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Primary liver cancers, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are
leading causes of cancer-related death worldwide. Recent large-scale genomic approaches have iden-
tified a wide number of genes whose deregulation is associated with hepatocellular carcinoma and
intrahepatic cholangiocarcinoma development. Murine models are critical tools to determine the
oncogenic potential of these genes. Conventionally, transgenic or knockout mouse models are used for
this purpose. However, several limitations apply to the latter models. Herein, we review a novel
approach for stable gene expression in mouse hepatocytes by hydrodynamic injection in combination
with Sleeping Beautyemediated somatic integration. This method represents a flexible, reliable, and
cost-effective tool to generate preclinical murine models for liver cancer research. Furthermore, it can
be used as an in vivo transfection method to study biochemical cross talks among multiple pathways
along hepatocarcinogenesis and to test the therapeutic potential of drugs against liver cancer.
(Am J Pathol 2014, 184: 912e923; http://dx.doi.org/10.1016/j.ajpath.2013.12.002)
Supported by NIH grant R01CA136606 (X.C.).
Disclosures: None declared.
Primary liver cancer represents a major health problem
worldwide. According to the World Health Organization,
liver cancer represents the third leading cause of cancer-
related death worldwide, accounting for approximately
695,000 deaths in 2008.1

Hepatocellular carcinoma (HCC) accounts for approxi-
mately 80% of all primary liver cancers. Epidemiological
and molecular studies have demonstrated that the develop-
ment of HCC spans several decades. Patients with hepatitis
B (HBV) or hepatitis C (HCV) chronic infection, especially
when accompanied by liver cirrhosis, are at a much higher
risk of developing HCC than noninfected people.1,2 Other
risk factors for HCC include alcohol abuse, diabetes,
obesity, and related metabolic syndrome. Development of
HCC is a multistep process.3 Although HBV or HCV
infection has been clearly linked to HCC pathogenesis, the
stigative Pathology.

.

molecular events underlying this association remain poorly
understood. Because HCC often arises in the context of liver
cirrhosis, it has been hypothesized that HCC development
might be triggered by the repeated rounds of hepatocyte
death and proliferation occurring in the cirrhotic liver. This
incessant hepatocyte loss and compensatory replication
might generate a permissive environment for the occurrence
of genetic and/or epigenetic changes, which result in acti-
vation of oncogenes and/or loss of function of tumor-
suppressor genes, eventually leading to HCC formation.4,5

Genetic alterations observed in HCCs include mutations of
p53 and b-catenin genes, activation of c-Met and insulin-
like growth factor receptor tyrosine kinases, and aberrant
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Transfection for Liver Cancer
CpG island hypermethylation of tumor-suppressor genes,
such as APC, RASSF1A, and E-cadherin.6e10 HCC is a
deadly disease with limited treatment options. Indeed, tumor
resection and liver transplantation can only be applied to a
few patients, and sorafenib, the only drug available for the
treatment of unresectable HCC, prolongs the survival of
patients with HCC for only 2 to 3 months.11,12

Intrahepatic cholangiocarcinoma (ICC) accounts for
approximately 10% of primary liver cancer.13e15 In the past
decades, the incidence of ICC has been increasing in the
United States and the Western world.16,17 Liver fluke infec-
tion is the major risk factor in countries, such as Thailand,
where ICC is prevalent. The etiology of ICC in Western
countries is less well defined, but a recent study of meta-
analysis of all published ICC epidemiological data suggests
that HBV or HCV infection, alcohol abuse, diabetes, and
obesity are major risk factors for ICC.18 This body of evi-
dence indicates that different primary tumor types of the liver,
including HCC and ICC,might share some etiological agents.
ICC is a deadly malignancy with few treatment options. In
fact, to our knowledge, there is no U.S. Food and Drug
Administrationeapproved targeted therapy for ICC. Because
of its orphan status, few clinical trials for the treatment of ICC
have been conducted.

During the past decades, genetic studies have uncovered
major signaling pathways involved in hepatocarcino-
genesis. Recently, high-throughput oncogenomic studies,
including microarrays, array-based comparative genomic
hybridization, and deep sequencing, in combination with
bioinformatics and other computational biological ap-
proaches, have identified many genes that are deregulated
along HCC and ICC development. However, most of these
candidate genes are likely to be passenger genes with
limited implication in hepatocarcinogenesis. On the basis
Table 1 Mouse Liver Cancer Models Generated Using Hydrodynamic Tr

Genes Tumor type Mouse

Nras-FAH and shP53 HCC Fah�/�

HBx-FAH and shP53 HCC Fah�/�

Rtl1 and FAH HCC Fah�/�

NRasV12 Mixed HCC and ICC Ink4A/
c-Met and DN90-b-catenin HCC WT FVB
NRasV12 and DN90-b-catenin HCC WT FVB
Spry2Y55F and DN90-b-catenin HCC WT FVB
Cyclin D1 and c-Met HCC WT FVB
Bmi1 and NRasV12 HCC WT FVB
c-Met and Spry2Y55F HCC WT FVB
myr-AKT HCC WT FVB
myr-AKT and NRasV12 Mixed HCC and ICC WTFVB
c-Myc HB WT FVB
myr-AKT and DN90-b-catenin HCC WT FVB
myr-AKT and Spry2Y55F HCC with emperipolesis WT FVB
HRasV12 and shP53 Undifferentiated liver tumors WT C57
NICD1 ICC WT FVB

myr-AKT and NICD ICC WT FVB
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of these considerations, an important question arises: how
can we identify the driver oncogenes and tumor-suppressor
genes required for liver tumor initiation and progression?
The use of liver cancer cell lines and in vitro studies has
significant limitations because these cell lines are already
of tumor origin. Mouse models can instead be critical to
validate the oncogenic potential of a genetic event or an
aberrantly altered signaling pathway. Also, because of the
growing understanding of liver cancer molecular patho-
genesis, mouse models represent an essential tool for
in vivo screening of innovative therapeutic approaches
against this deadly malignancy.
Mouse Models of Liver Cancer

