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Abstract
Integration of data across spatial, temporal, and functional scales is a primary focus of biomedical
engineering efforts. The advent of powerful computing platforms, coupled with quantitative data
from high-throughput experimental platforms, has allowed multiscale modeling to expand as a
means to more comprehensively investigate biological phenomena in experimentally relevant
ways. This review aims to highlight recently published multiscale models of biological systems
while using their successes to propose the best practices for future model development. We
demonstrate that coupling continuous and discrete systems best captures biological information
across spatial scales by selecting modeling techniques that are suited to the task. Further, we
suggest how to best leverage these multiscale models to gain insight into biological systems using
quantitative, biomedical engineering methods to analyze data in non-intuitive ways. These topics
are discussed with a focus on the future of the field, the current challenges encountered, and
opportunities yet to be realized.
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INTRODUCTION
Biological systems are inherently complex in nature; they are comprised of multiple
functional networks that operate across diverse temporal and spatial domains to sustain an
organism’s growth, development, and reproductive potential. These so-called “multiscale”
systems extend from the most basic of amino acid substitutions that alter protein function to
concerted multicellular signaling cascades regulating hormone release throughout an entire
lifetime. Computational models are uniquely positioned to capture the connectivity between
these divergent scales of biological function as they can bridge the gap in understanding
between isolated in vitro experiments and whole-organism in vivo models.

While seemingly transparent, a careful definition of multiscale should be explored as it can
very quickly spiral into the realm of catch-all scientific jargon. Fundamentally, a multiscale
model must explicitly account for more than one level of resolution across measurable
domains of time, space, and/or function. To clarify, many models of physical systems
implicitly account for multiple spatial scales by simplifying their boundary conditions into
“black boxes” where assumptions about other spatial or temporal domains are summarized
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by governing equations. Further, explicitly modeled tiers of resolution must also provide
additional information that could not be obtained by independently exploring a single scale
in isolation.

The classic engineering exercise of heat transfer through an insulated rod is an excellent
case study in implicit multiscale modeling. Whether solved using continuous PDEs or a
discrete finite element approach, all solutions to this problem rely on carefully defining
spatial boundary conditions, the fundamental laws of thermodynamics of a closed system,
and material properties such as a thermal conductivity coefficient. Using these tools,
engineering students unwittingly wrangle molecular motion at the femtometer scale to
reliably predict the distribution of temperatures across an idealized one-dimensional
landscape measured in meters. However, were we to explicitly account for the motion of
each molecule of metal in the rod would we gain any additional information about the
system (assuming that this were not a computational intractable challenge)? In this case, the
governing equations of thermodynamics sufficiently capture the probabilistic distributions of
molecules without requiring explicit representation in the model.

Ultimately, this model system is explicitly analyzed at the scale of the rod while implicitly
accessing information about molecular thermal motion using established equations of
thermodynamics. However, as a “Law of Biological Systems” has yet to be codified into
governing equations, the biomedical scientist lacks the means to accurately make
assumptions across multiple tiers of measurable resolution. This challenge is further
compounded by the complex nature of the system that is being investigated; that is to say,
components of biological systems act differently in isolation than they do when integrated
into the larger machinery of a living organism.

To further illustrate the need for explicit multiscale models in biology, let us consider the
multiple levels of spatial, temporal, and functional scale that are known to operate in the
pathophysiology of diabetic retinopathy (Figure 1). At its most advanced stage, proliferative
diabetic retinopathy can result in blindness due to retinal detachment at the macroscopic
level. This event, however, is preceded by years of tissue damage caused by microvascular
hemorrhage and fibrovascular remodeling of the retinal basement membrane. These defects
in the vessel wall are the result of pericyte (abluminal vascular support cell) apoptosis,
leading to aberrant vessel growth and increased vessel permeability throughout the retina.
Finally, pericyte apoptosis occurs due to reduction of PDGF receptor survival signaling
mediated by activation of PKC-delta and downstream phosphatases in the setting of chronic
hyperglycemia (1, 2).

