Animals.

2.2. Experimental Procedure and Justification of Dose

A minimum of 5 breeding pairs of rats for each experiment were bred and allowed to deliver

their pups normally and litters were culled to 10–12 pups with 5–6 females per litter. Half of

the female pups from each dam were designated as controls and the other half As-treated.

We conducted a preliminary study using doses of either 1mg/kg body weight (b.w.) sodium

arsenite NaAs (As(III)), 5mg/kg of As(III), 10mg/kg of As(III) or 20mg/kg of As(III) (data

not shown). Animals were treated with various amounts of As(III) based on mg/kg b.w.

concentrations. For example, an animal weighing 25g, receiving a 10mg/kg b.w. dose of

As(III), was administered .025mg of NaAs(III) diluted in 200μls of deionized water via

gastric gavage. Animals were weighted daily and the dose was adjusted based on body

weight. Therefore making it possible to administer various amounts of As in small volumes

and know exactly how much As(III) each treated animal received. Based on these

preliminary studies, the 10mg/kg As(III) was determined to be the lowest effective dose and

used in all experiments.

The 10mg/kg dose of As in this study resulted in a average daily intake of 575μg/day per

female rat. This resulted in a cumulative (25 days) intake of 14.38 mg of As per animal. The

estimated average daily intake of As for adult females is 50μg/day [45]. While less
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substantiated, the daily As intake for infants and young children has been reported to be 2–

3x higher than adults [46–47]. Based on a comprehensive report conducted by the Agency

for Toxic Substance and Disease Registry (ATSDR) which presented detailed information

on the known toxic effects of As(III), humans were shown to be 10–100 times more

sensitive to As(III) [45]. This was based on the lowest adverse effect level (LOAEL) of

intermediate (as few a 15 days to as many as 365 days) As(III) exposure (mg/kg exposure a

day) to cause similar systemic effects in rats compared to humans. Thus, conservatively, our

10mg/kg dose of As(III) resulted in an average daily intake of 575μg/day, which would be

equivalent to a human daily intake of 57.5μg (based on a 10 fold difference); thus resulting

in a 25 day cumulative dose of 1.4 mg. Comparatively a cumulative dose in humans for the

same duration would result in 1.25mg (50μg/day). Therefore the dose used in our model is

relevant to human health concerns.

In the first experiment (figure 1; continuous dose), female offspring were dosed via gastric

gavage with either 10mg/kg of As(III) or 0.9% saline solution (control) starting on postnatal

day (PND) 12 until pubertal onset (approximately 25 days). Gastric gavage was used given

the most common route of As exposure in children is oral [45]. Animals were weighed daily

and monitored for acute toxicity to As(III) exposure. Starting on day 27 female offspring

from each group were inspected daily for vaginal opening (VO). The day of vaginal opening

was recorded and a vaginal smear was used to define the stage of first estrus as described

previously [48]. Dosing was continued and vaginal smears were taken until a diestrus smear

was recorded indicating first ovulation had occurred. The interval between VO and diestrus

was recorded for all rats. It is important to note that vaginal opening and first diestrus,

determined by vaginal smears, is a proven method for determining sexual maturation in rats

[48]. The mean day of vaginal opening, thus marking sexual maturation, in our Sprague

Dawley colony is 35 days of age. The mean vaginal opening and first diestrus occurring

significantly later than this was considered a delay is sexual maturation in this study.

In the second experiment (figure 1; stop dose), dosing was administered as stated above and

continued until PND 29. On PND 30, females were killed by decapitation and trunk blood

was collected for serum hormone analysis. All animals were verified to be in the late

juvenile phase of development by well established criteria [49]. The hypothalamus,

pituitary, and ovaries were harvested and frozen at −80°C until they were analyzed for As

accumulation. Livers were collected for transmission electron microscopy and As analysis.

Mammary glands were collected for whole mount and As analysis.

