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Abstract
Computational approaches to modeling protein structures have made significant advances over the
past decade. However, the current limitation in modeling protein structures is to produce protein
structures consistently below the limit of 6Å compared to their native structure. Therefore
improvement of protein structures consistently below the 6Å limit using simulation of biophysical
forces is of significant interest. Current protein force fields such as those implemented in
CHARMM, AMBER, and NAMD have been deemed complete, yet their use in ab initio
approaches to protein structure determination has been unsuccessful. Here we introduce a new
approach in evaluation of protein structures based on analysis of energy profiles produced by the
SCOPE software package. The latest version of SCOPE produces a hydrogen bond profile that is
substantially more informative than a single hydrogen bond energy value. We demonstrate how
analysis of SCOPE’s energy profile by an Artificial Neural Network (ANN) shows a significant
improvement compared to the traditional force-based approaches to evaluation of structures. The
ANN based analysis of SCOPE’s energy profile showed identification of structures to within
1.5-3.0Å of the native structure. These results have been obtained by testing structures in the same
Homology, Topology, Architecture, or Class of the CATH family.
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1. Introduction
Currently, there are speculated to be over 10,000 distinct fold families for proteins [1].
However, the Protein Data Bank (PDB) [2] contains approximately 1,500 fold families as
reported by CATH [3] or SCOP [4]. This suggests that homology modeling, the
conventional strategy for protein structure prediction, may have a limited rate of success. In
contrast, methods based purely on known physical forces and computational modeling have
far less limitations, since proteins are not suspended in a specific state or in a specific
medium. This promotes better modeling and comprehension of internal dynamics for
proteins especially for those which exist in different conformations, as exemplified by the
hTS protein [5], and provides a more accurate structure in turn. Similarly, physics-based
folding of proteins will prove useful with regard to protein/protein and protein/ligand
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interactions, further contributing to our understanding of diseases at the molecular level and
potentially leading to effective treatments or therapies. Therefore, the concept of an energy
landscape becomes fundamentally important in understanding the mechanism by which
proteins fold [6,7] into their native conformation.

Previously we introduced the program SCOPE [8], as an alternative tool for structure
evaluation based on energetics alone. In contrast to the current protein force fields of other
similar programs, SCOPE contains a number of novel approaches. For example, its
representation of proteins in rotamer space [9] provides a more manageable energy
landscape; while a reduction in the energy terms used, translates to a simplification of the
force field. Moreover, explicit inclusion of a hydrogen bond energy term has traditionally
been excluded from molecular force fields, based on the argument that it can be represented
as a combination of the Van der Waals and electrostatic terms. However, results obtained
from recent works [10,11] have argued the importance of including a formal hydrogen bond
energy term and provided the motivation for its calculation in our most recent version of
SCOPE [12].

Here we utilize SCOPE [12] to further establish the possibility of improving protein
structure evaluations purely from energetics by use of Artificial Neural Networks (ANN).
The summary of our work reveals the importance of directly including a hydrogen bond
energy term, as well as the potential impact of utilizing the extended energy profile that is
produced by SCOPE. Our general strategy consists of training an ANN on existing proteins
and testing it on unknown proteins. Using the CATH classification of proteins, provides a
mechanism to investigate the structural similarity needed between the known and unknown
protein structures for successful deployment of the presented method. Our examination
begins with the lowest and most similar level (Homologous superfamily) between structures
and ascends to the level with the least amount of structural similarity (Class).

2. Materials and Methods
2.1. Existing Models and Limitations

CHARMM, AMBER, NAMD, and Xplor-NIH [13-17] utilize a similar formulation of the
force field that governs the energetic stability of proteins (Equation 1). In this equation the
terms Ebonds, Eangles, Edihedrals, Eimpropers, Evdw, and Eelec refer to the potential energy
contribution of bond lengths, bond angles, dihedral geometry, planarity of certain atomic
groups, Van der Waals and electrostatic interactions, respectively. SCOPE adopts the same
set of calculations for these potential energies as the standard force field defined by
CHARMM [13,14]. Although this force field should be sufficient for energy based
assessment of a given structure, it often fails for various reasons, including the following
two primary reasons:

1. Inadequacies in global optimization techniques fall victim to the complexity of
protein energy landscape, especially given the high-dimensionality of the search
space;

2. An insufficient or incomplete representation of the energy forces leads to the
ineffective folding of proteins. For example, it is clear that hydrophobicity/
hydrophilicity of residues, cooperative hydrogen bonding, and other interactions
with water molecules can play an important role in the folding of proteins.
Therefore a more complete representation of these forces may reduce the
complexity of the energy landscape.

