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Abstract
We introduce a unifying energy minimization framework for nonlocal regularization of inverse
problems. In contrast to the weighted sum of square differences between image pixels used by
current schemes, the proposed functional is an unweighted sum of inter-patch distances. We use
robust distance metrics that promote the averaging of similar patches, while discouraging the
averaging of dissimilar patches. We show that the first iteration of a majorize-minimize algorithm
to minimize the proposed cost function is similar to current non-local methods. The reformulation
thus provides a theoretical justification for the heuristic approach of iterating non-local schemes,
which re-estimate the weights from the current image estimate. Thanks to the reformulation, we
now understand that the widely reported alias amplification associated with iterative non-local
methods are caused by the convergence to local minimum of the nonconvex penalty. We introduce
an efficient continuation strategy to overcome this problem. The similarity of the proposed
criterion to widely used non-quadratic penalties (eg. total variation and `p semi-norms) opens the
door to the adaptation of fast algorithms developed in the context of compressive sensing; we
introduce several novel algorithms to solve the proposed non-local optimization problem. Thanks
to the unifying framework, these fast algorithms are readily applicable for a large class of distance
metrics.
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I. INTRODUCTION

The recovery of images from their few noisy linear measurements is an important problem
in several areas, including remote sensing [1], biomedical imaging, astronomy [2], and radar
imaging. The standard approach is to formulate the recovery as an optimization problem,
where the linear combination of data consistency error and a regularization penalty is
minimized. The regularization penalty exploits the apriori image information (eg.image
smoothness [3], [4], transform domain sparsity [5]–[7]) to make the recovery problem well-
posed.

Nonlocal means (NLM) denoising schemes have recently received much attention in image
processing [8]–[10]. These methods exploit the similarity between rectangular patches in the
image to reduce noise. Specifically, each pixel in the denoised image is recovered as a

2We focus on denoising to keep the computational complexity manageable, while dealing with large number of comparisons.
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weighted linear combination of all the pixels in the noisy image. The weight between two
pixels is essentially a measure of similarity between their patch neighborhoods (rectangular
image regions, centered on the specified pixels) (see Fig.1). Recently, several authors have
extended the non-local smoothing algorithm by reformulating it as a regularized
reconstruction scheme. The regularization functional is the weighted sum of square
differences between all the pixel pairs in the image [11]–[13]. The main challenge in
applying this method to general inverse problems is the explicit dependence of the
regularization penalty on pre-determined weights. In contrast to denoising and deblurring,
good initial image guesses are often not available for many challenging inverse problems
(eg. compressed sensing), which makes the reliable estimation of inter-pixel weights
difficult. Some authors have suggested to iterate non-local schemes to improve the
performance of deblurring and denoising algorithms; they re-estimate the weights from the
current image iterate [14]–[16]. However, the use of this strategy to recover the image from
its sparse Fourier samples results in the enhancement of alias patterns. Hence, this approach
is not frequently used in such challenging inverse problems. Another limitation of current
methods is that different optimization algorithms are required for each choice of
regularization functional and weight [11], [14], [15], [17]; the algorithms designed for one
penalty are often not readily applicable to other functionals.

To overcome the above mentioned problems, we introduce a unifying nonlocal
regularization framework. We choose the regularization functional as an unweighted sum of
non-Euclidean distances between patch pairs (see Fig. 1.a). We use robust distance metrics
to promote the averaging of similar patches, while minimizing the averaging of dissimilar
patches. Since the proposed criterion is not dependent on pre-estimated weights, the quality
of the reconstructions is independent of the initial guess used for weight estimation. We
show that a majorization of the proposed regularization penalty is very similar to current
non-local regularization functionals [11], [14], [15], [17], when the robust distance metric is
chosen appropriately. Thus, the fixed-weight NL schemes are similar to the first iteration of
a majorize-minimize algorithm to solve the criterion. More importantly, the formulation
provides a theoretical justification for the heuristic approach of iterating the NL algorithms
by re-estimating the weights from the current image estimate [14], [15]. The availability of
the global criterion, which does not change with iterations, enables us to analyze the
convergence and design efficient algorithms; this approach is different from earlier methods
that analyzed and optimized only one step of the above iterative scheme [11]–[15]. The
practical benefits of the proposed reformulation are as follows:

• We now understand that the reason behind enhancement of alias artifacts, which
are commonly reported in the context of current iterative weight update schemes, is
caused by the convergence to the local minimum of the proposed criterion. We
introduce homotopy continuation schemes to minimize such local minima
problems, inspired by similar methods in compressed sensing [18]. Our
experiments show that this approach eliminates the local minima issues in all the
cases that we considered.

• The similarity of the proposed criterion to similar penalties in compressive sensing
makes it possible to exploit the extensive literature in non-quadratic optimization
(e.g. [19], [20]) to significantly improve computational efficiency. We introduce
three majorize minimize (MM) algorithms, which rely on (a) the majorization of
the penalty term (denoted as PM scheme), (b) the majorization of data term
(indicated as DM algorithm), and (c) majorization of both data and penalty terms
(termed as DPM scheme), respectively. Our experiments show that the PM scheme
requires fewer computationally expensive weight computations and hence is
computationally much more efficient than the DM and DPM schemes.
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• Thanks to the unified perspective, it is possible to use the efficient PM algorithm
for all non-local distance metrics. Previous methods required customized
algorithms for each flavor of NL regularization.