2.3. Mammary whole gland morphological analysis

To analyze the effects of As exposure on pubertal mammary gland growth and

differentiation, mammary gland whole mounts were processed similarly as previously

described [50] with the following modifications. On PND 30, the #4 right abdominal

mammary glands from control and treated animals were removed and spread flatly on glass

microscope slides and placed in Carnoy’s fixative (75% glacial acetic acid, 25% absolute

ethanol) at RT for 3 days. Next slides were washed in 70% ethanol (EtOH) for 1 hour,

distilled water for 30 minutes, and placed in Carmine Alum stain for 4 days at RT. Then,

mammary glands were destained as follows: 70% EtOH for 1hr.; 95% EtOH for 1hr.; 100%
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EtOH for 1hr.; and cleared in xylene for 2 days at RT. Finally tissues were permanently

stored in methylsalicylate until analyzed under an Olympus CKX41 microscope.

Under the microscope, the number of mammary gland terminal end buds (TEB), alveolar

buds (Ab), lobular type 1 (Lob1) and terminal ducts (TD) were counted in a localized

exterior area (opposite of the nipple), the most actively growing area in the mammary gland,

previously described as Zone C [51]. The number of each of the above ductal structures was

counted in each mammary gland analyzed. There were a total of 4 mammary glands per

group (one per animal) analyzed. The mean number of each of these structures per group

was calculated and statistical analysis between groups was conducted.

2.4. Arsenic (As) Analysis

Arsenic was measured by the heavy metal analysis laboratory of Dr. Parsons in the

Department of Chemistry, College of Science and Mathematics, University of Texas-Pan

American. The samples: rat tissues (liver, ovaries, pituitary glands, mammary glands, and

hypothalamus) food, and bedding were dried in a Labconco Freezezone 6 freeze dry system

(Kansas City, MO). The dried tissue, food and bedding samples were digested using a nitric

acid digestion method. Samples were weighed and 10 mL of concentrated trace pure nitric

acid was added to each sample. Samples with nitric acid were then heated on a hot plate

until the solution turned clear. Subsequently, the samples were evaporated almost to dryness

and cooled to room temperature. To the digested samples 5 mL of 30 % H2O2 was added to

aid in the decomposition of materials. The samples were then cooled to room temperature

and diluted using ultrapure water (water with a resistance of 18MΩ). Additionally water

samples were tested for arsenic content without pretreatment. All samples were analyzed

using a Graphite Furnace atomic absorption spectroscopy Perkin Elmer AAnalyst 800

Atomic absorption Spectrometer (Shelton Connecticut). The Furnace program was

optimized by varying the atomization temperatures to obtain the optimum sensitivity and the

characteristic mass was found to be 20 pg/0.0044 A-s at a wavelength of 197.3 nm. To

obtain the data, matrix modifiers consisting of Pd 5μg and Mg 3μg were also used. For each

analysis 20 μL of sample was injected with the matrix modifier into the graphite furnace

atomic absorption spectrometer at 20°C. Additionally, a correlation coefficient of 0.99 or

better was obtained for all analyses performed.

2.5. Transmission Electron Microscopy

Liver was harvested from control and treated PND 30 day animals and fixed for

transmission electron microscopy (TEM) following a procedure previously described [52]

with the following modifications. Tissues were diced into 1 mm3 in 2% formalin/0.1M

phosphate buffer (7.2 pH). After dicing, tissues were placed in fixative containing 4%

formalin, 2% glutaraldehyde in a 0.1M phosphate buffer (7.2 pH) for 24 hrs at 4°C. The next

day tissues were fixed with 2% osmium tetroxide in 0.1M phosphate buffer (7.2 pH) for 1 hr

at RT and placed in a 2% uranyl acetate solution (in H2O) for 1hr at RT. Fixed tissues were

then dehydrated at RT as follows: 30% EtOH for 15min, 50% EtOH for 15min, 70% EtOH

for 15min, 95% EtOH for 15min, 95% EtOH for 30 min, 100% EtOH for 1h, and acetone

for 15min. Tissues were embedded into epoxy resin blocks (0.5 × 1 cm) using 46% araldite