At what tier of resolution is the most information available for understanding the underlying
mechanisms of this complex disease? Conversely, is there a tier of resolution that offers the
least understanding of the disease? The debatable answers to these questions have driven
model building for decades as investigators attempt to develop the highest information yield
from their intellectual investments in computational modeling approaches. More recently
however, investigators are turning to multiscale modeling techniques to generate detailed
information about complex biological systems. In these multiscale models, perturbations to
fine-grained parameters (e.g. protein modifications) can generate observable and measurable
changes to coarse-grained outputs (e.g. tissue patterning), and vice versa. This integration
across functional, spatial, and temporal scales in biological systems introduces a powerful
tool for capturing and analyzing biological information that is inaccessible to other modeling
and experimental techniques.

Herein we describe a meta-analysis of multiscale modeling, focusing foremost on recent
publications from the biomedical engineering community. First, we will describe the tiers of
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biological resolution that have been modeled and the computational techniques leveraged to
obtain insightful conclusions. Focus will shift to a discussion of best practices in model
verification and validation as we discuss challenges unique to multiscale modeling. Once we
have covered the questions and tools used to answer them, we will expand on how
multiscale models capture biologically relevant data that may be inaccessible using
conventional wet laboratory techniques. Finally, we will look to the future of the field and
pose a set of specific landmarks that, if accomplished, may provide even greater insight into
the form and function of complex biological systems.

CURRENT MULTISCALE MODELING EFFORTS
Scales of Biology: What Are We Modeling?

Multiscale models are pervasive in the biological sciences, covering many tiers of resolution
and many disciplines. Using a selection of literature from the last decade we have
highlighted and clustered broad biomedical disciplines based on the levels of spatial
resolution they are investigating with multiscale models (Figure 2). A clear trend is shown in
which metabolomics and genomics research are clustered separately as they are uniquely
focused on sub-cellular resolutions (3-7). Further, studies of tissue mechanics and
disciplines interested in cellular trafficking (i.e. cancer and immunology) display the most
work at the organ and multisystem scales (8-18).

As might be expected, much effort is focused on the interrogation of biology at many
resolutions, from signaling networks (i.e. subcellular simulations where proteins are not
explicitly modeled) through to cell networks (i.e. tissue-level simulations comprising more
than a single cell). In particular, the fields of cell biology, developmental biology, vascular
biology, and cardiovascular research all share a very similar pattern of work at these tiers
(19-42). A common theme among these fields is a desire to understand how subcellular
networks may influence tissue-level patterning through the actions of individual cells.

Of course, it should be emphasized that these are trends from a subset of papers that have
been broadly classified based on the field of biological research and the explicitly modeled
tiers of resolution. This meta-analysis is also purely an evaluation of the quantity of
publications in a given field and not the quality of the models being developed. Clearly,
other disciplines are also using multiscale modeling to their advantage; even the disciplines
shown contain researchers whose work does not neatly conform to the selected scales. This
meta-analysis does, however, demonstrate a clear trend in the literature, which may allow us
to glean some insight into current gaps in computational coverage within our disciplines of
interest.

Most importantly, this analysis demonstrates that a major goal of the field is yet to be
realized: no single comprehensive “gene-to-organism” multiscale model has been
developed. Based on our observations there are many open avenues of research within each
of the listed disciplines where multiscale efforts are either sparsely represented or
completely nonexistent. This deficit is not a shortcoming, but rather an opportunity to push
the boundaries of knowledge in these biomedical investigations using multiscale modeling
as a platform for high-throughput, high-yield hypothesis generation and testing.

Models Within Models: That Which Comprises A Multiscale System
All modeling methodologies have strengths and weaknesses with regards to their ease and
fidelity of capturing biological system dynamics. Typically, these techniques are broadly
classified into continuous and discrete modeling strategies based on how the solution space
is acquired. Additional classification into deterministic and stochastic models is an
alternative method that divides systems based on whether they contain a degree of
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“randomness” that allows for multiple solutions to the same initial conditions. Importantly,
while not an exhaustive list, the modeling techniques presented here are all taken from
published multiscale models; these examples are already validated against experimental data
and, therefore, serve as a foundation for future computational efforts.