(1)
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2.2. SCOPE
SCOPE, whose general implementation details have been presented previously [8] and is
available for download at http://ifestos.cse.sc.edu, is an open-source software program with
a true Object Oriented implementation in C++. One unique feature of SCOPE is its
representation of protein structures in rotamer space, as opposed to the more traditional
Cartesian space. This translates to a reduction in the number of parameters used to create
and calculate the energies for a given protein structure, which helps to mitigate the first
noted impediment listed in Section 2.1. For example, the Cartesian representation of a single
Alanine residue requires 30 degrees of freedom (10 atoms × 3 coordinates per atom). In
contrast, representation of the same residue in the rotamer space requires a total of 4
parameters: ϕ, ψ, ω and the χ angles. Therefore, SCOPE boasts a significant decrease in the
number of parameters needed to reconstruct an entire protein. In addition, use of the rotamer
space preserves the perfect peptide geometries; thereby eliminating the need to calculate
bonded energy terms such as: Ebonds, Eangles, Edihedrals, and Eimpropers [8]. This has allowed
SCOPE to focus strictly on calculations of the non-bonded energy terms (Evdw and Eelec),
which in so doing has simplified the force field formulation from 6 terms to two.

SCOPE’s rendition of the standard peptide geometry is based on CHARMM’s force field
and its calculation of non-bonded energy terms has been confirmed to be identical to that of
CHARMM [8]. More recently we have modified SCOPE to include a hydrogen bond energy
term, as well as a hydrogen bond profile (discussed next), to aid with an improved protein
structure evaluation.

2.2.1. Extended Force Field by Inclusion of an Explicit Hydrogen Bond Term—
Among the strongest non-bonded interactions [18], hydrogen bonds are critical in both the
formation and stabilization of protein secondary structures (α-helices and β-sheets). Yet, the
hydrogen bond energy term has not been specifically included in traditional force fields.
This exclusion is based on the argument that a combination of electrostatic and Van der
Waals interactions should implicitly encapsulate the hydrogen bond term. It can be
speculated however, that its implicit inclusion does not allow for the proper evaluation of
hydrogen bond energies, since hydrogen bonds consist of both distance and orientational
components. Therefore, in the case that distance requirements are satisfied but orientational
requirements are not, it is possible for a hydrogen bond to not be formed [18]. Furthermore,
consecutive hydrogen bonds have been shown to exhibit a cooperativity phenomenon, where
the total potential energy is greater than the sum of its individual components [18]. This has
motivated the explicit calculation of hydrogen bonds within SCOPE [12], as well as other
approaches [10,11]. Our implementation of SCOPE’s hydrogen bond calculation, the details
of which have been published previously [8,12], is designed specifically to be consistent
with that of the DSSP program [19].

The current version of SCOPE limits its calculation of hydrogen bonds to only the
backbone-backbone interactions that stabilize secondary structural elements. Because
secondary structures are the result of consecutive hydrogen bonds in the primary sequence,
it may be useful to consider such information for a given protein structure. Consequently,
the resulting SCOPE output includes the total number of hydrogen bonds and a hydrogen
bonding profile, in addition to the calculated hydrogen bond energy. The hydrogen bond
profile is determined based on the number of ungapped and consecutive hydrogen bonds that
are formed along the backbone of the protein. The least number of sections per protein could
be zero (no hydrogen bonding), while the maximum number of sections may be n/2 (n is the
protein size in number of residues). Figure 1 exemplifies the SCOPE energy profile created
for each protein: the first number output, 24 in our example, identifies the total number of
sections with consecutive hydrogen bonds; this is followed by the number of consecutive
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hydrogen bonds in each section (for example, section 1 contains 2 consecutive hydrogen
bonds while section 2 contains 1); the last line of contains the output file name, the
calculated energies (total, Van der Waals, electrostatic and hydrogen bond, respectively) and
the total number of hydrogen bonds in the protein (102 in our example).

2.3. Artificial Neural Network
The evaluation of protein structures has conventionally been performed by assessing the
calculated total energy term for the entire protein. While the result of this approach is easy to
utilize, it may lack the ability to identify severe localized problems. Therefore the
applicability of the conventional energy based approaches may be limited. Figure 2A
illustrates the results of energy-based evaluation of an ensemble of 1000 protein structures
as a function of their similarity to the native structure measured as the BackBone Root Mean
Squared Deviation (BBRMSD). The lack of any significant correlation between potential
energy of a protein structure and its structural viability provides the motivation for
additional investigations and establishes a reference for improvement by any new
mechanism.