502 resin (Ted Pella Incorporated, Redding, CA), 50% dodecenyl succinic anhydride
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(DDSA; Ted Pella Incorporated) and 4% benzyldimethylamine (BDMA; Ted Pella

Incorporated). Propylene oxide was used as a transitional buffer as follows: 1:1 propylene

oxide (250μl)/epoxy resin (250μl) for 1hr.; 1:2 propylene oxide (250μl)/epoxy resin (500μl)

for 2hrs; 1:4 propylene oxide (250μl)/epoxy resin (1ml) for 2hrs. at RT then incubated at 60°

C for 12 hours. Tissues were sectioned (70nm), placed on copper grids (75 mesh count),

treated with 2% uranyl acetate for 2 mins, washed in ddH2O, treated with lead citrate for 90

secs, washed with ddH2O and immediately analyzed using the EVO LS 10 electron

microscope. Three different tissue samples were fixed from each liver (4 livers per group).

2.6. Hormone and Statistical Analysis

Blood was collected from controls and treated animals, placed in 4°C overnight, centrifuged

at 4,000×G for 45 mins, and serum was used for hormonal assays. LH and FSH were

measured using a rat MILLIPLEX rat pituitary fluorescent-coded bead kit purchased from

Millipore Corporation (Billerica, MA). The assay sensitivity was 4.9 pg/ml and 47.7 pg/ml

for LH and FSH, respectively. IGF-1 levels were measured in serum using a MILLIPLEX

rat/mouse IGF-I fluorescent-coded bead assay purchased from the Millipore Corporation.

The assay sensitivity was 3.2 pg/ml. LH, FSH and IGF-1 assays were all run in the

Biomarkers Core Laboratory, at the University of Texas Health Science Center San Antonio

(UTHSCSA) Edinburg Regional Health Center (E-RAHC). E2 levels were measured using a

mouse/rat estradiol ELISA assay from Calbiotech (Spring Valley, CA). The assay sensitivity

was 3pg/ml.

Differences between control and treated groups were analyzed by unpaired Student’s t test

assuming random sampling. Probability values <0.05 were considered to be statistically

significant. The IBM PC programs INSTAT and PRISM software (GraphPad, San Diego,

CA, USA) were used to calculate and graph the results.

3. Results

3.1. Effects of prepubertal exposure to As(III) (arsenite) on female pubertal onset

Figure 2A depicts the growth curves of female pups exposed to either saline (controls) or

10mg/kg As(III) starting at PND 12 through pubertal onset. Importantly, there were no

weight differences in controls compared to the arsenite-treated females during the dosing

period and both groups had similar daily weight gains (Figure 2B). In addition, there were

no observable signs of dehydration, loss of activity, or abnormal behavior between groups.

The 10mg/kg As(III) dose did not result in acute toxicity or physically debilitate the animals

(data not shown).

Figure 3 demonstrates that prepubertal females exposed to As(III) had almost a 2 day delay

in the timing of pubertal onset as determined by the day of VO and the day of first diestrus

(D). Specifically, prepubertal As(III) exposure delayed both VO (37.266 ± 0.613) and D

(38.400 ± 0.615) compared to rats treated with saline (35.450 ± 0.413; 36.450 ± 0.413 days

of age, respectively). However, there were no differences in length of estrus (number of days

between VO and D) between groups.
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3.2 Effects of prepubertal As(III) (arsenite) exposure on pubertal mammary gland
morphology

To determine the effects of prepubertal As(III) exposure on pubertal mammary gland

maturation, the number of terminal mammary gland structures were counted in PND 30

animals (figure 4). Figure 4A shows that the mean number of terminal end buds (TEB),

undifferentiated progenitor cells, were significantly higher (p < 0.01) in prepubertal animals

exposed to As(III) (68.0 ± 10.654) compared to saline treated controls (30.0 ± 3.342).

