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ABSTRACT A series of cyclic, conformationally restricted
analogs of somatostatin have been prepared and tested for
their ability to inhibit the binding of [3H]naloxone and [D-Ala2,
D-Leus][3Hlenkephalin to rat brain membranes. The most po-
tent analog, D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2
where Pen is penicillamine in [D-Phe5, Cys , Tyr7, D-Trp8,
ien"llsomatostatin-(5-12)-octapeptide amide, exhibited high
affinity for Ip-opiate receptors (ICso value of [3H~naloxone =
3.5 nM), being 7800 times more potent than somatostatin. The
cyclic octapeptide also displayed hih pA-opiate receptor selec-
tivity with an IC50 ([D-Ala2, D-LeU Jenkephalin)/IC50 (nalox-
one) ratio of 271. The high affinity and selectivity of the soma-
tostatin analog for A-opiate receptors may be of use in examin-
ing the physiological role(s) of the p-opiate receptor.

The cyclic tetradecapeptide somatostatin is known to inter-
act with a variety of receptor systems over a wide concentra-
tion range (1). High-affinity (low dissociation constant) bind-
ing with a receptor system is generally thought to have phys-
iological significance, but when the affinity is weak
(micromolar), the physiological significance is not clear. The
weak affinity that somatostatin displays for the opiate recep-
tor is one such example. It has been reported, for instance,
that high concentrations (high micromolar) of somatostatin
can inhibit the binding of [3H]naloxone and [D-Ala2, D-Leu-
5][3H]enkephalin ([3H]DADLE) to rat brain homogenates as
well as give rise to an in vivo analgesic response in mice (2,
3). Recently, it has been reported that the somatostatin ana-
log [D-Phe5, CyS6, D-Trp',Cysll~somatostatinol-(5-12)-octa-
peptide, which we refer to as D-Phe-Cys-Phe-D-Trp-Lys-
Thr-Cys-Thr(ol), with an IC50 value of 38 nM at the ,u-opiate
receptor, was capable of antagonizing the excitatory effects
of the stable enkephalin analog [D-Ala2, MePhe4, -NHCH-
(CH2OH)-(CH2)2-S(O)CH5]enkephalin in electrophysiologi-
cal experiments (4). Our interest in somatostatin stems from
the reported antagonist activity of this analog to opiates as
well as the apparent lack of structural similarity of somato-
statin and analogs to either the rigid opiates or the enkepha-
lin compounds.
We have prepared a number of conformationally restricted

analogs of somatostatin in order to probe the structural and
conformational features important for somatostatin's activi-
ty at opiate receptors. These studies have resulted in the de-
velopment of the penicillamine (Pen)-containing analog [D-
Phe5, Cys6, Tyr7, D-Trp8, Penllsomatostatin-(5-12)-octa-
peptide amide, which we refer to as D-Phe-Cys-Tyr-D-
Trp-Lys-Thr-Pen-Thr-NH2 or [Cys2, Tyr3, Pen7]-octapep-
tide amide and which displays high ,-opiate receptor affinity
and selectivity in the rat brain radioreceptor assay (Fig. 1).
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FIG. 1. Structure of the most potent ,u-opiate receptor-selective
somatostatin analog, D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pefn-Thr-NH2.

MATERIALS AND METHODS
Somatostatin was purchased from Vega Biotechnologies.
The analog CGP 23,996 (des-Ala', Gly2-[desamino-Cys3,
Tyr"]-3,14-dicarbasomatostatin) was a generous gift from
CIBA-Geigy. Amino acid analyses were performed on a
Beckman 120C amino acid analyzer. All optically active ami-
no acids are of the L variety unless otherwise noted. Cyste-
ine was determined as cysteic acid (5). Fast-atom-bombard-
ment mass spectra (FABMS) were obtained on a Varian
311A spectrometer equipped with an Ion Tech Ltd source
with xenon as the bombarding gas.
Analogs were synthesized by standard solid-phase syn-

thetic techniques (6, 7). N`,-t-Butyloxycarbonyl (Boc)-pro-
tected amino acids were used throughout the syntheses and
were prepared in the usual manner (8, 9). For the preparation
of peptides with a COOH-terminal carboxylic acid group,
N`a-t-Boc-O-Bzl-L-threonine (Bzl = benzyl) was attached to
chloromethylated copoly(styrene-1% divinylbenzene) beads
(Lab Systems, 0.71 milliequivalent of Cl per g of resin) by
the method of Gisin (10). Carboxamide peptides were pre-
pared with a p-methylbenzhydrylamine resin (threonine sub-
stitution, 0.35 mmol/g of resin) as described (7). Preformed
symmetrical anhydrides were used in the coupling reactions
(11), which were monitored by ninhydrin (12) and/or chlor-
anil (13) tests and repeated as necessary. Peptides were de-