Continuous modeling strategies include using systems of ordinary differential equations
(ODEs) and partial differential equations (PDEs) to solve for steady state solutions.
Solutions to these continuous systems are deterministic as they obey the Picard-Lindelöf
Existence and Uniqueness Theorem (43). Because numerical tools for solving PDEs such as
Finite Element and Finite Volume methods rely on reduction to a system of ODEs, the
assumption of uniqueness still holds despite their ability to contain stochastic elements.

Generally, systems of ODEs using the law of Mass Action Kinetics are leveraged to
represent chemical reactions within the cytosol and nucleus of the cell (13, 15, 18, 19,
44-46). As the kinetics of molecular binding, conformational switching, and diffusion are
often occurring over very small time scales the assumption of steady state in the overall
model architecture (which may be discretized into hours, days, weeks, etc.) is typically
valid. Sun et al. (47) employed a system of ODEs executed with the COmplex PAthways
SImulator (COMPASI) to explicitly model TGF-β1 function in a multiscale model of
epidermal wound healing. Using this technique they expanded on a previous single-scale
model and were able to decouple the promigratory and anti-proliferative effects of TGF-β1
on various cell types in an in silico skin wound closure model over time. Analogous
reasoning and techniques are also used for analysis of metabolic and signaling networks in
which a steady state flux is desired for informing higher tiers of function (3, 5, 6, 45, 48).

Models of reaction diffusion kinetics are also typically modeled in continuous time and are
often used to represent intra- and extracellular molecular binding and diffusion (29, 38, 39,
41, 49). These models differ from previous diffusion/pathway models as they typically rely
on systems of PDEs that are then solved using numerical approaches. Broadly speaking,
finite element methods (and related finite volume methods) are also uniquely suited for
monitoring geometrically-constrained properties such as cell surface interfaces and
mechanical properties of tissues across all scales (17, 38, 50-54). Aguado-Sierra et al. (35)
generated a patient-specific three-dimensional model of heart failure in which a finite
element mesh was fitted to echocardiographs and mechanical parameters were directly
estimated from a combination of MR and cardiac ultrasound. This work highlights the
clinical value of computational models by using patient data to generate electrical
conduction and mechanical contractility maps with the potential to inform interventional
decisions as processing cost and time decrease. Note that these approaches are a hybrid of
continuous and discrete strategies as finite element methods rely on discretization of
continuous equations to generate numerical solutions for otherwise irreducible PDEs.

Discrete stochastic modeling techniques are a heterogeneous group of computational
foundations that rely on non-deterministic solutions to generate constrained distributions of
outputs. These techniques include methods such as Markov Chains, whose probabilistic
transition matrices are suited to biological systems whose functions can be discretized into
independent states. Along with the related class of discrete state-based Boolean Networks,
these techniques have modeled receptor activation states (e.g. cardiomyocyte ion channels),
compartmentalized signaling networks, and functional protein conformations (19, 20, 34, 37,
40, 55). Barua et al. (5) have recently developed an algorithm, GeneForce, to explore the
Boolean rules in metabolic signaling networks and correct for inconsistencies between
experimental results and model predictions. The model “forces” an optimized output by
allowing for a set degree of rule violation; these perturbations to the original rule set
revealed incorrectly silenced gene transcription which, when correct, allowed for agreement
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with experimental results. This approach generated as much as an 8% improvement in
model predictive accuracy and was applied to well curated metabolome libraries for
organisms such as E. coli.

Recently, Agent Based Modeling (ABM) has become a very popular and powerful tool for
representing discrete stochastic biological processes as either compartmentalized or
spatially-defined models. These models include geometries in one-, two-, and three-
dimensional configurations and may be scaled such that each fundamental agent is as large
(groups of organisms) or as small (sub-cellular membrane components) as is desired.
Zahedmanesh et al. (52) incorporated a lattice-free ABM with a finite element approach to
explore the effects of porosity, compliance, cyclic strain, and flow-induced shear stress on
tissue engineered blood vessels. This investigation was able to explore how these complex
and non-intuitive parameters combined to affect development of intimal hyperplasia over
time with potential to make predictions across time scales that cannot be investigated using
in vitro techniques. Owing to their diversity of scale, AMBs have been used to describe
multicellular processes including tissue electrical conduction, cell trafficking, tissue
mechanics, immunomodulation, arterial remodeling, inflammation and many others (10, 14,
18, 21, 37, 38, 44, 56, 57).