Prepubertal As(III) exposure also resulted in a significantly (p< 0.01) higher presence of

alveolar buds (AB; 12.80 ± 2.198) compared to controls (4.50 ± 0.645). Figure 4C shows

that there were significantly (p <0.01) less mean number of terminal ducts in As(III)-treated

females (TD; 30.25 ± 4.029) compared to the saline treated group (53.5 ± 4.907). Although

fewer mean number of lobular type 1 (Lob1) structures were observed in the arsenite treated

group (1.00 ± 0.707) compared to controls (3.5 ± 1.190), the difference was not significant

(figure 4C). Importantly, no Lob1 structures were observed in 50% (2 of 4) of the mammary

glands analyzed in the As(III)-treated group, comparatively Lob1 structures were present in

all of the control mammary glands (N=4).

3.3 Effects of prepubertal exposure of As(III) (arsenite) on key puberty-related hormones

To determine how arsenite delayed pubertal sexual maturation, serum levels of key puberty-

related hormones were assessed on PND 30, just prior to entering the peripubertal phase of

female development. Figure 5A depicts that daily prepubertal exposure to low-level As(III)

(arsenite) significantly decreased (p< 0.01) serum levels of IGF-1 (629.605 ± 46.018 ng/ml)

compared to controls (802.914 ± 35.440 mg/ml). Surprisingly, exposure to arsenite had no

effect on serum levels of growth hormone (GH; 9.235 ± 3.138 ng/ml; arsenite vs. 9.648 ±

3.383 ng/ml; controls), LH (0.496 ± 0.174 ng/ml; arsenite vs. 0.791 ± 0.262 ng/ml;

controls), and E2 (14.336 ± 0.618 pg/ml; arsenite vs. 13.478 ± 0.924 pg/ml; controls)

compared to saline treated females (Figure 5 B, C and D). In addition, no differences were

observed in serum levels of FSH in As(III) treated (12.225 ± 1.194 ng/ml; N= 10) vs. saline

treated (11.152 ± 2.077 ng/ml; N=9) animals (data not shown). Supporting this, Table 1

shows that As concentrations in the liver (29.405 ± 1.146 μg/g), the organ responsible for

producing and secreting the majority of circulating levels of IGF-1, were more than 3x

higher than As levels measured in the hypothalamus (7.402 ± 0.766 μg/g), pituitary (10.997

± 1.202 μg/g), ovaries (2.940 ± 0.445 μg/g) and mammary gland (0.923 ± 0.179 μg/g). As

expected, As levels in controls tissues were non-detectable (ND) with the liver (0.0449 ±

0.008 μg/g) being the only exception. The likely source was from trace levels (under

detection limit) of As in food and water that accumulated in the liver over the experimental

period. As-treatment did not affect tissue growth given there were no measurable differences

in organ wet weight between groups at PND 30 in these respective tissues (data not shown).

3.2. Effects of prepubertal exposure of As(III) (arsenite) on liver histology and function

Given the high accumulation of As in the liver and subsequent suppression of circulating

IGF-1 due to prepubertal As(III) exposure TEM was used to observe histological changes in

the liver previously shown to occur due to As treatment [35]. Figure 6 shows representative

TEM images of hepatocytes at PND 30 from saline (A, C and G) and As(III) (arsenite)
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treated animals (B, D, E, F and H). Arsenite treated hepatocytes exhibited irregularity in

their nuclear shape (figure 6F), increased heterochromatin condensation (figure 6B, D, E and

F) and an increased presence of lipid (droplets) vacuolization (figure 6B and D); structures

previously used as markers to determine cell stress and toxicity [35]. In addition, livers from

arsenite treated animals expressed a higher observable concentration of engorged Kupffer

cells containing lipid vacuoles (figure 6H) compared to normal nonreactive cells in controls

(figure 6G). This is indicative of an immune response to As in these animals. A large

majority of hepatocytes (2 out of three hepatocytes) in the arsenite treated tissue samples

exhibited these cellular changes compared to sporadic and minute expression of these cell

stress determinates in control samples. This result was confirmed on multiple serial sections

taken from 3 different tissue samples per liver (4 animals per group).