The proposed framework is related to generalized nonlocal denoising schemes introduced in
[21], [30]; they show that the iterative re-estimation of the weights results in improved
reconstructions. However, the algorithms in [21], [30] are specifically designed for the
denoising setting and are not applicable to general inverse problems, which is the main focus
of this paper. This work is also related to convex patch based regularization scheme in [17],
which is published in the same proceedings as the conference version of this paper [22]. The
PM-CG algorithm provides faster convergence compared to DPM algorithm used in [17]
(see the results section). In addition, we observe that non-convex nonlocal distance
functions, along with homotopy continuation, provide significantly ameliorated results over
the convex `1 metric considered in [17].

II. BACKGROUND

A. Current nonlocal algorithms
The classical NL means algorithm was originally designed for denoising. It derives each
pixel in the denoised image as the weighted average of all the pixels in the noisy image1f : Ω
→ ℝ:

(1)

The weight function w(x, y) is estimated from the noisy image or its smoothed version g as
the similarity between the patch neighborhoods of the specific pixels:

(2)

Here, Px (g) is a (2Zp + 1) × (2Np + 1) image patch of g, centered at x:

(3)

and ‖ · ‖ η denotes the weighted ℓ2 metric defined as

(4)

Bx denote the pixels in the patch Px(f) and η(p) the window function. η is often chosen as a

Gaussian function  to give more weight to the center pixel.

Recently, several authors have extended the nonlocal smoothing scheme [8]–[10] to
deblurring and denoising problems by posing the image recovery as an optimization scheme
[12], [13]:

(5)

1Ω ⊂ ℝ2is the spatial support of the complex image; it is often chosen as the rectangular region [0, T1] × [0, T2]
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Here, the noisy measurements of the image are acquired by the ill-conditioned linear
operator A. λ is the regularization parameter and Jw(f) is the nonlocal regularization
functional. The subscript w is used to indicate that Jw(f) is explicitly dependent on pre-
specified weights w. Several flavors of NL regularization penalties have been recently
introduced. For example, H1 nonlocal regularization uses the regularization functional:

(6)

where the weights are specified as in (2). Note that the search window is restricted to the
square neighborhood of x, denoted as Nx. This restriction is often used to keep the
computational complexity manageable. Gilboa et. al., have suggested to replace the penalty
term in (6) as

(7)

while keeping the expression for the weights as in (2), to improve the quality of the
reconstructions [11], [12]. This cost function is termed as nonlocal total variation (TV)
penalty. Similarly, Peyre has introduced the regularization functional [15]:

(8)

where the weights are chosen as

(9)

Custom designed non-linear iterative algorithms are introduced to solve the regularized
reconstruction problems for each choice of regularization penalty [12], [13], [15]. The
algorithms that are designed for one specific penalty are often not readily applicable for
other functionals. The main challenge with the above formulations is the dependence of the
cost function on pre-specified weights. The popular approach is to derive g using other
algorithms (e.g. Tikhonov regularization, local TV regularization). While this approach
works well in denoising and deblurring, it often results in poor weights in challenging
inverse problems. Some researchers have proposed to iterate the NL framework by re-
estimating the weights from the previous iterations [14], [15]. However, this approach is
often not used in image recovery from sparse Fourier samples, for the fear of the weights
learning the alias patterns. Since the weight-dependent cost function changes from iteration
to iteration, it is difficult to analyze the convergence of this scheme.

B. Majorize Minimize (MM) optimization framework
We propose to use the majorize-minimize (MM) framework to develop fast algorithms to
solve the proposed optimization problem. MM algorithms are widely used in the context of
compressed sensing [23], [24]. The practice is to reformulate the original problem as the
solution to a sequence of simpler quadratic surrogate problems. The surrogate criteria,
denote by Cn(f), majorize the original objective function C(f), and are dependent on the
current iterate fn:

(10)

Thus, the mth iteration of the MM algorithm involves the following two steps
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1. evaluate the majorizing functional Cn(f) that satisfy (10), and

2. solve for fn+1 = arg minf Cn(f) using an appropriate quadratic solver (e.g. CG
algorithm).

The above two-step approach is guaranteed to monotonically decrease the cost function

C(f ). If  is a concave function, it can be majorized by:

(11)

where  and  [25]; since θ is concave,
θ′ is monotonic and hence invertible. The general practice in majorize-minimize/
halfquadratic algorithms is to assume that c(ν) and b(ν) are constants at each iteration. Note
that the left hand side is the equation of a straight line, when c and b are assumed to be
constants. We use this relation to derive efficient MM algorithms for nonlocal
regularization.

III. UNIFIED NON-LOCAL REGULARIZATION

We now introduce a unified NL regularization framework, which is independent of pre-
specified weights. We also illustrate the similarity of the majorization of the proposed
penalty and current NL regularization schemes.