Commonly used mouse models for liver cancer research have
been previously and thoroughly described (Table 1).19e22

Genetically engineered mouse models, including knockout
or transgenic mice, are required to demonstrate the onco-
genic or tumor-suppressor potential of the target genes and
to illustrate how these genes contribute to tumor initiation
and progression. For instance, by using liver-specific Pten
knockout mice, it has been demonstrated that ablation of
Pten leads to hepatic steatosis, nonalcoholic steatohepati-
tis, and, eventually, liver cancer formation at approxi-
mately 1 year of age, providing strong evidence that Pten
functions as a tumor suppressor for liver cancer develop-
ment.40 However, these genetically modified murine
models have several limitations. Indeed, the generation of
germ-line knockout or transgenic mice is costly, is time
consuming, and requires a high level of expertise. Also,
often, oncogenes or tumor-suppressor genes are critical for
embryonic or fetal development. Thus, overexpression or
ansfection

strain Latency Reference

w10 weeks Wangensteen et al, 200823

w10 weeks Keng et al, 201124

w9 months Riordan et al, 201325

Arf�/� w7 weeks Carlson et al, 200526

/N w3 months Tward et al, 200727

/N w3 months Lee et al, 200828

/N w6 months Lee et al, 200828

/N w6 months Patil et al, 200929

/N w6 months Xu et al, 200930

/N w6 months Lee et al, 201031

/N w6 months Calvisi et al, 201132

/N 3e4 weeks Ho et al, 201233

/N w6 weeks Chow et al, 201234

/N and C57BL/6 w4 weeks Stauffer et al, 201135

/N w3 to 4 months Wang et al, 201236

BL/6 w1 week Ju et al, 201337

/N w5 months Fan et al, 201238

Evert et al, 201339

/N w3 weeks Fan et al, 201238
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deletion/inactivation of these genes in the germ-line
frequently results in early lethality or developmental
defects. To overcome these limitations, tissue-specific,
inducible-knockout, or transgenic mouse models are
needed. Furthermore, multiple genetic alternations are
generally necessary to transform a normal cell (hepatocyte)
into an invasive tumor cell. In accordance with the latter
assumption, overexpression or deletion of one gene is often
not sufficient to promote liver tumor formation in vivo. In
this scenario, one would need to cross multiple mouse
strains to determine how several genes and related dereg-
ulation act synergistically to promote liver tumor forma-
tion. Finally, the mouse genetic background has a critical
role in tumor development. Because mouse models are
often generated in different genetic backgrounds, re-
searchers, in many cases, need to backcross the mice into a
pure genetic background before the mice can be used to
study cancer development or to be crossed with other
mouse strains. All these crosses can be labor intensive, time
consuming, and expensive.

An alternative approach to the traditional genetic/
knockout murine models is to transform embryonic hep-
atoblasts ex vivo, a technique that has been developed by
Zender et al.41 By using this innovative approach, Zender
et al41 validated the oncogenic potential of Yap and cIAP1
genes in hepatocarcinogenesis because these genes are
found to be amplified in human HCC. This approach
significantly reduces the time of experiment and number of
mice required for a given study. However, it is technically
challenging. Hepatoblast cells, in fact, need to be isolated
from embryonic mouse livers and purified using E-cadher-
inebased fluorescence activated cell sorting. These cells are
then cultured on feeder layers and infected with retroviral
vectors. The modified hepatoblasts can be finally introduced
into mice using the intrasplenic surgical injection procedure.
However, not all laboratories are equipped to perform such
complicated cell biological and animal studies. Furthermore,
HCCs develop from hepatoblasts in this setting, in contrast
with the widely accepted hypothesis that HCC originates
from mature hepatocytes. Therefore, HCC induced from
hepatoblasts may not fully recapitulate the biological pro-
cess of hepatocarcinogenesis in humans.

Several virus-based methods can be used for long-term
gene expression in the liver and can, therefore, in theory, be
used to generate liver tumor models. For example, adeno-
associated virus can efficiently and stably deliver genes into
hepatocytes, and has been tested clinically for correcting
genetic disorders.42e44 However, the adeno-associated virus
vector has a limited genome size (in general, <5 kb) and can
be technically challenging to generate.45 HIV-based lenti-
viral vectors are known to efficiently transduce both
dividing and nondividing cells. However, lentiviral gene
delivery into hepatocytes tends to be poor. Studies have
shown that efficient lentiviral transduction of the liver re-
quires hepatocyte cycling in vivo, which can be achieved by
partial hepatectomy.46,47 To the best of our knowledge, no
914
study has been performed using these viral-based vectors to
induce liver tumor in mice.
Generation of Novel Mouse Models for Liver
Cancer Research

Herein, we review a new method that combines hydrody-
namic gene delivery and Sleeping Beautyemediated so-
matic integration for long-term gene expression in mouse
hepatocytes, and how this technology has been used in
developing novel murine models for liver cancer research.
In this review, we will use the term hydrodynamic trans-
fection to describe this technology.
To understand the rationale of this technology, some