4. Discussion

In the present study we show that prepubertal exposure to As(III) delays sexual maturation

in female rats as determined by a delay in pubertal onset and suppression of prepubertal

mammary gland development. The dose used was determined to be nontoxic given it did not

disrupt overall somatic growth, limit food and water intake, or alter the wet weight of key

reproductive organs, all signs of As toxicity. Although no study to date has assessed the

effects of prepubertal As exposure on mechanisms involved in reproductive pubertal onset,

the dose of As used in this study is low compared to previous studies showing As(III) effects

of physiological processes in rats [35, 53–55]. In the most comprehensive studies to date,

with regards to As(III) effects on reproduction, adult females exposed to 0.4ppm/100 g body

weight of As(III) for 28 days resulted in suppressed circulating levels of reproductive

hormones, ovarian function and disrupted estrous [33–34]. While this data is compelling, the

mode of exposure (drinking water vs. gavage in our study), days exposed (28 days vs. 19

days), and age exposed (adult vs. prepubertal) make it difficult to compare. However, the As

dosed used significantly lowered ovarian wet weight [34], which we did not observe in our

current study. Additionally, our dose of 10mg/kg resulted in a considerably lower

accumulated amount of As in reproductive tissues. Furthermore, as described above (see

methods), humans are known to be considerably more sensitive to As toxicity than rats [45].

The 10mg/kg dose of As used in this study is equivalent to a human daily intake of 57.5μg/

day. Similarly, the known average daily intake of As for adult females is 50μg/day [45] and

As daily intake has been reported to be 2–3x higher in young children and infants [46–47].

This combined with epidemiological data reporting a delay in menarcheal age in women

exposed to high levels of iAs in drinking water [44] support that As-induced effects we have

described are relevant to human health concerns.

The initiation of female puberty (first ovulation) is a highly intricate and succinct

physiological process directed by neuroendocrine regulatory pathways and timing in of

which these events occur is critical. Our study suggests that prepubertal As exposure

disrupts this timing by suppressing the peripheral release of circulating levels of IGF-1.

There are several lines of evidence that support this hypothesis. Circulating IGF-1 plays a

significant role in the pubertal process by linking somatic development to the activation of

the LH releasing system. IGF-1 has been shown to act centrally to induce luteinizing

hormone releasing hormone (LHRH) from immature female median eminence (ME) in vitro
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[56] and LH release during first proestrus and estrus in vivo [37]. Furthermore, IGF-1

administration during the late juvenile period (just prior to first proestrus) has also been

shown to advance puberty in rats [37] and prepubertal treatment of IGF-1 advanced puberty

in primates [38]. Conversely, suppressed IGF-1 levels have been previously shown to be

associated with delayed puberty in female rats maternally exposed to low levels of lead (Pb)

[57]. This effect was negated by IGF-1 replacement (during the late juvenile phase of

development) which stimulated LH release and restored normal pubertal onset in these

animals. These studies culminate to demonstrate that circulating IGF-1 plays an important

role in the timing of pubertal onset.