A. Robust nonlocal regularization
We pose the nonlocal regularized reconstruction of the complex image f : Ω → ℂ, supported
on Ω, as the optimization problem:

(12)

where, the regularization penalty G(f ) is specified by

(13)

Here, ¢ : ℝ → ℝ is an appropriately chosen robust distance metric, which weight large
differences less heavily than small differences. One possible choice is the class of ℓp; p ≥ 1
seminorms:

(14)

If ¢ is strictly convex, the solution of (12) is unique. However, our experiments show that
non-convex metrics gives reconstructions with less blurring than convex metrics. The term
Px(f) in (13) denotes a square patch, which is centered at x. The size of the patch is assumed
to be smaller than that of the search window Nx (see Fig. 1). While the search window can
be chosen as the support of the image (i.e., Nx = Ω), it is often chosen as a local
neighborhood in the interest of computational efficiency. The proposed penalty is illustrated
in Fig. 1.a. Note that the nonlocal penalty G(f) in (13) is only specified by the distance
metric ¢; it is not dependent on any apriori selected weight function. This property makes
the proposed scheme independent of the specific algorithm used to derive the initial image
guess g, which is used to estimate the weights. More importantly, the new framework can be
readily applied to ill-conditioned inverse problems, where good initial guesses are difficult
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to derive. We will now demonstrate the relation between the proposed formulation and
current onestep NL schemes and NL methods that re-estimate the weights.

B. Majorization of the robust non-local penalty
We majorize (13) by a simpler quadratic surrogate functional. Setting

 we obtain

(15)

where wf (x, y) is specified by

(16)

Note that the weights wf (x, y) are obtained as a non-linear function of the Euclidean

distance between patches  where

(17)

As discussed previously, the weights and the parameter b are assumed to be constants in
each iteration of the corresponding majorize minimize algorithm. The parameter b can hence
be safely ignored in the optimization process. We thus obtain

(18)

The non-linear function ψ used to estimate the weights (see (16)) is a monotonically
decreasing function of its argument, for all robust distance metrics ϕ that are of practical

importance (see Fig. 1.b and Fig. 2). Thus, ψ  is the measure of
similarity between the patches Px (f) and Py (f).

Note that (18) involves the weighted norm of the patch differences. This expression is the
sum of pixel differences:

(19)

We used a change of variables x = x + p and y = y + p and the symmetry of η(p) to derive
the second step in (19). The weights γf are specified by

(20)

Note that the surrogate criterion Gw in (19) is similar to the H1 NL penalty. The only
difference is that the weights γf (x, y) are obtained as the sum of the similarity measures wf
(x, y) between all the patch pairs that contain the pixels x and y (See Fig. 1.b). This
summation is required to ensure that the algorithm is consistent with the minimization of the
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cost-function (12). We will now show the similarity of the current methods to the first
iteration of the proposed scheme.

C. Similarity to current non-local methods
We now illustrate the similarity of current nonlocal regularization penalties to the surrogate
functional Gw(f). Specifically, we choose the robust distance function ϕ(·) such that the
expressions of Gw(f) and wf (x, y) match the current schemes.

1) H1 nonlocal regularization—If the distance metric is chosen as

(21)

we obtain  using (16) Note that this choice of weights is very similar
to the classical H1 NL regularization. The main difference between the majorization and the
H1 scheme is that the weights in (19) are obtained as the summation of the similarity
measures (see (20)). In contrast, the similarity measures themselves are used as weights in
classical H1 regularization. For convenience, we will refer to the metric in (21) as the H1
distance function.

2) Peyre’s scheme—The NL penalty term (8) in Peyre’s NL method involves a weighted
sum of l1 norms of patch differences. Peyre’s scheme can also be expressed as a

majorization of the proposed penalty by setting  and using (11):

(22)

Here, b is a constant that is safely ignored. The right hand side of the above expression is the
same form as (8). From side of the above expression is the same form as (8). From the above

expression, the weights are obtained as  where .
Comparing with the expression of the weights used in Peyre’s scheme, specified by (0), we

have . This equation is satisfied if . Thus, the
equivalent distance metric in (12) is given by

(23)

We ignored the constant factor σ to ensure consistency between the different metrics. For
convenience, we will refer to the metric in (23) as Peyre's distance function in the rest of the
paper.

3) Nonlocal TV (NLTV) scheme—The nonlocal TV penalty in (7) involves the weighted
l1 norm of pixel differences. Since the l1 norm of differences between two patches cannot be
expressed as the sum of l1 norms of the corresponding pixel differences, the NLTV scheme
cannot be expressed as a special case of the proposed framework. However, if the penalty
involves the l1 norm of the patch differences as in (8), the corresponding NL scheme can be
viewed as the majorization of the proposed scheme. Proceeding as in the Peyre’s case, we
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have . If we set  we have . This
relationship is satisfied when the distance metric is specified by

(24)

For convenience, we will refer to the metric in (24) as NL TV distance function in the rest of
the paper.

4) Convex nonlocal regularization—All of the above distance metrics are non-convex.
Hence, the corresponding algorithms are not guaranteed to converge to the global minimum.
The distance function can be chosen as a convex function to overcome this problem [17]:

(25)

Our experiments show that use of such convex cost functions result in blurring at high
acceleration factors, compared to the non-convex choices considered above.