anatomical issues have to be introduced. The main reason
why parenchymal cells are targeted by hydrodynamic
transfection is the fact that capillary endothelium and pa-
renchyma cells are closely associated. This anatomical
feature allows the immediate access of DNA in parenchyma
cells once the endothelial barrier is breached. Hydrody-
namic transfection uses a hydrodynamic force produced by
the pressurized injection of a large volume of DNA solution
into the blood vessel, which permeabilizes the capillary
endothelium and generates pores in the plasma membrane of
the surrounding parenchyma cells. DNA has access to the
intracellular compartment through these pores. Subse-
quently, the pores of the plasma membrane close, trapping
the DNA inside the parenchymal cells. The most successful
application of the hydrodynamic technique is gene delivery
to hepatocytes in mice, which has been developed by Liu
et al48 at the University of Pittsburgh (Pittsburgh, PA). The
standard procedure consists of a rapid (5 to 9 seconds) tail
vein injection of physiological solution, equivalent to 10%
of body weight, in which the plasmid DNA is diluted. The
injection of such a large volume of DNA solution entering
directly into the inferior vena cava stretches myocardial fi-
bers over the optimal length for contraction, induces cardiac
congestion, and drives the injected solution into the liver in
retrograde. As a consequence, liver is the organ with the
major uptake of plasmid DNA in the body, and approxi-
mately 10% to 40% of hepatocytes can be transfected after
hydrodynamic tail vein injection. Transfection efficiency in
all other organs, including kidney, spleen, lung, and heart, is
<0.1% of that of the liver. Therefore, this transfection tech-
nology appears to be rather specific for the liver. Subsequent
studies demonstrated that the transfection of the gene of in-
terest affects predominantly the hepatocytes at the pericentral
region (zone 3 of the liver acinus).49 Hydrodynamic injection
does lead to liver injury. However, the injury is transient and
the liver heals in approximately 1 week.49

One of the major limitations for the application of hy-
drodynamic transfection to liver cancer research resides in
the fact that transfected genes are rapidly degraded in he-
patocytes. Indeed, the expression levels of the gene of in-
terest peak approximately 8 to 24 hours after hydrodynamic
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Principles of hydrodynamic trans-
fection for inducing liver cancer formation in mice.
A: Structures of constructs used for the study. B:
Overall diagram of study design. C: IHC staining of
b-catenin in uninjected WT mouse liver and an
activated form of b-catenin (D-N90-b-catenin)
injected mouse liver. There is sporadic nuclear/
cytoplasm localization of D-N90-b-catenin in he-
patocytes transfected with the construct, whereas
b-catenin is localized at the plasma membrane in
WT livers. D: Gross image of a mouse liver tumor
induced by hydrodynamically injecting the c-Myc
proto-oncogene into the mouse. Original magnifi-
cation, �200 (C).
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injection, and decrease >1000-fold over 7 days.48 However,
genes need to be continuously expressed in hepatocytes to
induce liver cancer formation. To overcome this major
technical challenge, Sleeping Beauty (SB) transposase50e
mediated somatic integration is applied in combination with
hydrodynamic transfection for stable and long-term target
gene expression in the liver.51,52 In brief, SB transposase
recognizes and binds to specific inverted repeats flanking a
DNA sequence. It excises the DNA sequence and inserts the
latter at a new location within a TA dinucleotide. The pro-
cess can be viewed as cut and paste of DNA sequences. To
achieve the goal of long-term gene expression in hepato-
cytes, two plasmids are needed: one encoding the SB
transposase, and the second encoding the gene of interest
under a mammalian promoter and flanked by inverted re-
peats (pT; Figure 1A). Because cytomegalovirus promoter is
known to be silenced in hepatocytes, EF1a, PGK, or
CAGGS promoters are commonly used. The two plasmids
are then mixed together (ratio of SB/gene of interest is
generally between 1:10 and 1:25), diluted into saline (vol-
ume of saline equals 10% of mouse body weight), and
injected into the lateral vein of the mouse tail via hydro-
dynamic injection (Figure 1B). The long-term integration
and gene expression efficiency is generally approximately
2% to 10% of hepatocytes (Figure 1C). Finally, once the
oncogene is stably expressed in mouse hepatocytes, this can
eventually lead to tumor formation (Figure 1D).

There are several obvious advantages of this technology
in stably expressing genes in the liver and for the estab-
lishment of novel murine models for liver cancer in
The American Journal of Pathology - ajp.amjpathol.org
comparison to the traditional transgenic or knockout mouse
models. First, in the traditional transgenic or knockout
mouse models, virtually all hepatocytes overexpress or
delete a specific gene. In contrast, hydrodynamic trans-
fection delivers target genes in a relatively low percentage
of hepatocytes (approximately 2% to 10% of hepatocytes)
(Figure 1), so that target genes will be expressed by rela-
tively few liver cells surrounded by normal/non-transfected
hepatocytes. Thus, the sporadic expression of the target
gene better resembles that in human liver cancer in com-
parison to the traditional transgenic or knockout mouse
models. Second, the injection is performed in 6- to 8-week-
old mice, thus not inducing any effect on mouse embryonic
development. Third, this technology avoids the generation of
costly transgenic or knockout mice and subsequent breeding,
and significantly reduces the number of mice needed in the
experiments. In addition, hydrodynamic transfection can be
applied to mice from different genetic backgrounds. Thus,
the hydrodynamic transfection method significantly accel-
erates the speed of the experiments while reducing the cost of
the study. Finally, for effective liver tumor development,
multiple genes may need to be co-expressed. This can be
achieved by simply adding a second or third expressing
vector flanked by inverted repeats into the plasmid mix,
and injecting the mix into the mice. Overall, hydrodynamic
transfection is a reliable, flexible, and cost-effective method
to generate novel mouse models of liver cancer. It can also be
used to study the biochemical cross talk between signaling
pathways and test novel therapeutic agents for the treatment
of this deadly disease.
915
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Figure 2 Liver tumor development after hydrodynamic transfection of
myristylated (activated) AKT (myr-AKT) into the mouse liver. A: Histological
features of myr-AKTe overexpressing livers 12 weeks after hydrodynamic
injection. At this time point, altered hepatocytes occupy approximately
40% to 50% of the liver parenchyma and form focal lesions. The cytoplasm
of altered cells is clear and enlarged owing to the high content in lipids
(inset). B: Subsequent staining for the HA tag shows that the altered he-
patocytes are, in fact, expressing the exogenous myr-AKT gene. C and D: At
the same time point, small hepatocellular adenomas (HCAs; arrows, C) also
start to emerge in the liver parenchyma of myr-AKTetransfected mice and
are positive for HA-tag staining. E and F: At 28 weeks after hydrodynamic
transfection, large HCAs (E) and carcinomas (HCCs; F) develop. Although
HCAs retain the clear-cell phenotype characteristic of focal, nontumorous
lesions, HCCs most often display a macrotrabecular growth, less intra-
cytoplasmic lipid content, and increased cytoplasmic basophilia. Never-
theless, areas with macrotrabecular (F; left part of the tumor) and solid/
clear-cell (F; right part of the tumor) features often co-exist in HCCs
developed in myr-AKTetransfected mice. Original magnification: �40
(A, B, and E); �400 (inset, A); �100 (C and D); �200 (F).
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HCC Mouse Models of Liver Cancer Using
Hydrodynamic Transfection

We provide a review of the applications of hydrodynamic
transfection for the study of liver tumor development.