Our results demonstrated that prepubertal exposure to As suppressed circulating levels of

IGF-1, without affecting systemic levels of LH or E2. This is intriguing, but could be

explained through the timing at which these hormones were assessed and/or the site of As

actions. IGF-1 significantly increases just prior to puberty [58–60] which is marked by a

change in the physiological release pattern of LH from the pituitary during first proestrus

[61–62]. It is likely that the decreased levels of IGF-1 measured during late juvenile

development in our study had no effect on basal levels of these hormones but delayed the

proestrus rise in LH required to stimulate the release of E2, which subsequently results in the

large preovulatory surge of LH that causes first ovulation [61–63]. As previously stated,

IGF-1 replacement in late juveniles can stimulate proestrus LH release and restore pubertal

onset in females maternally exposed to Pb [57]. Furthermore, studies in ovariectomized

(OVEX) prepubertal rats [58] and primates [64] have shown that the prepubertal rise in

IGF-1 shown to regulate LH release, is E2 independent. The prepubertal rise in circulating

IGF-1 is centrally regulated by GH [65], but we showed that circulating levels of GH were

not suppressed due to As(III) exposure, signifying that the central mechanisms involved in

GH regulation were still intact, yet IGF-1 levels were suppressed. This coupled with our

observed low levels of As accumulation (relative to the liver) in the ovary, hypothalamus

and pituitary and unaltered levels of another centrally regulated pituitary hormone (FSH),

supports the idea that As does not directly affect central or ovarian regulation of these

hormones. Rather, it is more likely that As disrupts the peripheral rise of IGF-1 just prior to

first proestrus, thus disrupting the timing of LH/E2 secretory patterns responsible for normal

pubertal onset.

Supporting our observed effect of As(III) on pubertal onset we also demonstrated that As

could impede another indicator of sexual maturity, mammary gland prepubertal growth.

Morphological assessment confirmed that As treated females had a significantly higher

number of undifferentiated epithelial structures (TEB and AB) in the most actively growing

area in the mammary gland [51]. This would suggest that prepubertal As(III) exposure

delayed the differentiation of terminal mammary gland structures, signifying a delay in the

normal development of the gland. This is important given the TEB is the most susceptible

ductal structure to malignant transformation [27] and impaired lactation in humans [28–29]

and rodents [66–68] due to gestational exogenous chemical exposure has been associated

with altered mammary gland development. The mechanism that As alters mammary gland

development is not known, however it could act indirectly or directly by altering hormonal

regulation of the gland. The combination of IGF-1 and E2 is critical for pubertal MG
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development [40]. Supporting this, IGF-1-null mice have severely stunted mammary gland

growth and ductal branching [69], which can be reversed with IGF-1 and E2 treatment [41].

Furthermore, increased circulating levels of IGF-1 have been shown to increase mammary

gland proliferation and ductal branching at 28 days in liver-specific IGF-1 producing

transgenic mice [70]. Thus, the As-induced decrease in serum IGF-1 levels demonstrated in

our study suggest that As(III) possibly acts indirectly to alter the development of

undifferentiated epithelial ductal structures stunting normal pubertal mammary gland

growth. Yet, it is plausible that As(III) directly alters hormonally regulated mechanisms

within the mammary gland. While there is a lack of studies that have addressed this

hypothesis, in vitro studies using the breast cancer cell line MCF-7, have shown that As(III)

has complex dose- dependent effects on estrogen receptor α (EsR1). At very low doses

As(III) has been shown to upregulate EsR1–regulated gene expression [71] and, at higher

yet nontoxic doses, suppress E2 dependent EsR1-regulated gene expression [72]. EsR1- null

mice do not go through pubertal mammary gland ductal elongation [42–43]. So, As might

directly alter EsR1 function, disrupting E2-regulated mammary gland development. Given

the low amounts of As(III) measured in pubertal mammary glands and normal levels of

serum E2 in As(III) treated females in our study, it is unlikely that As disrupted E2 regulated

mechanisms controlling mammary gland growth. However we cannot rule out that As(III)

may also have a direct effect on the mammary gland through some other hormonal

independent mechanism. Therefore, further studies are warranted to conclusively explain the

mechanism that As(III) delays normal mammary gland growth.