Abbreviations: [CyS2, Cys7]-octapeptide, [D-Phe5, Cys6, D-Trp8,
Cys"l]somatostatin-(5-12); Pen, penicillamine; FABMS, fast-atom-
bombardment mass spectrometry; DADLE, [D-Ala2, D-Leu5]enke-
phalin.
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protected and removed from the resin with anhydrous liquid
HF (10 ml/g of resin) containing 10% anisole. After cycliza-
tion with 0.01 M K3Fe(CN)6 at pH 8.4, the analogs were pu-
rified by gel filtration with 5% acetic acid on Sephadex G-15,
SP-Sephadex cation-exchange chromatography, and parti-
tion chromatography (butanol/benzene/pyridine/0.1% ace-
tic acid, 6:2:1:9, vol/vol) on Sephadex G-25 (block polymeri-
zate). Purity was assessed by thin-layer chromatography in a
minimum of five solvent systems, by paper electrophoresis
at two different pH values, and by reversed-phase HPLC
(Table 1). Integration of the HPLC chromatograms (X = 214
nm) indicated purities were in excess of 95%. Amino acid
analysis after acid hydrolysis gave the expected molar ratios
(±7.0%o) of the constituent amino acids. The 1H and 13C
NMR spectra were obtained for each analog and were found
to be consistent with the sequence and structure of the pep-
tides. The [M + H]+ molecular ions and fragmentation pat-
terns obtained by FABMS were in agreement with the amino
acid squence and composition of each analog.

Radioreceptor Assays. Adult Sprague-Dawley rats (150-
200 g) were killed by decapitation. The brain was rapidly re-
moved and homogenized (10% wt/vol) in 0.32 M sucrose in a
glass homogenizer with a motor-driven Teflon pestle. The
homogenate was centrifuged at 1000 x g for 10 min to re-
move the nuclear debris. The supernatant was then centri-
fuged at 43,000 x g for 10 min, and the resulting pellet was
resuspended in 50 mM Tris (pH 7.4 at 25°C) containing 5 mM
MgCl2, bovine serum albumin at 2 mg/ml, and bacitracin at
20 ,g/ml by using a Polytron homogenizer (15 sec, setting
no. 5). The centrifugation and resuspension step was repeat-
ed once.
For all inhibition studies, rat brain plasma membranes (100

,ul) were incubated at 25°C for 60 min in a total volume of 1.0
ml of 50 mM Tris buffer (as above) containing -220,000 dpm
of 1251I-labeled CGP 23,996 (14), 1 nM [3H]naloxone (42.3
Ci/mmol, New England Nuclear; 1 Ci = 37 GBq), or 1 nM
[3H]DADLE (tritiated at the 3' and 5' positions of the tyro-
sine-1 residue; 43.5 Ci/mmol, New England Nuclear) and at
least nine concentrations of our synthetic analogs. All incu-
bations were done in duplicate, and each compound was
tested at least five times. The concentration of test com-
pounds was determined by quantitative amino acid analysis
or from published molar extinction coefficients. Specific
binding to somatostatin and to ,- and 8-opiate receptors was

defined as the difference in the amounts of radioligands
bound in the absence and presence of 1 ,uM somatostatin, 1
,uM naltrexone, or 1 ,uM [Met5]enkephalin, respectively.
The data were analyzed using nonlinear least-squares regres-
sion analyses for the Apple II Plus computer. Computer pro-
grams were generously provided by Susan H. Yamamura.

RESULTS
The results of the opiate binding experiments are summa-
rized in Table 2. All of the synthetic analogs inhibited the
binding of both [3H]naloxone and [3H]DADLE to rat brain
receptors, although there were significant differences when
inhibitions of the two labeled ligands were compared. In
agreement with a previous report (2), somatostatin had only
weak activity in the rat brain radioreceptor assay, with IC50
values of 27 ,uM and 16 ,uM against [3H]naloxone and
[3H]DADLE, respectively. The acyclic tetrapeptide Ac-Phe-
D-Trp-Lys-Thr, similar to the presumed pharmacophore re-
sponsible for somatostatin's actions in inhibiting the release
of growth hormone, glucagon, and insulin (15), also appears
to be the active sequence for opiate activity. Indeed, the tet-
rapeptide was only slightly less potent than somatostatin at
the ,u-opiate receptor and somewhat more potent at 8-opiate
receptors.
The conformationally restricted octapeptide analogs were