Selecting a Computational Method Based on Function and Spatial Resolution
The computational techniques presented in the previous section were selected as examples
currently being employed in multiscale models. We classified the techniques into
continuous-deterministic and discrete-stochastic (with some exceptions and hybrids), while
highlighting specific spatial and temporal domains that these models are suited to represent.
This classification forms the basis for a discussion of how multiscale models can be
designed by selecting the best computational techniques for the task rather than forcing a
modeling technique to approximate a system for which it is poorly suited. To this end, we
propose some guidelines for how these individual techniques can be combined across scales
(Figure 3).

As a class of modeling techniques, network analyses include discrete state-based techniques
(e.g. Markov chains, Boolean networks) as well as continuous systems biology approaches
(e.g. Flux Balance Analysis). These methods are well suited to modeling the smallest tiers of
resolution: genomic, proteomic, and metabolomic. Recently demonstrated by Milne and
colleagues (6), construction of a composite Gene-Protein-Reaction (GPR) model to simulate
regulation of butanol production as a function of growth conditions (e.g. growth medium,
atmosphere) supported the hypothesis that Clostridium beijerinckii was an ideal candidate
for biofuel applications. The iCM925 model contained 925 genes coding for 938 reactions
involving 881 metabolites – approximately 18% of the protein coding genome of C.
beijerinckii. This level of detail and network annotation for a relatively understudied
organism was captured and analyzed with linear algebraic equations defined by a
homogenous ODE constrained with mass balance principals. Simply put, a vast amount of
multiscale data was integrated using a single computational technique.

In the sub-cellular regime, continuous-deterministic systems of ODEs and PDEs are also
ideal for monitoring concentrations of signaling molecules in both the intra- and
extracellular domains. These systems are often less comprehensive than the previously
described network analyses due to the paucity of relevant kinetic parameters; however, they
excel at explicitly accounting for binding kinetics and monitoring rates of reactions as a
function of time. Sample et al. (29) demonstrate the use of these continuum approaches to
solve for gradients of morphogens within the developing Drosophila embryo. In their
model, solving for department-dependent degradation rates was integral to understanding
nuclear-cytoplasmic shuttling of morphogens, which are responsible for long-range
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patterning. Although only focusing on a single protein, this technique expands the resolution
from purely intracellular reactions to subcellular components with intercellular interactions.

At this point, many of the internal cellular components (i.e. genome, proteome, and
signaling networks) have been explicitly accounted for; the next tier of resolution, the whole
cell, now requires additional consideration as the functions of interest are again interwoven
with the scale of investigation. Here, the cell may be viewed as a mechanical entity with
discretized membrane segments and interconnected cytoskeletal components or it may be
viewed as itself being the smallest component of the system. This biological scale is a
natural transition point where both continuum and discrete modeling approaches have been
successful, and it falls to the investigator to make the final decision guided by the hypothesis
to be tested. Practically, if the cell is the largest entity in the system (i.e. only a single cell is
being modeled) a more fine-grained approach is necessary. The converse is also true: if the
cell is part of a larger tissue network it must be more coarsely resolved to allow for
observations to be feasible given limited computing resources.

For the sake of simplicity we will consider that the cell is itself a transition state between the
sub-cellular and super-cellular domains (this notably excludes mechanical analyses of single
cells which are often performed at the whole-cell level). Such a view favors a discrete-
stochastic approach to cell behavior as this captures a degree of biological noise and allows
for easy representation in physical space. ABMs are well suited to this task as they can be
specifically adapted to represent cells as either single- or multi-agent entities within the
system. Bentley et al. (57) chose the later approach and represented a capillary as a linear
array of ten endothelial cells, each comprised of 1288 membrane agents. This representation
was necessary as their analysis required discrete membrane localization of receptors, as well
as detailed filopodial sprouting within a three dimensional extracellular space. Bailey et al.
(24) opted on the former approach, representing each endothelial cell in the network as a
single agent to generate a larger microvascular system. Again, this selection was reasonable
based on the analysis at hand: leukocyte extravasation as a function of adhesion molecule
expression in a tissue bed.