Hydrodynamic Transfection in Fah-Null Mice

Oneway to generatemurine liver cancermodels is to combine
hydrodynamic transfection with Fah-null mice. Loss of the
Fah (fumaryl-acetoacetate hydrolase) gene leads to neonatal
death due to liver failure.53 The lethality can be rescued by
feeding the mice with nitisinone (NTBC), a drug that inhibits
the upstream enzyme, 4-hydrozyphenylpyruvate diogenease,
in the tyrosine metabolism pathway. Transplant of Fah-
expressing hepatocytes results in the correction of Fah defi-
ciency because Fahþ hepatocytes repopulate the mouse liver
and mice can survive without NTBC.54,55 To use this model,
one needs to clone the candidate oncogene together with Fah
in the pT expression vector. The constructs are then co-
injected with SB plasmid into Fah-null mice. The Fah-null
mice are normally maintained on NTBC drinking water, and
need to be replaced with normal drinking water immediately
after hydrodynamic injection to allow the expansion of he-
patocytes that receive the injected plasmids and express the
Fah gene. The candidate oncogene is expressed in the repo-
pulated hepatocytes and may induce liver cancer formation.
One of the advantages of using Fah-null mice is that the se-
lective repopulation of cells carrying the transfected genes
and the proliferating hepatocytes provides additional stimuli
that may favor oncogenesis. By using this technology, Keng
et al24 characterized the oncogenic potential of HBx, a major
oncogenic component of HBV. Specifically, the HBx gene
was cloned under the PGK promoter and Fah was cloned
under the CAG promoter. Both genes were inserted into one
pT2 vector flanked by the inverted repeats.24 The HBx-Fah
vector was injected into Fah-null mice, alone or with
NRasV12, shRNAmir-based silencing of p53 (shP53), or
NRasV12 plus shP53. A few HBx-injected mice developed
hyperplastic nodules at approximately 20 weeks after injec-
tion. shP53, but not NRasV12, cooperated with HBx to
induce liver cancer formation in this selective repopulation
model, supporting the critical role of TP53 tumor-suppressor
gene in HBV-induced HCC formation.24

Hydrodynamic Transfection of a Single Oncogene

A more popular way to generate liver cancer models is to
directly hydrodynamically transfect genes into wild-type
(WT) mice without relying on hepatocyte repopulation. c-
Myc is a well-characterized oncogene, frequently amplified
and/or overexpressed in human HCC and hepatoblastoma
(HB) tissues.56,57 Hydrodynamic transfection of the Myc
(alias c-Myc) gene into the mouse liver resulted in liver tumor
formation and lethality at 5 to 8 weeks after injection.34

Histological evaluation revealed that the transfected
916
hepatocytes were composed of small and highly proliferative
tumor cells, which are highly similar to human HB. Similar
HB-like tumor can also be induced via conditional induction
of c-Myc expression in the mouse liver using the genetic
mouse approach [ie, by crossing LAP-tTAmice (tetracycline-
controlled transactivator under the control of liver-specific rat
LAP promoter58) and TRE-c-Myc mice (human c-Myc under
tetracycline-regulated element promoter59) to obtain LAP-
tTA;TRE-c-Myc double-transgenic mice].59 For a second
example, the phosphatidylinositol 3-kinase/AKT/mamma-
lian target of rapamycin (mTOR) signaling pathway is the
central regulator of multiple cellular processes, including cell
metabolism, growth, proliferation, and survival.60 Activation
of the phosphatidylinositol 3-kinase/AKT/mTOR cascade
has been reported in human HCCs, with poor outcome.61

Hydrodynamic transfection of constitutively activated AKT
(myr-AKT) leads to hepatocyte proliferation and increased
ajp.amjpathol.org - The American Journal of Pathology
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de novo lipogenesis, resulting in hepatic steatosis and,
eventually, liver cancer development by 6 months after in-
jection (Figure 2).32 The process mimics what has been
observed using liver-specific Pten-knockout mice (Alb-
Cre;Ptenfl/fl mice; ie, ablation of Pten in the mouse liver also
leads to hepatic steatosis and eventually liver cancer forma-
tion).40 All these studies demonstrate that the hydrodynamic
transfection is a reliable, yet cost-efficient, method to
generate liver tumor models, and the results recapitulate what
is observed using traditional transgenic or knockout mouse
approaches.