generally more potent than somatostatin in both opiate bind-
ing assays. However, the substitution of penicillamine for
cysteine at position 2 resulted in an analog with decreased
receptor affinity relative to the same substitution at the pen-

ultimate 7 position. The receptor selectivity of D-Phe-Pen-
Phe-D-Trp-Lys-Thr-Cys-Thr was also different from that of
the other octapeptide compounds. Similar to somatostatin
and the acyclic tetrapeptide analog, the [Pe'n, Cys7]-peptide
was slightly 8-opiate receptor-selective. All other analogs
had modest to high degrees of ,u-opiate receptor selectivity
based on receptor binding experiments.

Increased conformational restriction imposed by the gem-
dimethyl groups of penicillamine in the COOH-terminal re-
gion of the molecules resulted in analogs with increased re-
ceptor binding affinity and selectivity, as compared to the
less-restricted [Cyss,Cys]-octapeptide. A further increase
in receptor affinity was obtained with the substitution of ty-

Table 1. Purity of synthetic peptides

Paper
electrophoresist,

TLC* cm from origin HPLC [k']t
Peptide I II III IV V pH 2.2 pH 5.6 VI VII VIII IX log P§

D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr 0.16 0.73 0.61 0.83 0.47 11.2 6.8 6.1 5.1 9.2 4.0 -0.77
D-Phe-Cys-Phe-D-Trp-Lys-Thr-Pen-Thr 0.23 0.73 0.64 0.85 0.58 11.2 6.8 6.9 6.0 11.5 5.4 -0.71
D-Phe-Pen-Phe-D-Trp-Lys-Thr-Cys-Thr 0.25 0.74 0.64 0.85 0.58 11.2 6.8 8.3 7.4 12.6 6.1 -0.22
D-Phe-Pen-Tyr-D-Trp-Lys-Thr-Cys-Thr 0.21 0.70 0.62 0.81 0.53 11.2 6.8 4.1 4.6 5.1 2.7 -0.69
D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr 0.23 0.68 0.63 0.82 0.53 11.3 6.8 3.0 3.8 4.9 2.2 -0.70
D-Phe-Cys-Phe-D-Trp-Lys-Thr-Pen-Thr-NH2 0.23 0.65 0.65 0.87 0.60 11.3 8.7 6.4 5.8 10.5 5.2 0.36
D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 0.24 0.70 0.64 0.85 0.52 11.2 8.8 2.9 4.0 4.9 2.1 -0.20
*Baker 250-,um analytical silica gel glass plates were used. Solvent systems are: I, butanol/acetic acid/water, 4:1:5 (vol/vol) (upper phase); II,
butanol, acetic acid/water/pyridine, 15:3:10:12 (vol/vol); III, butanol/acetic acid/water/pyridine, 6:1.2:4.8:6 (vol/vol); IV, isopropyl
alcohol/ammonia/water, 3:1:1 (vol/vol); and V, butanol/pyridine/0.1% acetic acid, 5:3:11 (upper phase).
tElectrophoresis was at 450 V for 90 min at 40C; peptides moved toward the cathode (reported as cm from the origin).
tCapacity factor for the following systems: VI, Vydac 218TP15-16 C18 reversed-phase (RP) column (25 cm x 4.6 mm) with 0.1% trifluoroacetic
acid/CH3CN, 78:22 (vol/vol), at a flow rate of 2.5 ml/min; VII, Vydac 218TP5 C4 RP column (25 cm x 4.6 mm) with 0.1% trifluoroacetic
acid/CH3CN, 77:23 (vol/vol), at a flow rate of 1.0 ml/min; VIII, Vydac 218TP15-16 C18 RP column with 0.1% hexafluorobutyric acid/CH3CN,
74:26 (vol/vol), at a flow rate of 2.5 ml/min; IX, Zorbax ODS C18 RP column (25 cm x 4.6 mm) with 0.25 M TEAP buffer, pH 2.2/CH3CN,
79:21 (vol/vol), at a flow rate of 1.0 ml/min. (TEAP buffer is triethylamine phosphate.) All peptides were monitored at X = 214 nm.
§Partition coefficient for octanol/water, with the aqueous layer composed of 0.05 M Tris (pH 7.4), 0.005 M MgCI2, and 0.15 M KCI.
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Table 2. Potency of somatostatin and its analogs on [3Hlnaloxone and [3H]DADLE receptor binding to rat brain membranes