Tiers of resolution beyond the cell network and tissue level, as demonstrated in Figure 2,
remain largely unexplored as components of multiscale models. This focus may be due to
technical limitations such that computational power is not yet available to track discretized
agents throughout an entire organism. Larger, whole-organ models do exist and typically
adopt a finite element approach where each cell is represented as part of the discretized
mesh. Moreno and colleagues (20) were very successful with this technique, using a finite
element approach to analyze the effects of antiarrhythmic pharmaceuticals on cardiac
conduction through a fully rendered three-dimensional human heart. This model stands out
particularly, as the smallest explicitly resolved element was the well-studied cardiomyocyte
sodium channel. This voltage gated channel was modeled using Markov states that were
altered in the presence of various inhibitors. Most notably, cardiotoxic concentrations of
antiarrhythmics could not be predicted at the single-cell scale; however, when cells
operating with the same parameters were linked into a network (and ultimately a complete
tissue), the model very closely matched clinically observed data.

To summarize: function and spatial resolution beget modeling technique. Based on our
current understanding and computational limitations it is necessary to view some biological
processes as continuous equations and others as discrete states. As we ascend from sub- to
super-cellular resolutions, continuous models that were once exceptionally accurate begin to
lose resolving power. Conversely, discrete models are often computationally expensive and
become most useful at lower resolution for cell networks and tissues where cells are easily
viewed as individual modules. Yet larger systems may require a return to network
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approaches to account for spatial distances and boundaries between organ systems that are
too large to be explicitly modeled at the cellular level.

VERIFICATION AND VALIDATION OF MULTISCALE MODELS
Validating Across Multiple Scales

As with all computational models, multiscale approaches must be rigorously tested against
independent data sets for proper validation prior to use as experimental constructs. Recently,
Qu and colleagues (58) have reviewed how information is translated between scales of
models and highlighted several of the challenges associated with validation across tiers of
resolution. A key observation is that inherently noisy stochastic systems and noiseless
deterministic systems can generate dramatically different outputs when used to model the
same biological phenomena (Keizer’s Paradox). Furthermore, adding noise to a previously
noiseless system by combining deterministic and stochastic models may increase the
likelihood of phase transitions, increasing the number of stable solutions. These additional
solutions may be biologically relevant; however, they may also become problematic as their
addition could be viewed as incongruence between continuous and discrete systems.

Ultimately, this challenge reduces to the simple fact that we lack the computational
resources to explicitly model every protein in a living organism simultaneously. Multiscale
models must rely on techniques such as those mentioned above (selecting appropriately
resolvable approaches based on function and spatial scale; using integrative systems
biology) to capture accurate and robust information from each tier of resolution. It stands to
reason that by linking potentially divergent modeling techniques we may introduce
inconsistencies into our multiscale systems. To reach model agreement (both inter-model
agreement and agreement with biological experiments), we must decide on a validation
strategy that is both theoretically sound and computationally practical.

Individual Verification vs. Complete Multiscale Verification
Multiscale models often originate by linking individual models from two different scales to
generate a composite system. In the cases where each tier of a model has been independently
published they must, by definition, be validated at the single-scale level before validating at
the multiscale level. Our lab has, in collaboration with others, followed this strategy to
generate high quality multiscale models from successfully implemented single-scale models
(21, 59, 60). In this particular example, the multiscale model captured continuum elements
(extracellular matrix composition, fluid dynamics, etc.) as well as discrete elements
(mechanical properties as determined by cell number and orientation) to generate a blood
vessel wall for measuring adaptation to chronic hypertension.

As explored by Hayenga and colleagues (61), prior to generating a comprehensive model,
the continuum and discrete systems shared common outputs that were independently
validated. Importantly, despite sharing independently validated outputs, the models were not
in complete agreement as they drew on data from different scales. The discrete agent based
model was generated from cell-level data acquired primarily from reduced in vitro systems
that no longer maintained systems-level responses. Conversely, the continuous constrained
mixture model was based on tissue-level data from studies of tissue parameters in which
different systems-level responses were potentially still intact. Disagreement between the
models presented a significant challenge, as neither was, strictly speaking, incorrect.