The present study suggests that the liver is the site of endocrine disruption responsible for

delaying female sexual maturation. The direct mechanism in which As alters liver IGF-1

production and/or secretion is not known, however several studies demonstrate the ability of

As to disrupt hepatocyte viability. Arsenic at various concentrations and experimental

models can cause oxidative stress [35, 55, 73], apoptosis [35], disrupt DNA methylation

causing genomic instability [74–76] and impair DNA repair enzymes [77–78] in the liver.

Bashir et al. [35] showed that livers from male rats chronically exposed to 5mg/L of As(III)

had increased heterochromatin condensation, shrunken nuclear membranes, increased fatty

vacuolization (lipid droplets) and altered antioxidant activity. The authors concluded that

these marked histological and biochemical changes due to As resulted in hepatocyte

oxidative stress and cell death. Similarly, our current study demonstrated that prepubertal

As(III) exposure increased fatty vacuolization, as well as increased heterochromatin

condensation and augmented nuclear membrane shape. However, we observed no signs of

apoptosis, which is likely due to the length of exposure. In the above mentioned study [35],

adult rats were exposed to the toxin 3 times longer and exhibited signs of toxicity indicated

by decrease body weight and liver wet weight, both not observed in our current study. In

addition, As has been shown to block ubiquitination of Nrf2 (nuclear factor erythroid 2-

related factor 2) increasing its binding to the antioxidant response element (ARE) in the

nucleus of hepatocytes resulting in the induction of the detoxification gene NAD(P)H-

quinone oxidoreductases (Nqo1) [79]. Nqo1 combats against oxidative stress. This would

allow for cells to compensate under As-induced stress. However, if As liver toxicity were to

continue (due to a longer exposure time and/or at a higher dose) it is likely that the resulting

DNA [74–75] damage would be sufficient enough to turn off this pathway resulting in cell
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death. It is plausible that the abbreviated As(III) exposure in our study was sufficient to limit

certain aspects of hepatocyte function but not toxic enough to induce robust cell death

detrimental to the animals well being. Thus, it is likely that complete hepatocyte function is

restored after As treatment. Collectively, it is conceivable that As(III) reduces the number of

properly functioning hepatocytes impairing the ability to produce the necessary levels of

IGF-1 during puberty. However, future studies are necessary to elucidate the direct effects of

low-level As(III)on IGF-1 production and secretion in the liver.

In summary, our results are the first to show that prepubertal exposure to As(III) delays the

timing of pubertal onset and suppresses morphological differentiation in prepubertal

mammary gland epithelial structures. We conclude that As(III) acts peripherally to disrupt

liver function, suppressing circulating levels of IGF-1 resulting in the overall delay in sexual

maturation. Importantly, the As-induced modifications in mammary gland morphology

suggest that normal pubertal mammary gland development is delayed. Thus, making the

gland more susceptible to dysfunction [28–29, 66–67] and/or breast cancer [27]. Our data

suggests that, if exposed during a critical developmental window, relatively low levels of

As(III) are sufficient to disrupt sexual maturity with no other observable effects. This raises

concern over the amount young females could be unknowingly exposed to daily from

multiple food sources. Notably, we have identified As(III) as a pubertal endocrine disruptor

capable of causing detrimental health effects. Further epidemiological and experimental

research in rodent and primate models is necessary to understand the impact childhood

exposure to As(III) could have on a female’s reproductive health.
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Research Highlights

• Prepubertal exposure to Arsenic(III) delayed vaginal opening in female rats.

• As(III) exposure delays differentiation of the prepubertal mammary gland.