Here we demonstrate a different approach, which incorporates the energy profiles produced
by SCOPE. SCOPE’s energy profile clearly provides more information regarding the fitness
of a structure in contrast to its overall potential energy. Although several approaches can be
used for the analysis of multidimensional data, here we utilize an Artificial Neural Network
(ANN) [20] that accepts a SCOPE profile in order to quantify the viability of the
corresponding structure compared to its native structure. The ANN architecture that was
utilized in our work consisted of a two stage, feed forward, standard Multilayer perceptron.
The ANN was trained by using a Levenberg-Marquardt [21] based back propagation
algorithm. It is important to note that the presented strength of our work is not in the use of
artificial neural networks, but in the utility of representing local energies of a protein
structure in a novel way. The use of an ANN is motivated by its ease of use, robustness, and
automatic evaluation of the relative importance of each parameter. For example, inclusion of
an explicit hydrogen bond term in addition to the traditional Van der Waals and electrostatic
terms may present redundant information since Van der Waals and electrostatic terms can
potentially represent hydrogen bond energies in some instances. Therefore the proper use of
these terms will require elimination of the mutual information content. ANN’s can
automatically make the appropriate adjustments of the input parameters during the process
of their training. Training of ANN consists of modifying its operation parameters (weights)
such that the proper relationship between the presented input and desired output is
established. During ANN training sessions, slightly modified SCOPE energy profiles are
presented as input with the corresponding desired output. These modifications consist of
scaling both the Van der Waals and electrostatic terms to the range of 0-10, in order to
reduce the dominance of these two terms compared to other energy terms. Scaling of the
input parameters is a standard practice in the training of ANN’s since it simplifies the
training process. The exact details on training, design and preparation of the input to the
ANN has been previously described [12].

2.4. Testing Strategy
Our initial investigations with SCOPE [12] established a better correlation between the
energetics based evaluation of protein structures and their corresponding BBRMSD with
respect to the native structure. The previous work demonstrated how the existence of such
an approach would be instrumental in improving the quality of protein structures produced
by various computational modeling techniques [8]. Additional investigations, using output
produced by SCOPE, consisted of establishing both the effect of directly including a
hydrogen bond term for potential energy calculations of protein structures and the
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improvements that can be observed through analysis of a hydrogen bond profile by the use
of ANN [12]. Although this work was instrumental in establishing the proof of concept, it
lacked practical implication. The training and testing of the previous work was conducted on
the same protein, leading to the potential problem of memorization where ANN may
potentially fail for the purposes of inference. The practical deployment of this technology
necessitates a training mechanism that is independent of the structure of the unknown
protein.

To investigate the ANN’s generalization ability, we have modified our training procedure to
be independent of the unknown protein. Therefore the general procedure consists of training
the ANN on a protein other than the unknown protein, and testing its performance on the
unknown protein. The main question that arises in relation to this procedure is the structural
difference that can exist between the training structures and the testing structure (the
unknown structure). To address this question we have utilized the protein structure similarity
as reported by CATH [3]. The training and testing structures will be selected to represent
increasing degrees of structural dissimilarity. Experiments will begin at the CATH level
which corresponds to the highest degree of structural similarity, and proceed up the CATH
tree where structural similarity is gradually diminished. The Homologous superfamily
(denoted by H), is the lowest level of the CATH tree and corresponds to protein structures
with the highest degree of evolutionary relationship. The next level Topology (T), are
proteins that share structural features. Moving up, Architecture (A) corresponds to the
structures that have high similarity but no evidence of structural homology. Finally, the last
level is Class (C), which describes the secondary structure composition of a protein.

To further establish the general applicability of our approach to diverse classes of proteins,
our studies will include two α-helical, two β-sheet, and two α/β mix proteins. Table 1 lists
the proteins that are used in our experiments and their relevant information. One thousand
derivative structures were created for each of the proteins by randomly altering their
backbone dihedral angles to sample structural variation up to 7Å BBRMSD. This process
produced a total of 1001 structures (including the original structure) that can be used
accordingly during the training and testing of ANN. The exact details of the training and
testing have been described in our previous work [12].