Hydrodynamic Transfection with Multiple Oncogenes

HCC development is a complex process. In general, tumor
development requires the activation of multiple signaling
pathways and, in many cases, the mutation of one gene is not
sufficient to promote HCC formation. One such example is
the wingless-type MMTV integration site family/b-catenin
pathway. Activating mutations of b-catenin occur in 15% to
30% of human HCC samples.62,63 However, overexpression
of activated mutant forms of b-catenin via hydrodynamic
transfection fails to induce liver tumor formation, even over a
long latency.27 The same results were obtained using trans-
genic mouse models overexpressing oncogenic forms of
b-catenin.64,65 On the other hand, the activated mutant of
b-catenin was found to cooperate with activated Ras or AKT
pathways to induce liver tumor formation in the
mouse.27,28,35 Overexpression of NRasV12 (a persistently
active form of N-Ras), c-Met, or dominant negative Spry2
(Spry2Y55F) can all lead to activation of the Ras/mitogen-
activated protein kinase (MAPK) signaling. Activating mu-
tations of Ras are rarely found in human HCCs.35 On the
other hand, the Ras/MAPK cascade is frequently activated in
human HCCs.35 The goal of using NRasV12 is to mimic the
activation of the Ras/MAPK pathway in vivo. These studies
demonstrated that hydrodynamic cotransfection of DN90-b-
catenin with NRasV12, c-Met, or Spry2Y55F triggered HCC
formation in mice.27,28 In particular, liver tumor cells showed
high levels of extracellular signaleregulated kinase protein
activation and nuclear b-catenin, thus supporting the hy-
pothesis that activation of both signaling cascades is required
for HCC formation in vivo. Similar to that described for b-
catenin, overexpression of NRasV12 alone is also unable to
promote liver tumor formation in mice. This is presumably
because of the fact that strong activation of the Ras/MAPK
pathway promotes cellular senescence in hepatocytes.66

Indeed, NRasV12-expressing hepatocytes become senes-
cent soon after hydrodynamic transfection and are subse-
quently eliminated by immune cells.66 A second signal, such
as the activated mutant form of b-catenin,28 overexpression
of the stem cell factor, Bmi1,30 or loss of the Ink4A/Arf
locus,26 is required to cooperate with NRasV12 to induce
HCC formation in mice.

The flexibility of the hydrodynamic transfection method
makes it the ideal approach to demonstrate the in vivo
The American Journal of Pathology - ajp.amjpathol.org
oncogenic potential of novel gene(s) or pathway(s). For
instance, Spry2 was first identified through genomic analysis
to be significantly down-regulated in human HCC samples
compared with nontumor normal liver tissues.67 Further
analysis showed that Spry2 is located at 13q, which is deleted
in approximately 50% of human HCCs.28 Spry2 is also
among genes whose promoters are frequently methylated in
HCCs.31,68 In addition, previous biochemical studies showed
that Spry2 functions as a negative-feedback regulator of the
Ras/MAPK pathway and supports the role of Spry2 as a
tumor-suppressor gene along hepatocarcinogenesis.69 To
validate the tumor-suppressor role for Spry2, the traditional
method would require generating Spry2-knockout mice.
However, most Spry2-knockout mice have severe gastroin-
testinal tract defects and survival of <1 month after birth
and, therefore, are not suitable for the study.70 To avoid the
early lethality, AlbCre mice need to be crossed with Spry2fl/fl

mice to generate liver-specific Spry2-knockout mice
(AlbCr;Spry2fl/fl). However, because loss of Spry2 alone is not
sufficient to induce HCC formation in vivo,28 liver-specific
Spry2-knockout mice have to be crossed eventually with
additional knockout or transgenic mice to determine whether
ablation of Spry2 cooperates with other gene(s) to promote
hepatocarcinogenesis. By using hydrodynamic transfection,
we recently generated the dominant-negative form of Spry2
(Spry2Y55F),71 which was shown to efficiently block Spry2
activity in cancer cells, and overexpressed it into the mouse
liver alone or together with other common genetic events
observed in human HCCs, including the activated form of
b-catenin28 or AKT36 or overexpression of c-Met.31 The latter
studies demonstrated that Spry2Y55F is able to synergize
with other genetic events to promote HCC formation in vivo
by sustaining high levels of the Ras/MAPK cascade. This
experimental evidence suggests a new molecular mechanism
for unrestrained activation of the Ras/MAPK cascade in the
absence of Ras or Raf mutations along hepatocarcinogenesis.

Molecular Characterization of Murine Models Generated
by Hydrodynamic Transfection

Murine models generated via hydrodynamic transfection can
be used to analyze biochemical cross talk between signaling
pathways; characterize cellular phenotypes, such as cancer
stem cells; and evaluate drug responsiveness. For example,
AKT/mTOR and Ras/MAPK pathways are frequently and
concomitantly activated in human HCC samples. To inves-
tigate the functional interaction between the two signaling
cascades, we have generated a mouse model by hydrody-
namically transfecting activated forms of AKT and NRas
proto-oncogenes into the mouse liver.33 As discussed pre-
viously, activated Ras alone did not induce liver tumor for-
mation,66 and activated AKT alone led to HCC formation
over a long latency period (approximately 30 weeks after
injection).32 In contrast, co-expression of activated forms of
AKT and NRas (referred to herein as AKT/Ras) in the mouse
liver significantly accelerated hepatocarcinogenesis, leading
917
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to large tumor formation and mouse lethality by 6 weeks after
injection.33 Biochemical analyses demonstrated that
increased mTORC1, but not mTORC2, activity occurred in
AKT/Ras tumor samples when compared with corresponding
lesions from AKT mice. The increased mTORC1 activity in
AKT/Ras mice was due to, at least partly, the Ras/MAPK-
mediated phosphorylation and inactivation of serine 664
residue of tuberous sclerosis 2 protein, an mTORC1 sup-
pressor.33 Further molecular analyses showed a strong up-
regulation of c-Myc and FoxM1 in AKT/Ras tumor cells.33

Intriguingly, in vitro assays demonstrated that the up-
regulation of c-Myc and FoxM1 contributed to AKT/Ras-
induced hepatocarcinogenesis in an mTORC1-independent
manner.33 In a follow-up study, we showed that rapamycin,
an allosteric partial mTORC1 inhibitor, was able to restrain
AKT/Ras-induced hepatocarcinogenesis.72 However, rapa-
mycin treatment also triggered activation of the MAPK
signaling in the residual tumor cells.72 Subsequent in vitro
studies using a primary cell line isolated from an AKT/Ras
mouse HCC demonstrated that cotargeting of mTORC1 and
Ras/MAPK pathways was highly detrimental for the growth
of these cells.72 These results provide strong preclinical ev-
idence that concomitant inhibition of mTOR and MAPK
cascades may be required for efficient treatment of HCC
patients. As a second example, cancer stem cells (CSCs) are
characterized as having enhanced tumor-initiating capabil-
ities compared with other tumor cells,73 and have been
identified in several solid tumors, including liver cancer.74