[3H]Naloxone [3H]DADLE ICD0 ratio

Peptide IC", nM Hill no. IC50, nM Hill no. naloxone

Somatostatin 27,400 ± 4,200 1.02 16,400 ± 8,500 1.09 0.60

D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 3.5 ± 0.20 1.02 950 ± 210 0.33 271
D-Phe-Cys-Phe-D-Trp-Lys-Thr-Pen-Thr-NH2 9.9 ± 1.6 1.04 1,100 ± 120 0.33 111

D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr 290 ± 58 1.08 3,800 ± 610 0.72 13

D-Phe-Cys-Phe-D-Trp-Lys-Thr-Pen-Thr 930 ± 72 1.13 5,400 0.83 5.8

D-Phe-Pen-Tyr-D-Trp-Lys-Thr-Cys-Thr 470 + 10 1.03 2,600 ± 410 0.58 5.5

D-Phe-Pen-Phe-D-Trp-Lys-Thr-Cys-Thr 61,000 ± 17,500 1.31 38,100 ± 3,000 1.02 0.62

D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr 2,600 ± 260 0.81 3,100 ± 720 0.83 1.21
Ac-Phe-D-Trp-Lys-Thr 51,500 ± 4,100 1.00 5,800 ± 1,000 0.80 0.11
Morphine-HCl 23 ± 2.4 1.20 27 ± 0.9 0.90 1.17

rosine for phenylalanine at position 3, which also resulted in
an increase in pu-opiate receptor selectivity. Indeed, even the
somewhat 8-selective [Peni, Cys7]-octapeptide analog be-
came ,u-selective with the introduction of tyrosine at position
3.
The largest increase in receptor affinity resulted from the

modification of the COOH-terminal carboxylic acid group.
Both carboxamide analogs displayed high j,-opiate receptor
affinity (Table 2). The tyrosine-containing analog was again
slightly more potent with an -3-fold increase in ,-opiate re-
ceptor affinity, compared to the phenylalanyl analog. The
tyrosine modification resulted in only a marginal increase in
S-opiate receptor affinity.
The binding studies also showed substantial differences in

the way the two most potent analogs, D-Phe-Cys-Tyr-D-Trp-
Lys-Thr-Pei-Thr-NH2 and D-Phe-Cys-Phe-D-Trp-Lys-Thr-
Tin-Thr-NH2, interacted with the radiolabeled ligands. In
competition binding experiments against [3H]naloxone, the
Hill numbers were near unity, suggesting that these analogs
were interacting with the receptor in a manner similar to that
of the labeled antagonist. However, the Hill numbers ob-
tained from binding experiments with [3H]DADLE were
substantially less than 1, indicating that the somatostatin oc-
tapeptide analogs were interacting with either multiple re-

ceptor sites or conformational states. For four analogs, the
binding data from the studies using [3H]DADLE were best
fitted by computer analysis to a two-site model (Table 3),
indicating high- and low-affinity sites with an approximately
equal number of receptors in each group.
The ability of somatostatin and our conformationally re-

stricted analogs to inhibit the binding of the biologically sta-
ble 125I-labeled somatostatin analog CGP 23,996 to rat brain
membranes was also examined (Table 4). Both somatostatin
and unlabeled CGP 23,996 displayed high affinity for soma-
tostatin receptors in the rat brain with IC50 values of 3.3 nM
and 8.3 nM, respectively. The cyclic octapeptide compounds
were substantially less potent, however. The most active an-

alog, D-Phe-Cys-Phe-D-Trp-Lys-Thr-Pen-Thr, was less ac-

tive by a factor of 50 than somatostatin in inhibiting the bind-
ing of 125I-labeled CGP 23,996. The conformationally re-

stricted analogs with the greatest ,u-opiate receptor affinity
displayed only weak activity at the somatostatin receptor.
Indeed, the least potent compound at the opiate receptor,

the [Pen2, Cy's7]-octapeptide analog, was the second most
active analog in inhibiting the binding of the labeled somato-
statin derivative.