We list the current NL schemes, which are specified by the regularization functional Jw and
the specific formula to compute the weights, in Table 1. We re-interpret these methods as
the first iteration of a MM scheme to solve for the minimum of (12). The corresponding
penalty functions ϕ are also shown in Table 1. We also show in next section that the
proposed criterion can be efficiently minimized using MM algorithms, which rely on the re-
computation of weights using ψ; the expressions for ψ is also listed in Table 1. The ϕ and

the ψ functions are plotted in Fig. 2. We also plot the quadratic penalty  and the
corresponding weights for comparison. It is seen that the quadratic choice encourages the
averaging of all patches in the neighborhood. In contrast, the equivalent ϕ functions of
current nonlocal schemes H1, TV, and Peyre's scheme) saturate with increasing inter-patch
distance. This behaviour discourages the averaging of dissimilar patches, thus minimizing
the blurring, compared to quadratic schemes that encourage uniform smoothing. Note that
the above metrics saturate faster than the convex l1 metric, thus providing reduced blurring.
Note that this case is very different from convex local smoothness regularization, where the
penalty only involves distances a pixel and its immediate neighbors. Since the NL penalty
involves the distances between each patch and several other patches, this penalty can result
in significant blurring if the functional does not saturate with the Euclidean distance.

IV. NUMERICAL ALGORITHM

In the previous section, we used the majorization of the penalty term in (12) to illustrate the
similarity of the proposed scheme to current NL methods. We now realize efficient
algorithms based on alternate majorizations of (12). Since the penalty term is majorized in
Section III-B, we term the resulting scheme as a penalty majorization (PM) algorithm. We
also consider algorithms based on the majorization of the data consistency term (denoted by
DM), and majorization of both data consistency and penalty terms (denoted by DPM).
Thanks to the unified treatment, all of these algorithms can be used with any distance
function ϕ This is an advantage over current schemes, which develop customized algorithms
for each specific choice of Jw and ψ [11], [14], [15].
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A. Majorization of the penalty term (PM)
We use the majorization of the regularization penalty, introduced in Section III-B, to
develop a two-step alternating algorithm. The algorithm alternates between the solution of
the quadratic surrogate problem:

(26)

and the estimation of the weights form the current iterate as

. Here, f is the vectorized image, A is the matrix
operator corresponding to the forward model, and Γn is the sparse matrix with the entries:

. Here, γ fn (x, y) is the sum of similarity measures w (x, y) using (20).
This approach is inspired by the iterative reweighted least squares (IRLS) methods widely
used in total variation and l1 minimization schemes [26]. Note that the optimization criterion
is a quadratic. The gradient of this criterion is obtained as

(27)

We propose to minimize the sub-criteria Cn+1 (f) using conjugate gradients algorithm (CG).
We observe the CG algorithm provides significantly faster convergence compared to the
steepest descent scheme used in [13] to solve (26). The CG scheme may be further
accelerated using efficient preconditioning steps.

This two-step alternating scheme is similar to iterating the classical H1 NL algorithm,
followed by the re-estimation of the weights from the current image iterate. However, the
interpretation of this approach as a specific algorithm to solve the global optimization
problem (12) provides useful insights on the alternating strategy. For example, it enables us
to monitor whether the algorithm is trapped in local minima and device continuation
strategies to overcome such problems. This reinterpretation may also enable the
development of novel algorithms to directly minimize (12). Moreover, since the different
NL regularization penalties (NL TV, l1 and Peyre’s schemes) can be interpreted as a special
case of the global penalty, the same algorithms can be used for a range of NL penalties.

B. Majorization of the data term (DM)
The data majorization approach was originally introduced by Combettes et al., [27] for l1
regularized problems. The main idea is to majorize the data term in (12) as

(28)

where

(29)

and  for an appropriately chosen Γ. For example, when A is the one dimensional

Cartesian Fourier undersampling operator, we have  where M is the number of the
samples that are retained and N is the length of the signal. Using this majorization, we
obtain the surrogate criterion of 12) at the nth iteration as

Yang and Jacob Page 9

IEEE Trans Image Process. Author manuscript; available in PMC 2014 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(30)

The minimization of Cn(f) is essentially a denoising problem, which can be solved using the
fixed point iterative algorithm 21]. Specifically, the Euler-Lagrange equation of the above
criterion is given by

(31)

This equation can be rewritten in terms of pixel differences as

(32)

where νfn is defined as in (20). Thus, the solution to (30) can be obtained using the
following fixed point iterations [21]

(33)

Here, m is the index for the inner loop. Thus, the each step of the algorithm involves one
steepest descent step (29), followed by nonlocal denoising using several fixed point
iterations. Note that each iteration of the fixed point algorithm requires the re-estimation of
the weights νfn, m, which is computationally expensive.

C. Majorization of both the data and penalty terms (DPM)
Following the data majorization in (30), we now additonally majorize the penalty term to
obtain

(34)

Solving this criterion as before, we get

(35)

This equation is similar to (33), except that only one fixed point update is required at each
iteration. Thus, this algorithm alternates between one steepest-descent step and one fixed
point step. As in the DM case, the weights have to be reestimated for each steepest descent
step. This approach is similar to the algorithms used in [17] and [16].

D. Summary of the MM algorithms
Each iteration of the above four algorithms involves the following steps:

• PM-CG: One weight update, followed by iterative CG optimization, until
convergence; this algorithm is introduced in this paper.

• PM-SD: One weight update, followed by several steepest descent updates; this is
the approach followed in [13] to solve conventional NL regularization problems.
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• DM: One steepest descent update, followed by several fixed point steps (each
involving one weight evaluation). The fixed point iteration to solve denoising
problems is introduced in [21].