By using c-Myc transgenic mice and mice hydrodynamical-
ly transfected with c-Myc or AKT/Ras, Chow et al34 identi-
fied a subset of tumor cells that excludes Hoechst 33,342 dye
in liver tumors induced by c-Myc, but not AKT/Ras. This
side population (SP) of cells functions as CSCs, because they
exhibited increased tumor-initiating properties compared
with non-SP tumor cells using allograft experiments per-
formed in NOD/Scidil2Rg�/� mice.34 In addition, these SP
tumor cells expressed markers of hepatic progenitor cells,
such as CD44, Epcam, and Bmi1, and they could readily
differentiate into more mature non-SP hepatic cancer cells.34

The latter study demonstrated that different initiating onco-
genes can induce distinct CSC population formation.

Combination of Hydrodynamic Transfection with
Traditional Transgenic and Knockout Mouse Models

Another major advantage of the hydrodynamic transfection
technology is the possibility to combine it with the use of
transgenic or knockout mice to study the genetic interactions
between different genes in liver cancer development. For
example, Chow et al34 identified an SP of cells functioning as
CSCs in the c-Myc liver cancer model. The avidin-biotin
complex transporter proteins, multidrug resistance protein 1
(MDR1) and ATP-binding cassette, sub-family G (WHITE),
member 2 (BCRP), have both been shown previously to efflux
Hoechst 33,342 dye and, therefore, may contribute to SP cell
formation.75,76 To functionally determine which transporter is
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required for SP formation in c-Myc liver cancer, Chow et al34

applied hydrodynamic transfection of c-Myc in eitherMdr1a/
1b�/� or Bcrp�/�mice. The results showed that SP cells could
be readily isolated in c-MyceinjectedBcrp�/�mice, but not in
Mdr1a/1b�/� mice. Furthermore, it was shown that MDR1
expression renders CSC cells resistant to chemotherapeutic
drugs that are MDR1 substrates, such as doxorubicin.34 In
these studies, we found that breeding homozygous Mdr1a/
1b�/� or Bcrp�/� mice and injecting them with c-Myc pro-
vides a definitive answer to the hypothesis 6 to 8 weeks after
injection. In contrast, by using traditional mouse genetic ap-
proaches, one has to breed LAP-tTA (tetracycline-controlled
transactivator under the control of liver-specific rat LAP pro-
moter58), TREec-Myc (human c-Myc under tetracycline-
regulated element promoter59), and Mdr1a/1b�/� or Bcrp�/�

mice (three different strains of mice) together to obtain LAP-
tTA;TRE-c-Myc;Mdr1a/1b�/� mice and LAP-tTA;TRE-c-
Myc;Bcrp�/� mice. The breeding is likely to require 1 to 2
years, and only a few resulting mice (between 1 of 16 and 1 of
8, depending on the breeding strategy) have the desired ge-
notypes. The latter experiments are both time consuming and
expensive. Hydrodynamic transfection instead significantly
reduced the cost and time of the experiments, decreased mouse
numbers, and significantly improved experimental efficiency.
A second example is provided by the study on the role of

Bmi1 in hepatocarcinogenesis, which we recently per-
formed.77 Bmi1 is a polycomb group transcriptional repressor
and regulates self-renewal and proliferation of many types of
stem or progenitor cells.78 Bmi1 is found to be overexpressed
in humanHCCsamples, and in vitro studies support the critical
role ofBmi1 in liver cancer development.79However,whether
Bmi1 is required for tumor formation in vivo was not previ-
ously investigated. We showed that Bmi1 expression is up-
regulated in liver tumors induced by activated forms of AKT
and Ras.77 Also, we determined whether Bmi1 expression is
required for AKT/Ras tumor formation.77 For this purpose,
hydrodynamic transfection of AKT/Ras into Bmi1�/� mice
and Bmi1þ/þ control littermates was performed.77 We found
that ablation of Bmi1 significantly delayed hepatocarcino-
genesis induced by AKT and Ras co-expression.77 The latter
study provides the evidence, for the first time to our knowl-
edge, that Bmi1 expression is required for liver cancer
development in vivo, thus representing a promising target for
innovative treatments against human HCC.
ICC Mouse Models of Liver Cancer Using
Hydrodynamic Transfection

ICC is another major type of liver cancer, but has limited
treatment options owing to the poor understanding of the
molecular pathogenesis of this deadly disease.14,80 Subcu-
taneous xenograft models of ICC have been generated for the
development of novel therapeutic strategies.81e84 However,
preclinical data derived from these xenograft systems corre-
late poorly with the clinical outcome.85e88 Also, only a few
ajp.amjpathol.org - The American Journal of Pathology
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ICC murine models are available, and are difficult to be
applied in preclinical studies.89,90 In a recent study, we
applied hydrodynamic transfection to overexpress an acti-
vated form of Notch1 (NICD) or co-express activated AKT
and Notch (AKT/NICD) into the mouse liver.38 We found
that NICD1 alone is sufficient to promote ICC development,
although after 20 to 25 weeks of latency.39 More important,
cholangiocarcinogenesis was tremendously accelerated by
co-expression of AKT and NICD, leading to ICC develop-
ment 3 to 5 weeks after injection.38 As we have discussed
previously, hydrodynamic transfection delivers genes into
the pericentral region (zone 3 of the liver acinus). Indeed, it
was found that oncogene-expressing cells are all hepatocytes
located around the central vein. On the other hand, bile duct
cells are located at the portal triad (zone 1 of the liver acinus).
This raised an intriguing question: where do the ICC cells
originate from? Powered by the lineage-tracing experiment in
combination with morphological analysis using electron
microscopy, Fan et al38 demonstrated that ICCs induced by
AKT/NICD derived from mature hepatocytes. The hepato-
cyte origin of ICC in mice was subsequently confirmed in a
chemically induced ICC murine model using the traditional
genetic approach,91 as well as a study by the electroporating
KRasV12 oncogene into p53-null hepatocytes.92 These
novel findings suggest that mature hepatocytes can be the
cellular origin of ICCs, and provides a previously overlooked
mechanism of human ICC formation. Clearly, whether he-
patocytes are the cell origin during human ICC pathogenesis
needs to be further investigated. In accordance with these
results, a recent meta-analysis of risk factors for human ICCs
revealed that HBV or HCV infection, alcohol abuse, dia-
betes, and obesity, all well-characterized etiological factors
for HCC, are also major risk factors for ICC,18 thus sup-
porting the common pathogenesis of HCC and ICC. In
addition, the studies by Fan et al38 and Evert et al39 suggested
Notch signaling as the driver oncogenic pathway in ICC
development. The conclusion was supported by several
recent studies using in vitro approaches or traditional trans-
genic mouse models.93,94 Altogether, the study by Fan et al
showed that ICC models can be generated via hydrodynamic
transfection, and demonstrated that targeting the Notch
signaling cascade might represent a novel and promising
therapeutic target against human ICC.
Limitations of Hydrodynamic Transfection