Ultimately, to reconcile these differences between scales and allow for comprehensive
model validation, agreement on shared variables was required. As such, each model was
deemed equally “unreliable” for the purposes of weighting a Genetic Algorithm approach to
parameter estimation. Agreement between the continuous and the discrete models was
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achieved for shared parameters, allowing for validation of independent terms using a shared
data set.

Fedosov et al. (62) describe a multiscale model of erythrocyte membrane mechanics in the
context of malaria infection and how changes in material properties and cell geometry
impact bulk blood viscosity. In this example, validation was performed at the cellular level
using optical-tweezer and optical magnetic twisting cytometry to measure deformability of
erythrocytes during different stages of malaria parasite development. Bulk blood viscosity
was validated against a separate data set to demonstrate that each tier of model resolution
independently achieved agreement with biologically relevant data sets. In order to perform
these validations, previously dimensionless particle models had to be scaled using
erythrocyte diameter as a reference length. This example highlights how careful selection of
units and appropriate parameter selection is necessary to achieve multiscale validation.

Multiscale models are subject to scrutiny at both individual and integrated tiers of
resolution. To appropriately parameterize a model and achieve validation, it is necessary to
ensure that each module or computational technique is itself in agreement with biological
data before advancing to a complete multiscale simulation. Further validation of the
multiscale model is required to test the reliability of data transfer between computational
scales such that crosstalk between continuous and discrete systems does not introduce
artifacts or discrepancies. As with all modeling efforts, thorough and thoughtful validation is
key to achieving acceptance in the biological community; the predictive power of a model is
dependent on the rigor of this validation.

BIOLOGICAL INSIGHT FROM MODELS
Measuring the Unmeasurable

Most modeling endeavors begin with a hypothesis that cannot be easily tested using even the
most cutting edge experimental assays. Tracking individual macrophages in real time in
vivo, measuring chemokine concentration gradients throughout an entire tissue region,
determining frequency responses to mechanical stimuli in the human ear, observing
capillary and lymphatic filling as a function of muscle contraction, quantifying the effects of
drug therapy on granuloma formation over the course of 300 days with receptor-level
resolution – these are just a few examples of recent investigations that would not otherwise
be possible without multiscale modeling approaches (24, 39, 42, 44, 51). Multiscale models
are capable of quantifying any explicitly implemented variable as an output across all tiers
of resolution.

In addition to quantifying individual variables with relative ease, multiscale models also
allow for simultaneous observation of multiple parameters across resolution domains.
Tracking multiple variables across a range of parameter values allows for construction of
valuable phase planes to describe systems-level behaviors (13, 20, 29, 57). Bifurcations in
these phase plane analyses offer insights into system stability and potential interventional
targets that may yield higher likelihoods of maintaining transitions from one equilibrium
state of a biological system to another. For example, Kim et al. (63) explored reorientation
of individual CD8+ T-killer lymphocytes in the two-dimensional parameter space defined by
microtubule length and initial centrosome orientation relative to a target cell. This analysis
reveals complex relationships between the parameters, suggesting certain combinations that
would render the T-killer unable to properly orient itself for productive cytolytic activity.
Such incompatible orientations could not by predicted by either parameter alone,
emphasizing the need for more rigorous analysis.
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Similarly, as in Holland et al. (22), acquiring large sums of data across multiple scales of
resolution allows for more informed selection of reducible components within complex
systems. Using a graphical approach in a normalized phase plane to study the kinetics of β-
adrenergic signaling, this investigation demonstrates a method to identify reactions that can
reasonably be reduced to steady-state when evaluating system dynamics. Each reaction
trajectory in the system was compared relative to steady-state values: trajectories in the
phase plane with greater deviations from steady-state had larger hysteresis loops and could
be identified as necessary for capturing dynamics of system behaviors.

These examples highlight how traditional engineering approaches to capturing system
behaviors can be applied to biological systems. However, as these approaches generally
require large sums of quantitative data to be useful, traditional wet lab experiments are not
easily translated to these analysis techniques. Computational models, in particular multiscale
models, offer an alternative source of data that can be acquired across many parameter
values in a high throughput manner. As experimental methodologies develop, these
predictions can themselves be independently validated or they may provide insight into
unexplored hypotheses that can be tested immediately.