• PDM One steepest descent update, followed by one fixed point step (each fixed
point step involving one weight evaluation); this is the approach followed in [17].

The computation of the weights wf (x, y) involves the evaluation of the distances between all
patch pairs (see (16) and hence is computationally expensive. In contrast, each of the CG
steps involves three FFTs (in Fourier inversion and deblurring applications) and a weighted
linear combination of pixel values (evaluation of Γ n f per iteration; these steps are relatively
inexpensive compared to the evaluation of the weights. Since the PM-CG scheme relies on
one weight computation, followed by several CG updates, we expect this algorithm to be
more efficient than other methods. Note that the MD and MPD schemes require at least one
weight computation per one steepest descent step.

E. Expression of the weights for specific distance metrics
All of the above algorithms require the repeated evaluation of νfn (x, y), which are computed

from the similarity measures  using (20). We focus on the
specific distance function (ϕ) considered earlier and derive the expression for the
corresponding ψ functions.

1) H1 distance metric—Applying (16) to the distance metric ϕ specified by (21), we
obtain

This Gaussian weight function is widely used in nonlocal H1 algorithms.

2) Peyre’s distance metric—When ϕ(x) is specified by (23), we obtain

The iterative reweighted quadratic minimization scheme is considerably simpler than the
current non-linear minimization schemes used for nonlocal TV [11].

4) l1 distance metric—In the l1 case, we obtain

We plot the four ψ functions in Fig. 2(b), along with ψ(x) = 1, which corresponds to ϕ(x) =
x2. Note that this choice results in the averaging of all the patches in the specified
neighborhood, irrespective of the similarity. In contrast, the weights corresponding to other
NL penalties decay with Euclidean inter-patch distances, ensuring that dissimilar patches are
not averaged. The smoothing properties are determined by the rate of decay of ψ. For
example, the slow decay of the the weight function corresponding to the convex l1 metric
results in blurred reconstructions. In contrast, the weights corresponding to the non-convex
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distances decay rapidly, resulting in less blurred reconstructions. This explains the desirable
properties of the non-convex distance measures, which are also confirmed by our
experimental results.

F. Continuation to improve convergence to global minimum
Since non-convex distance functions have narrow valleys, they discourage the averaging of
dissimilar patches, while promoting the averaging of similar patches, resulting in improved
reconstructions. However, the main challenge associated with non-convex distance metrics
is the convergence of the alternating algorithm to the local minima of (12). To improve the
convergence to the global minimum, we propose to use a continuation strategy.

Note from Fig.8 that the non-convex distance functions closely approximate quadratic or
convex l1 functions when x/σ << 1. The distance functions saturate only when x/σ > 1. We
use this property to realize the continuation scheme. Specifically, we start with large values
of σ and reduce it to the desired value in several steps. At each step, we use the image iterate
corresponding to the σ value at the previous iteration as the initialization. This approach is
similar to the homotopy continuation scheme used in non-convex compressive sensing 28],
which were reported to be very effective. We initialize the algorithm with σfinal + σincfactor ×
MaxOuter. We decrement σ by σincfactor at each outer iteration. Thus, in the final iteration,
we algorithm uses σ = σfinal. In this work, we choose σincfactor = 5. The pseudo-code of the
proposed PMCG scheme with continuation is shown below.

V. EXPERIMENTAL RESULTS

We introduced a unifying non-local regularization framework, where the regularization
penalty is the unweighted sum of robust distances between image patch pairs. In addition to
providing a justification for the heuristic approach of iterating current NL algorithms, the
novel framework enabled us to understand and mitigate the alias amplification issues that
are widely reported in the context of Fourier inversion. In this section, we will determine the
utility of the continuation scheme, introduced in Section IV-F, to overcome the local minima
problems. The similarity of the proposed framework with regularization schemes in
compressive sensing enabled us to develop computationally efficient algorithms. We
compare the computational efficiency of the proposed algorithms in this section. Thanks to
the unifying framework, these fast methods are applicable to a wide range of NL penalties.
We also study the impact of the various parameters and distance metrics on image quality,
and compare the non-local schemes with local TV algorithms.

A. Utility of continuation
We aim to recover a 128×128 Shepp Logan phantom from ten lines and a 256×256 brain
image from its five fold under sampled measurements in the Fourier domain. We used the
nonlocal H1 and TV distance functions. We assume that the measurements are corrupted by
complex Gaussian noise, such that the SNR of the noise k-space data is 50dB. The original
images are shown in Fig. 4.(a) and Fig. 4.(f), while the initial guesses obtained by
computing zero filled inverse Fourier transform are shown in Fig. 4.(b) and Fig. 4.(g),
respectively. The heuristic alternating algorithm results in reconstructions with amplified
alias artifacts (see (c) and h)). We observe that the continuation strategy, illustrated in Fig. 3.
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(a) & (b), is capable of removing the alias artifacts completely. This convergence can also be
appreciated by the plot of the cost in Fig. 4.(e). It is seen that the cost function saturate to
high values (red dotted and solid lines) because the algorithms get stuck in local minima of
(12), when no continuation is used. In contrast, they converge to smaller costs with the
continuation scheme. We confirmed that this is indeed the global minimum of the criterion
by using multiple initializations, including the original image. The improved performance
can also be appreciated by the SNR plots shown in Fig. 4.(j). This experiment shows that
non-convex metrics can provide improved reconstructions in challenging inverse problems,
but continuation schemes are essential to minimize the convergence to local minima.