• Prepubertal exposure to As(III) significantly decreases circulating levels of

IGF-1
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Figure 1. Model depicting the experimental dosing protocol
In short, the continous dose group was exposed via gastric gavage to either saline or 10mg/kg of As(III) starting at post natal day

(PND) day 12 until vaginal opening. Stop dose group was dosed until PND 30, at which time tissue and serum was collected for

analysis.
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Figure 2. Prepubertal exposure to As(III) did not effect somatic growth
Overall, 10mg/kg of As(III) did not alter developmental growth throughout the study, nor did it have any effect on daily weight

gain compared to saline treated females. A.) Line graph represents the mean (±SEM) weight in grams (g) at specific days of

pubertal growth in arsenite (As(III)) and control (saline) treated females. Control; N=20 for each day. Arsenite; N= 15 for each

day. B.) Bar graph depicts the mean (±SEM) daily weight in grams in arsenite and control treated females. N=12 in each group.
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Figure 3. Prepubertal exposure to As(III) delays pubertal onset
Exposure to 10mg/kg of As(III) significantly (p <0.05) delayed the onset of female puberty indicated by a delay in vaginal

opening (VO) and first diestrus (D1). The panel on the left represents the mean (±SEM) age in days at VO for the two treatment

groups. The panel on the right represents the mean (±SEM) age in days at D1 for each group. *= P< 0.05; Number of females

per group are within bars.
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Figure 4. Morphological assessment of altered mammary gland growth due to prepubertal As(III) exposure at 30 days of age
A.) As(III) -treated females had a significantly higher (p<0.01) mean (±SEM) number of TEB compared to saline treated

controls. B.) As(III) exposed prepubertal mammary glands had significantly more (p<0.01) mean (±SEM) AB ductal structures

vs. controls. C.) As(III) exposure resulted in significantly lower (p <0.01) number of TD (±SEM) structures vs. controls. D.)

As(III)-treated females had a reduced mean (±SEM) number of Lob1 structures in prepubertal mammary gland vs. controls.

Representive images of each structure are included within each graph. N= 4 per group, same animals were assessed for all 4

structures. **p<0.01.
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Figure 5. The effects of
As(III) exposure on reproductive hormonal secretion at 30-days of age.

A.) Prepubertal exposure to 10mg/kg of As(III) significantly (p <0.01) suppressed mean (±SEM) serum levels of IGF-1 at 30

days of age compared to controls. However, AsIII exposure did not alter mean (±SEM) serum levels of B.) GH, C.) LH or D.) E2

compared to saline treated controls. **p<0.01. Number of animals per group is within each bar.
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Figure 6. Histological differences observed in hepatocytes at 30 days of age
Representative TEM images showing hepatocytes in livers from prepubertal saline treated (A, C and G) and As (III)- treated

females (B, D, E, F and H). Observable differences were noted in hepatocytes from As(III)–treated females including: increased

intracellular lipid concentration (B and D); heterochromatin condensation (B, D and E) seen scattered throughout and densely

along the periphery of the nucleus; and irregularity in their nuclear shape (F). In addition, liver of As(III)-treated animals

contained a high concentration of engourged Kupffer cells containing lipid vacuoles (H) compared to controls (G). Number of

livers was 4 in each group. N= Nucleus, n= nucleolus, L= Lipid droplet, M= Mitochondria, rER= Rough endoplasmic

reticulum, K = Kupffer cell; arrows indicate irregularity in nuclear membrane, small arrow heads indicated heterochromatin.
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Table 1

Accumulation of Arsenic (As) in Prepubertal Female Rats at 30 Days of Age

Tissue Saline Treated (μg/g) NaAs(III) Treated (μg/g)

Liver 0.0449 ± 0.008 29.405 ± 1.146

Hypothalamus ND 7.402 ± 0.766

Pituitary ND 10.997 ± 1.202

Ovaries ND 2.940 ± 0.445

Mammary Gland ND 0.923 ± 0.179

This table shows the mean (±SEM) microgram per gram (μg/g) of total As measured in tissue harvested at 30 days of age from female rats
prepubertally exposed to either saline or 10mg/kg of As(III) N=4 for each tissue assessed for total As accumulation in each treatment group.
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