Although we have discussed many advantages of hydrody-
namic transfection in generating novel murine liver cancer
models, some limitations also apply to this technology.One of
the major limitations resides in the fact that hydrodynamic
injection delivers genes predominantly into hepatocytes in the
pericentral region (zone 3 of the liver acinus). Therefore, the
technology cannot be applied to study tumors originating
from hepatic stem cells or biliary epithelial cells. To achieve
the goal of long-term gene expression in liver cells other than
The American Journal of Pathology - ajp.amjpathol.org
hepatocytes, it would be possible to combine Sleeping
Beautyemediated somatic integration with other delivery
methods to stably target genes into hepatic stem cells and
biliary epithelial cells. For example, in a recent preliminary
report, it has been shown that intrabiliary injection of acti-
vated forms of AKT and Yap, together with Sleeping Beauty
transposase, followed by bile duct ligation and IL-33 stimu-
lation, resulted in ICC formation in mice (American Associ-
ation for the Study of Liver Diseases 2013 annual meeting).

Another limitation is the difference between human liver
tumors and those generated by hydrodynamic transfection in
themouse. Indeed, only a few (inmost cases, one or two) liver
tumor nodules developed in a patient. After hydrodynamic
transfection, in contrast, at least 1% to 2% of hepatocytes are
transfected, and all these cells can potentially produce tumors.
This leads to numerous tumor nodules throughout the mouse
liver, and inmany cases, the tumor nodules are toomany to be
counted. Future studies are required to develop additional
approaches, allowing the expression of target genes into few
(ideally, one or two) hepatocytes in mice.

Most human HCCs develop in the context of a fibrotic or
cirrhotic liver. Hydrodynamic transfection has been instead
used to deliver genes into the normal liver. Clearly, induction
of cirrhosis in mice before hydrodynamic transfection of
oncogenes would be required to study how oncogenes pro-
mote tumor development in a cirrhotic microenvironment.
The most common approach to induce inflammation and
fibrosis in mouse liver is by hepatotoxins, such as treating the
mice with carbon tetrachloride or thioacetamide. In addition,
liver fibrosis can also be induced in transgenic mouse models.
For example, overexpression of platelet-derived growth
factor (PDGF) family members is able to induce fibrosis in
mice.95 Indeed, we found that hydrodynamic transfection of
PDGF-C is able to promote fibrosis in mice (C. Wang, un-
published data). Thus, it would be possible to express on-
cogenes via hydrodynamic transfection after inducing liver
fibrosis by hepatotoxins or PDGFs. This would eventually
allow us to study how the oncogenes may contribute to liver
tumor development in the background of fibrotic liver.
However, it remains unknown whether hydrodynamic
transfection can achieve a high enough efficiency to deliver
genes into the fibrotic liver and in the presence of the altered
vasculature characteristic of this condition. Furthermore,
many of these stimuli, especially hepatotoxins, are known to
induce random mutations of DNA in hepatocytes, eventually
leading to HCC or ICC formation in mice. This may
complicate the understanding of the contribution of specific
oncogenes or signaling pathways in liver tumor develop-
ment. Altogether, whether hepatotoxin- or growth factore
induced fibrotic mouse models are suitable to combine with
hydrodynamic transfection to study hepatocarcinogenesis
requires further investigation.

Finally, the method is highly useful to study the contri-
bution of oncogenes to tumor initiation, but not tumor
progression. To overcome this limitation, hydrodynamic
transfection requires to be coupled to other approaches. To
919
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investigate the role of specific oncogenes in tumor pro-
gression, indeed, hydrodynamic transfection should be
performed in environmental (ethanol consumption, high-fat
diet, and exposure to hepatocarcinogens) or genetic (injec-
tion in mice depleted of tumor-suppressor genes and co-
injection with weak oncogenes) cancer-prone conditions.

Future Directions

Despite some limitations, hydrodynamic transfection holds
great promise to both advance our knowledge on the cellular
and molecular mechanisms underlying hepatocarcino-
genesis and develop novel murine models for preclinical
testing of innovative therapeutic approaches against this
deadly disease. Combining hydrodynamic transfection with
important etiological factors of HCC is worth exploring. For
example, only one study described HCC development
induced by HBx and shP53 using the Fah-null mouse model
and hydrodynamic transfection. Because both HBV and
HCV are critical etiological factors for human hep-
atocarcinogenesis, it would be important to combine the
transfection of various cellular oncogenes into transgenic
mice expressing HBV or HCV oncogenes, such as HBx96,97

or HCV Core.98 These models will be highly useful to un-
derstand the mechanisms by which viral oncoproteins
cooperate with common genetic events observed in HCC to
promote tumor development. In addition, alcohol intake and
obesity have been implicated in HCC development.99,100

Furthermore, hydrodynamic transfection could be com-
bined with alcohol feeding or high-fat diet feeding to
determine whether these environmental/lifestyle factors can
accelerate oncogene-induced hepatocarcinogenesis.