B. Utility of iterating between weight and image estimation
Since alternating schemes result in alias amplification in the context of Fourier inversion,
current NL schemes use fixed weights with such challenging problems. The weights are
often estimated from the noisy/smoothed image [13], [15], [29] and Tikhonov or total
variation regularized reconstructions in deblurring applications [13]. We demonstrate the
improvement offered by the proposed scheme with continuation, compared to these fixed
weight methods in Fig.5. We consider the recovery of a brain MRI image from five fold
randomly under-sampled Fourier data. We consider three different fixed weights, which are
estimated from different initial estimates: a) zero padded inverse Fourier transform A* of the
measurements, b) Tikhonov regularized reconstruction, and (c) local TV regularized
reconstruction. We initialize the PM-CG scheme with weights obtained from zero-padded
IFFT reconstruction. We observe that the the iterative strategy provides a 4 dB improvement
over the best fixed weight scheme. These experiments demonstrate that the quality of the
reconstructions can be significantly improved by the iterative framework with appropriate
continuation strategies to ensure convergence to global minima.

C. Comparison of optimization algorithms
We compare the convergence rate and computation complexity of the four MM algorithms,
described in Section IV, in Fig. 6. Here, we consider the reconstruction of a 128 × 128
Shepp-Logan phantom from 16 radial lines in the Fourier domain/k-space. We choose ϕ as
the H1 distance metric, specified by (21). We set λ = 50 and σ = 10, since this choice of
parameters gives the best reconstruction. Note that the PM-CG scheme requires around 20
times fewer CG steps to converge, compared with other algorithms. In addition, the
computational complexity of each iteration of the PM scheme is lower than DM and DPM
methods, since the computationally expensive weight computations are performed only in
the outer loop. In this specific example, the PM-CG scheme requires around 33 seconds to
converge, while the DM and PDM algorithms require 5000 seconds or more. The
experiments are performed on a laptop with 2.4 GHz Duo Core CPU processor and 4 GB
memory in MATLAB R2010a. Since the PM-CG scheme is significantly more
computationally efficient than other methods, we will use this method for all the other
experiments considered in this paper. Thanks to the unification offered by the proposed
scheme, we can now use this algorithm for all the distance metrics.

D. Choice of parameters
There are various parameters in the proposed nonlocal algorithms, such as regularization
parameter λ size of the search window Nx and patch size Px. We now study the effect of
these parameters on the quality of the reconstructions. The parameter λ controls the trade off
between data fidelity and regularization. To ensure fair comparisons, we search the optimal
λ for each algorithm, measurement, and noise level. We pick the value of λ that provides the
best reconstruction in each case. To keep the computational complexity manageable, most
NL schemes do not search the entire image for similar patches.
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We study the effect of patch size Np and neighborhood size Nw in the context of image
denoising2 in Fig.7. We add Gaussian noise to the Shepp-Logan phantom such that the SNR
of the noisy image is 16dB. We then use nonlocal H1 and TV penalties to recover the image.
The results are shown in Fig. 7. We observe that the performance of the algorithms degrade
with increasing patch size. This is expected since increasing the size of the patches will
result in decreased number of patches similar to it. The more interesting observation is that
increasing the size of the neighborhood results in decreased SNR with only one exception.
Specifically, the SNR improves slightly while the neighborhood size is increased from Nw =
5 to Nw = 7 in NL TV with patch size Nw = 3. These findings can be explained using the
unified formulation. Note that the metric in (13) involves the unweighted sum of distances
between all patch pairs in the neighborhood. As we increase Nw we compare more dissimilar
patches. If the distance function ϕ (x) does not saturate to one with large values of x, the
functional in (13) will continue to penalize the distances between dissimilar patches and
hence result in blurring. Note that the TV penalty saturates much faster than the H1 penalty,
which explains the improvement in performance when Nw is increased from 5 to 7. The
comparisons in Fig.7 show that choosing Np × Np = 3 × 3 and Nw × Nw = 5 × 5 are sufficient
to obtain good results. Even though the results may change slightly depending on the image
and the type of application, we will use these parameters in the rest of the paper.

The reason for obtaining good reconstructions with smaller search window sizes is due to
the ability of iterative NL schemes to exploit the similarities between patch pairs, even when
they are not in each others neighborhood. It is sufficient that they are linked by at least one
similar patch that is in both the neighborhoods. i.e, if Px (f) ≈ Py (f) ≈ Pz (f) and y ∊ Nx and
y ∊ Nz, then the algorithm can exploit the similarity between Px (f) and Pz (f), even when z ∉

Nx. This is enabled by the terms  and  in the
proposed NL penalty. Since conventional NL means smoothing filters are non-iterative, they
are not capable of exploiting the similarity between patches that are not in each others
neighborhoods.