DISCUSSION

The somatostatin analog D-Phe-Cys-Tyr-D-Trp-Lys-Thr-
Nen-Thr-NH2 binds to A-opiate receptors in the rat brain
with about 7800 times greater affinity than does the native
hormone. The high ,i-opiate receptor affinity of this analog,
IC50 value 3.5 nM, is an order of magnitude greater than for
any other somatostatin analog reported to date. Further-
more, this new analog and several others (Table 2) displayed
high receptor selectivity. The IC50 (DADLE)/IC50 (nalox-
one) ratio of 271 is the largest ratio reported for any cyclic
peptide; of the linear peptides, only morphiceptin displays
greater A-opiate receptor selectivity (16). In contrast to the
linear peptide morphiceptin, however, the more conforma-
tionally restricted nature of the cyclic, penicillamine-con-
taining somatostatin analogs should render them less subject
to dynamic averaging. Careful conformational analysis,
then, should provide important insights into the structural
and conformational requirements for binding to the ,-opiate
receptor.

In receptor binding studies using 10 nM [3H]naloxone, a

parallel shift in the binding curve of the analog D-Phe-Cys-
Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 was obtained (data not
shown). This suggests that, under the conditions of the as-
say, the cyclic octapeptide was acting at the ,u-opiate recep-
tor in a competitive manner and not allosterically (17). Com-
petition binding experiments with the labeled antagonist nal-

Table 3. Inhibition of [3H]DADLE binding to rat brain homogenates by somatostatin analogs
fitted to a two-receptor-site model

[3H]DADLE
PeptideICp0(1)- T Po(2)%Bmr(1)-1 B2,,4,(2)

D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 19 24,000 43 56
D-Phe-Cys-Phe-D-Trp-Lys-Thr-Pen-Thr-NH2 7 22,000 43 60

D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr 260 8,100 29 72

D-Phe-Pen-Tyr-D-Trp-Lys-Thr-Cys-Thr 640 51,000 51 46

Bmax, concentration at which binding is maximal.
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Table 4. Inhibition of 125I-labeled CGP 23,996 binding to rat
brain homogenates by somatostatin and its analogs

Peptide IC50, nM*

Somatostatin 3.3 ± 0.30
CGP 23,996 8.3 ± 2.0
D-Phe-Cys-Phe-D-Trp-Lys-Thr-Pen-Thr 170 ± 99
D-Phe-Pen-Phe-D-Trp-Lys-Thr-Cys-Thr 400 ± 200
D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 690 ± 220
D-Phe-Pen-Phe-D-Trp-Lys-Thr-Pen-Thr 800 ± 300

D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr 980 ± 680
D-Phe-Cys-Phe-D-Trp-Lys-Thr-Pen-Thr-NH2 1500 ± 470
D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr 1600 ± 460

D-Phe-Pen-Tyr-D-Trp-Lys-Thr-Cys-Thr 4000 ± 780
Ac-Phe-D-Trp-Lys-Thr 7100 ± 870

*Inhibition of 1251I-labeled CGP 23,996.

oxone yielded Hill numbers near unity, indicating a similar
binding mode to the p,-opiate receptor. This suggests that the
somatostatin analogs may be acting as antagonists at the ,u-
opiate receptor, in agreement with previous reports of other
somatostatin analogs (2-4).
While the structural and conformational features impor-

tant for the opioid activity of the somatostatin analogs are
not yet clear, the increase in receptor affinity that results
from the substitution of tyrosine for phenylalanine at posi-
tion 3 may be related to the well-known requirement for a
phenolic hydroxyl moiety in the opiate and enkephalin sys-
tems. That the increase in potency is only 3-fold suggests,
however, that a different mechanism may be involved. The
nature of the COOH terminus is obviously important. The
increase in ,u-opiate receptor affinity that results from the
transformation of the COOH-terminal threonine carboxylic
acid group to a carboxamide is similar to that observed with
the COOH-terminal alcohol analog D-Phe-Cys-Phe-D-Trp-
Lys-Thr-Cys-Thr(ol) (4). The increased potency of these
peptides is probably not related to a general increase in lipo-
philicity, however. The octanol-water partition coefficients
of the somatostatin peptides (Table 1) do not correlate well
with receptor affinity; thus, other features, such as confor-
mational changes, may be important.
The competition binding studies utilizing 125I-labeled CGP

23,996 indicated that the selectivity of the cyclic octapeptide
analogs extends to their interaction with the somatostatin re-
ceptor system. The most potent ,u-opiate receptor analog, D-
Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2, was 1/200th as
active as somatostatin in inhibiting the binding of the labeled
CGP 23,996 analog. These studies show that there are sub-
stantial differences in the opiate and somatostatin receptor
systems and in the structural and conformational features
that are required for strong receptor interactions.
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