Perhaps the most promising aspect of hydrodynamic
transfection is to screen for candidate oncogenes and tumor-
suppressor genes. Indeed, recent genomic studies identified
many genes whose expression is altered in HCCs, genes that
are mutated inHCCs, and genes that are amplified and deleted
in HCCs.101,102 The flexibility of hydrodynamic transfection
renders it the ideal approach to determine the in vivo onco-
genic potential of the candidate oncogenes or oncogenic
mutations. By using the traditional transgenic approach, the
generation of a transgenicmouse line for each of the candidate
oncogenes or oncogenic mutants is instead necessary. Over-
expression of the candidate oncogene might be insufficient to
promote liver cancer development in vivo. Thus, these
transgenic mice may need to be crossed with other transgenic
or knockout mice to further evaluate their combined onco-
genic potential. This approach is presumably unrealistic in the
screening of many candidate oncogenes, most of which are
likely to be passenger genes or mutants with limited contri-
bution to liver tumor initiation and progression. By using
hydrodynamic transfection, one can easily clone the candi-
date genes into a vector flanked by inverted repeats and
injected into mice to determine whether overexpressing one
candidate gene alone is sufficient to induce liver cancer for-
mation. Furthermore, these genes can be co-injected with
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other common genetic events, such as the activated mutant of
b-catenin or c-Met, into the liver to investigate whether these
genetic events cooperate to promote hepatocarcinogenesis.
Although most of the current studies focus on over-

expressing oncogenes into the mouse liver, efforts should be
put into inhibiting the expression of genes to study their
possible tumor-suppressor activity or investigating whether
specific genes or pathways are required for oncogene-
induced hepatocarcinogenesis. For this purpose, the direct
silencing of candidate genes via hydrodynamic transfection
of shRNA constructs might be applied. However, knocking
down gene expression in vivo via shRNA could be chal-
lenging. Studies from our laboratory suggested that over-
expression of the 19-mer stem-loop-stem shRNA, driven by
U6 promoter, is highly toxic to hepatocytes, and all hepato-
cytes that received the shRNA underwent apoptosis (C.
Wang, unpublished data). The molecular mechanisms un-
derlying this event are not clear, but it is likely that the
exogenous shRNA binds to the endogenous Dicer complex
and inhibits the endogenous miRNA process, leading to cell
toxicity. This observation was recently confirmed by Wues-
tefeld et al.103 Interestingly, the latter study suggests that
miRNA-based shRNA (shRNAmir) is not toxic to the mouse
liver, and the group successfully applied this technology
to study liver regeneration.103 To date, the only successful
shRNA-based silencing experiment using hydrodynamic
transfection is shP53.23,24 The effectiveness of shRNAmir in
gene silencing in liver tumor models requires further evalu-
ation. If successful, this approach can provide a powerful
method to study the downstream targets of various oncogenes
or oncogenic signals. In addition, similar to that described by
Wuestefeld et al,103 using the shRNA pools against candidate
tumor-suppressor genes identified from human cancer
genomic studies, in combination with hydrodynamic trans-
fection, followed by deep sequencing, it would be possible to
identify driver tumor suppressors directly in vivo.
Another area requiring further investigation is the study

of liver tumor progression, metastasis, and tumor regression
in the murine models. Thus far, virtually all studies focus on
tumor initiation (ie, to determine which oncogene or what
combinations of oncogenes, when overexpressed in mouse
hepatocytes, can lead to liver tumor formation). None of
these murine models resulted in tumor metastasis, and the
experiments addressing molecular events from preneoplastic
lesions to malignant tumors are still lacking. Notably, this is
a challenge facing the entire liver cancer mouse modeling
field, and it is not unique to murine models generated by
hydrodynamic transfection. Although multiple genes are
clearly implicated in promoting liver tumor metastasis, these
genes have not been studied in mouse liver cancer models.
Clearly, it is pivotal to further investigate the functional
role(s) of these genes in vivo using either traditional genetic
models or hydrodynamic transfection models. To study
whether tumor cells are addicted to a specific oncogene or
oncogenic pathway, it would be ideal if the oncogene can be
turned off when tumors are already formed. In traditional
ajp.amjpathol.org - The American Journal of Pathology
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transgenic mouse models, this can be achieved by using the
doxycycline-inducible system. For example, one can breed
LAP-tTA and TRE-c-Myc to generate LAP-tTA; TRE-c-Myc
double-transgenic mice. When these mice are fed with
regular chow (without doxycycline), c-Myc is expressed in
mouse liver, leading to liver tumor formation in these mice.
When the tumor-bearing mice are fed with doxycycline-
containing chow, doxycycline turns off the expression of
c-Myc oncogene, resulting in tumor regression.59 The result
suggests that these tumor cells are highly dependent on the
activity of the c-Myc oncogene, and targeting c-Myc is
likely to be highly efficient, treating liver tumors with high
levels of c-Myc expression, such as those tumors harboring
c-Myc amplification. It would be of great interest to
combine the doxycycline-inducible system with hydrody-
namic transfection to allow the control of on-and-off status
of the oncogene. These studies would provide critical in-
formation on whether the oncogene or oncogenic pathway
would serve as an efficient therapeutic target.

In summary, hydrodynamic transfection is a flexible,
efficient, and reliable method to generate novel mouse
models for liver cancer research. The models developed
using this technology have been proved to be highly helpful
for the understanding of hepatocarcinogenesis and are
receiving increasing attention by scientists from the liver
cancer research field. It is likely that hydrodynamic trans-
fection will be soon widely applied by many research
groups and will contribute to a better understanding of the
molecular pathogenesis of human liver cancer.
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