E. Image reconstruction with different distance metrics
We compare the proposed NL scheme with different nonlocal distance metrics (see Table I),
in the context of image recovery from sparse Fourier samples. We use popular test images
(e.g., Lena and cameraman) as well as multiple typical MRI images (e.g., brain and cardiac
MRI images). We also compare the non-local schemes against local TV and wavelet
algorithms to bench mark the performance. The comparisons of the methods on a MRI brain
image is shown in Fig. 8. Here we consider a downsampling factor of 4 and the
downsampling pattern is random with non-uniform k-space density. We add complex
Gaussian white noise to the measured data such that the SNR of measurements is 40dB.
Continuation schemes are used with non-convex non-local methods to minimize the local
minima effects. We observe that the non-convex algorithms provide the best reconstructions.
In contrast, the proposed nonlocal scheme with the L1 metric results in reconstructions with
significant blurring, while the local TV scheme provides patchy reconstructions. The
nonlocal TV metric gives the highest SNR, followed by nonlocal H1. A similar comparison
is performed in Fig. 9, where we recover another MRI brain image with a tumor from its
five fold under-sampled Fourier data set. We use the polar trajectory with 52 radial lines to
sample. Gaussian noise is added to the k-space data such that the noise level of the
measurements is 80dB. The zoomed versions of different regions of the image is shown in
Fig. 9. We observe that proposed NL method using the non-convex metrics (TV, H1, and
Peyre’s schemes) provides better results than the local TV scheme, and non-local scheme
using the L1 metric results.
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The signal to noise ratios of the reconstructions of different images using the different
algorithms are shown in Table II. We consider an acceleration of 5 and the Fourier space is
sampled randomly using a non-uniform k-space density. We observe that the proposed
nonlocal algorithm with non-convex penalties consistently outperform the local TV
algorithm, resulting in an improvement of more than 2-3 dB. In contrast, the SNR of the
non-local scheme with convex l1 distance metric is only comparable to the local TV scheme.