The Virtual Bench: in silico Perturbations
Beyond simply capturing otherwise inaccessible measurements with high resolution across
large changes in scale, multiscale modeling allows for precise manipulation of network
variables to isolate true effects from experimental artifacts. Even the most precise RNA
interference strategies (including small interfering, short hairpin, and micro RNA) are
capable of producing off-target effects either directly (e.g. silencing alternative binding
sites) or indirectly (e.g. diminution of native RNA translation), resulting in confounding or
erroneous observations (64). This statement does not imply that models are error-free;
models simply are capable of isolating perturbations as defined by the user’s constraints
without concern of unknown interactions.

Thus, at first glance multiscale modeling offers the unique advantage of being able to make
perturbations across any tier of resolution. This is potentially very powerful as it allows for
not only knockdown and overexpression experiments, but also very precise changes to the
degree of expression of a single gene or set of genes. This control, quite simply, is not
possible with current microbiology techniques. While note a replacement for experimental
investigation, these approaches can serve to contextualized data and reconcile discrepancies
that may be caused by off-target effects. Further, computational methods may also refine
experimental approaches by surveying all possible perturbations to narrow the scope of
experimental interrogation.

As an example, Fallahi-Sichani and colleagues (13, 44) have described the effect of
modifying NF-κB signaling mechanisms at the level of transcript stability with implications
of temporal variables (e.g. degradation rate, activation rate) affecting the outcomes of
Mycobacterium tuberculosis infection. In this work, pharmaceutical therapies were applied
using a system of ODEs to capture intracellular signaling pathways while cellular behaviors
were executed as a discrete probabilistic agent based model at the tissue level scale. This
union of subcellular pathway manipulation and multicellular function allows for direct
investigation of pharmaceutical intervention on a relevant pathophysiological outcome that
would otherwise be unobtainable by modeling an individual tier of resolution.

Alternatively, for systems being modeled with a top-down approach, more general questions
can be answered by completely removing subsystems from multiscale models. In these cases
functional impairments are evaluated as opposed to specific physiological interventions.
Using this approach, Shirinifard and colleagues (9) demonstrated unique growth patterns in
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avascular tumors by removing the capability for angiogenic growth from their multiscale
model of solid tumors. Insights from such a broad phenotype perturbation (i.e. complete
abrogation of angiogenesis rather than impairment of a single component in the pathway
with downstream effects) allow for investigations into the minimal functions necessary for
individual system behaviors.

Further, the concept of in silico perturbations can be extended as a direct analogy to bench
work – with the exception that it can be executed at high throughput with low resource
allocation. More so than modeling at a single resolution, multiscale models can be directly
mapped to biological assays for both experimental validation and hypothesis testing. For
some of these cases, multiscale models have proven predictive for optimizing biopolymer
scaffolds based on altering material properties to investigate extracellular matrix
mechanotransduction and cell seeding (16, 52, 56). Here, small parameter changes that
could easily be completed with computational iteration would require extensive material
cost and time commitment to generate comparable data sets.

LOOKING FORWARD
Throughout this manuscript we have highlighted the currently available computational tools
for multiscale modeling and the best practices for their implementation. As shown in Figure
2, many disciplines of biological research have yet to fully leverage the power of multiscale
modeling across more than a few tiers of resolution. That being said, examples do exist that
span the spectrum from the most fundamental genetic modifications to organ-level
perturbations. Combining these tools across all of these scales simultaneously may seem at
this point an intractably difficult problem; however, some preliminary efforts are already
emerging.

The Physiome Projects are a collection of biological databases, mathematical models, and
utilities being gathered with a singular purpose: integration (65, 66). Models from every
spatial, temporal, and functional scale are being curated as individual modules such that they
can be preserved for integration into larger, multiscale simulations. The efforts of this
project are ongoing as it recognizes that, primarily due to computational limitations, a
single, whole organism model that explicitly incorporates all tiers of biological resolution
has yet to be realized. As we have noted earlier, the majority of information is concentrated
near the cellular level with decreasing availability of models and data at the genetic and
whole organism levels. This ongoing effort shows much promise as a means to begin
generating larger multiscale models from validated, optimized modules that have been
assembled with integration in mind.

Beyond implementing better and more comprehensive multiscale models, the future of the
field also holds potential to advance other recently accelerating fields of biomedical
engineering. In particular, efforts in synthetic biology are using multiscale data and analysis
to inform design optimization and control systems theory of novel biological systems. In a
recent publication, Nawroth and colleagues (67) describe the design, development, and
implementation of a synthetic jellyfish capable of self-propulsion dubbed the “Medusoid.”
They describe the reverse engineering process as occurring over several orders of space and
time in order to capture the necessary information to generate synthetic muscle fibers
capable of productive, concerted contraction. Callura et al. (68) are similarly beginning to
use multiscale approaches as they scale up from a single gene to a composite “genetic
switchboard.” Capable of regulating four metabolic genes in E. coli, this synthetic regulatory
system reliably shunted flux through different carbon-utilizing pathways as measured by
mRNA levels and direct quantification of metabolites. This effort demonstrates in a strictly
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in vitro sense how multiscale theory can be applied to better understand and engineer
biological systems.

Multiscale modeling, above all, strives to better understand the fundamental processes that
sustain biological life. Unquestionably, effects at the genetic level are responsible for both
subtle and dramatic phenotypic expression of an entire organism. We are only just starting to
begin to construct computational models that can explicitly demonstrate this same degree of
emergent pattern phenomena through appropriate inter-scale connectivity. It is our hope that
the techniques and practices presented here are able to guide future efforts in this field
towards high quality multiscale model implementation.
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SUMMARY POINTS

1. Multiscale models are explicitly executed simulations of complex biological
systems that have been integrated across temporal, spatial, and functional
domains. Through simultaneous evaluation of multiple tiers of resolution,
multiscale models provide access to systems behaviors that are not observable
using single-scale techniques.

2. A combination of multiple computational techniques, including both continuous
and discrete systems, is optimal for efficiently capturing information across
biological scales. Each spatial scale can be summarized by the biological
functions occupying that tier of resolution, allowing for modeling techniques to
be implemented based on how well they represent these functions.

3. Multiscale models more closely recapitulate traditional bench top
experimentation while allowing for high throughput hypothesis generation and
testing, quantitation of values that cannot be measured, and translation to in vivo
systems. Perturbations to high-resolution parameters (e.g. protein binding
constants) can generate low-resolution outputs that are biologically relevant
(e.g. tissue developmental patterning), allowing for simultaneous access to
quantifiable values across all scales of biology.
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FUTURE ISSUES

1. Fundamental to the model building process, sensitivity analyses are performed
to explore the parameter space for potentially interesting and useful “tuning”
variables on which system outputs are strongly dependent. Multiscale models
must be thoroughly investigated to determine whether sensitivities are truly a
function of the system behavior or an artifact of coarse-graining lower
resolution outputs. This area will require further investigation through the
continued development of multiscale and complex systems models.

2. Appropriate parameter selection remains a concern in the computational
modeling community, as many of the parameter values required to develop
multiscale models are either difficult or impossible to measure. Values obtained
from in vitro data may not be suitable for multiscale models operating at a tissue
network or larger spatial scale. As such, exploration of parameter estimation
techniques may be required to better parameterize multiscale models.
Alternatively, emerging in vivo molecular imaging techniques may grant access
to previously unobtainable parameter values.
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Figure 1. Diabetic Retinopathy as a Case Study in Multiscale Pathophysiology
A detailed look at how the pathogenesis of diabetic retinopathy is a function of multiple
spatial scales across biology.
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Figure 2. Clustergram of multiscale models as a function of biological discipline and spatial
resolution
Each publication was scored as containing (1) or not containing (0) a biological scale within
the described multiscale model. For each discipline, the Boolean values were summed and
then normalized to the total number of publications within that category, such that the
weighted heatmap is scaled from 0 to 1. For example: of the 7 publications in Vascular
Biology, 5 involved Whole Cell components, resulting in a weighted score of 5/7 = 0.71. A
total of 39 publications were included in this analysis.
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Figure 3. Map of Modeling Techniques by Scale
Conceptual map of modeling techniques divided into continuous and discrete categories
across spatial scales for which they are most suited.
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