VI. CONCLUSION

We introduced a unifying energy minimization framework for the nonlocal regularization of
inverse problems. The proposed functional is the unweighted sum of inter-patch distances.
We showed that the first iteration of a MM algorithm to minimize the proposed cost function
is similar to the classical non-local means algorithms. Thus, the reformulation provided a
theoretical justification for the heuristic approach of iterating non-local schemes, which re-
estimate the weights from the current image estimate. Thanks to the reformulation, we now
understand that the widely reported alias enhancement issues with iterative non-local
methods are caused by the convergence of these algorithms to the local minimum of the
proposed non-convex penalty. We introduce an efficient continuation strategy to overcome
this problem. We introduced several fast majorize-minimize algorithms. Thanks to the
unifying framework, all of the novel fast algorithms are readily applicable for a large class
of non-local formulations.
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Fig. 1.
Illustration of the proposed nonlocal framework: We illustrate the proposed regularization
functional, specified by (13), in the left box. The regularization penalty is the sum of
distances between patch pairs in the image.For each pixel x, we consider the distances
between the patch centered at x (specified by Px(f)) and patches centered on the neighboring
pixels y ∈ Nx; Nx is a square shaped window in which the algorithm searches for similar
patches. We use the robust distance metric ϕ, which saturates with the the inter-patch
distance. This property make the regularization penalty insensitive to large inter-patch
distances, thus minimizing the averaging between dissimilar patches. The surrogate penalty,
obtained by the majorization of G(f) in illustrated the right box. The surrogate penalty is
essentially a weighted sum of Euclidean distances between pixel intensities. This criterion is
very similar to the classical H1 non-local penalty. The weights γfn (x, y) is obtained as the
sum of the similarity measures as in (20). The similarity measures between patches are
computed as a monotonically decreasing non-linear function (Ψ) of the inter patch distances.
This property ensures that dissimilar patch pairs result in low inter pixel weights, thus
encouraging the averaging of similar pixels.
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Fig. 2.
Comparison of the distance metrics ϕ and corresponding weight functions ϕ: The different
distance metrics and the weight functions are plotted in (a) and (b), respectively. Note that
the convex distance functions, shown by the blue and black curves, do not saturate with the
Euclidean interpatch distances. In contrast, the distance functions corresponding to the
current nonlocal schemes saturate as the patches become dissimilar. This ensures that the
distances between dissimilar patches are not penalized, thus minimizing the blurring
compared to the convex choices. This is also observed by the weights in the sum in (6). Note
that the weights associated with the current schemes decay to zero for large distances. The
slow decay of the weights associated with the convex metrics can result in blurred
reconstructions. The lp; p = 0.3 norms saturate rapidly, when compared to other non-local
metrics, resulting in reduced averaging of similar patches.
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Fig. 3.
Illustration of the continuation scheme used to minimize the convergence of the algorithm to
local minimum. We start with σ = 25, when the distance metric is convex for most patch
pairs in the image. We then gradually reduce the value of σ by a step size of 5 until it
achieves the desired value σ = 1. Note that the distance metrics with small values of σ are
non-convex.
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Fig. 4.
Utility of continuation: We consider the recovery of a 128x128 Shepp Logan phantom from
its ten radial lines in the Fourier domain in (a)-(d). The classical alternating algorithm
emphasizes the alias artifacts in the initial guess in (b), which is obtained by zero-filled
IFFT. Specifically, the result in (c) correspond to a local minimum of (12). The use of the
continuation scheme mitigated these issues as seen in (d). We also consider the
reconstruction of a 256 × 256 MRI brain image from 46 uniformly spaced radial lines in the
Fourier domain. We observe that the alternating algorithm results in the enhancement of the
alias artifacts (see (h)). These problems are eliminated by the continuation scheme, shown in
(i). The behavior of the algorithms can be better understood from the cost vs iterations
shown in (e). It is observed that the continuation schemes shown in blue solid and dotted
lines (corresponding to Shepp-Logan and brain images, respectively) converge to a lower
minimum than the methods without continuation (red solid and dotted lines). The
improvement in performance is also SNR vs CG step plot in (j).
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Fig. 5.
Comparison of current algorithms with pre-computed weights and the proposed iterative
framework: We consider the reconstruction of the MRI brain image from 20% of its random
Fourier samples using the H1 distance metric. In Fig. 5(a), we plot the improvement in
signal to noise ratio as a function of the number of iterations. The zeroth iteration
correspond to the different initial guesses. These guesses are derived with three different
algorithms: zero filled inverse FFT (red), Tikhonov reconstruction (black), and local TV
(majenta). Since the current NL schemes do not re-estimate the weights, only one iteration is
involved. The blue curve corresponds to the proposed iterative scheme, which re-estimates
the weights from the current image estimate. Since this scheme is also initialized with the
zero filled IFFT, the red and the blue curves overlap. Note that the proposed iterative
method provides significantly improved reconstructions.
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Fig. 6.
Comparison of optimization algorithms: We focus on the recovery of a 128 × 128 Shepp-
Logan phantom from 16 radial lines in the Fourier domain by minimizing (12). The decay of
the cost function (12) as a function of the number of conjugate gradient steps (inner
iterations) and CPU time are shown in (a) and (b), respectively. The improvement in SNR as
a function of iterations and CPU time are shown in (c) and (d), respectively. Note that all the
optimization algorithms converge to the same minima. However, the PMCG scheme
requires much fewer (20 fold) number of iterations. Moreover, the computational
complexity per iteration of this method is also lower since the expensive weight computation
is only performed in the outer loop.
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Fig. 7.
Impact of the parameters on reconstruction accuracy: We consider the denoising of noisy
Shepp-Logan phantom image with a SNR of 16 dB. We plot the change in the SNR of the
denoised image as a function of the search window size Nw. The blue, red, and black curves
correspond to Np = 3, Np = 5, and Np = 7, respectively. The plot shows that SNR of the
images degrades with increasing Np. This is expected since the number of similar patches
decrease with increasing patch size. We observe that the SNR also decreases with increasing
window size, except for the non-local TV distance metric with Nw = 7. See text for more
explanation.
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Fig. 8.
Comparison of the proposed algorithm with different metrics against classical schemes: We
reconstruct the 256 × 256 MRI brain image from its sparse Fourier samples. We consider an
under sampling factor of 4. We choose the standard deviation of the complex noise that is
added to the measurements such that the SNR of the measurements is 40dB. We observe
that the proposed schemes that use non-convex distance metrics provide the best SNR,
which is around 4.22 dB better than local TV. The use of convex distance metrics can only
provide reconstructions than are comparable to local TV. The lp; p = 0.3 penalty provides
improved results than the p = 1 case. However, the performance improvement is not as
significant as the other non-local metrics, probably due to the reduced averaging of similar
patches. The arrows indicate the details preserved by the non-convex schemes, but missed
by local TV and convex non-local algorithm.
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Fig. 9.
Comparison of the proposed algorithm with different metrics against classical schemes: We
reconstruct the 256 × 256 MRI brain image from its sparse Fourier samples. We consider an
under sampling factor of 5. We choose the standard deviation of the gaussian noise that is
added to the measurements such that the SNR of the measurements is 40dB. We observe
that the proposed schemes that use non-convex distance metrics provide the best SNR,
which is around 3 dB better than local TV. The arrows indicate the details preserved by the
non-convex schemes, but missed by local TV and convex non-local algorithm.
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TABLE I

REINTERPRETATION OF CURRENT NONLOCAL SCHEMES

Current methods Re-interpretation

Reference Current algorithm
Jw(f) and w(x, y)

Penalty function
ϕ(x)

Weight function
ψ(x)

H1 [11], [14] (6) and (2) (l − exp (− x2/2σ2)) exp (−x2/2σ2)

Peyre et al., [15] (8) and (9) (1 − e − x/σ) exp( − x ∕ σ)
2σx

nonlocal TV [11], [12] (7) and (2)
erf( x

σ ) exp( − x 2 ∕ σ 2)
πσx

nonlocal L1 [17] - x
σ

1
2σx
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TABLE II

SIGNAL TO NOISE RATIO OF THE RECONSTRUCTED IMAGES USING DIFFERENT ALGORITHMS.

Image local TV nonlocal L1 H1 metrix NLTV metric Peyre’s metric

lena 20.46 20.97 23.37 23.93 24.05

cameraman 23.31 23.04 24.84 25.88 25.99

brain1 23.24 22.48 26.12 27.51 27.45

brain2 22.24 22.12 27.15 28.06 27.99

ankle 21.41 22.23 23.43 24.56 24.70

abdomen 16.45 16.90 18.51 19.46 19.70

heart 20.32 21.56 22.26 24.47 24.90
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