3. Results
Our strategy in testing the general applicability of our approach is to explore the distance
between the training and testing structures. To that end, our exploration spans selection of
the training and testing proteins exhibiting the following distance criteria: sequence
homology of higher than 60%, sequence homology of less than 40%, structural similarity at
the Topology level of CATH, structural similarity at the Architecture level of CATH, and
finally structural similarity at the Class level of CATH. The categories selected for percent
sequence homology have been chosen based on the thresholds reported in the literature.
Proteins with high sequence homology (greater than 60%) generally produce similar
structures and imply similar biological function, while those with less than 40% sequence
homology suggest regions of structural similarity [1,22]. In the interest of brevity, we only
present results for the latter four categories which exemplify the most challenging cases in
the following subsections, and defer the results of the former case to the Supporting
Information (Figure S1).

3.1. Evaluation of Protein Structures Using Conventional Force Fields
It is important to report the performance of traditional force-based approaches in evaluating
protein structures in order to compare the improvements that are gained from the new
approach. Figure 2A shows the correlation plot of 4997 derivative structures for the protein
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1A1Z. In this plot, the total energy of each structure is plotted versus the BBRMSD of the
structure with respect to the known native structure of this protein. The lack of any
correlation between the total energy and structural viability is clear and can be used in order
to evaluate the contribution of our presented work.

To establish the importance of utilizing SCOPE’s energy profile, we have utilized an
optimized linear regression in analysis of structural viability of the same set of 4997
structures using the conventional total energy. In this exercise the Van der Waals and
electrostatic energy terms were used in order to calculate the optimal coefficients of a linear
model. Figure 2B shows the results of this exercise and confirms the absence of any notable
correlation between the conventional energies and structural viability. Finally, we repeat the
same exercise after inclusion of the total hydrogen bond term in order to establish a point of
reference for the results that are reported in the following sections. Furthermore, comparison
of Figure 2B and Figure 2C establishes the potential usefulness of information presented by
an explicit hydrogen bond, since the latter exhibits an improved correlation between total
energy and BBRMSD of structures.

3.2. Evaluation of Proteins in CATH’s Level H: Homologous Superfamily with Less Than
40% Sequence Identity

Experiments were first conducted using training and testing proteins in the same
Homologous superfamily with at most 40% sequence similarity. Figure 3A illustrates the
results of the evaluation prediction of the ANN for the protein 3CZZ, with the training
conducted on the protein 1N02. Results shown in this figure clearly illustrate a linear
correlation between the ANN’s output and the actual BBRMSD of the unknown protein.
The top 10% of the ranked structures in the case of 3CZZ exhibit a BBRMSD between 0 –
0.996Å, which indicates the success of the ANN in selecting an accurate structure with
BBRMSD less than 1Å.

The prediction of 3CUO trained on 2D2W has a very strong linear correlation (Supporting
Information Figure S2A). The top 10% of the ranked structures in the case of 3CUO have a
BBRMSD between 0.006-1.267Å. This again demonstrates the success of our approach in
selecting a highly accurate structure with great confidence. This is especially noteworthy
considering that these two proteins share less than 30% sequence identity.

The prediction of 2JXT trained on 1PGX has a moderate linear correlation (Supporting
Information Figure S2B) and shows the existence of the funneling effect despite the
diminished performance. Although the best predicted structure was around 2.2Å, the
original structure was predicted to be eleventh. The top 10% of the ranked structures for
2JXT exhibited a BBRMSD range of 0-3.447Å. While not as compelling as the previous
two cases, it is important to note that deployment of the presented work can potentially
improve the quality of a starting structure from 6.559Å to at least 3.447Å.

3.3. Evaluation of Proteins in CATH’s Level T: Topology
In the Topology level of CATH proteins do not demonstrate significant sequence similarity
and the measure of structural similarity in terms of BBRMSD begins to lose its meaning.
Results of the ANN evaluation of the protein 3FB9 with training based on 3CQT is shown in
Figure 3B. These results clearly illustrate the clustering of the ANN with direct correlation
to their structural quality. The top 10% ranked results of the protein 3FB9 have a BBRMSD
between 0 – 1.512Å. This is a substantial selection of proteins with as high as 6.427Å
BBRMSD with respect to the native structure. This level of performance is on par with
previous experiments from the homologous superfamily.

Fawcett et al. Page 6

Proteomics. Author manuscript; available in PMC 2014 March 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The prediction of 1SAU trained on 3CUO (shown in Supporting Information Figure S3A)
demonstrates the existence of the desired funneling effect. The top 10% structures have a
BBRMSD between 0-3.235Å indicating the possibility of improving computed structures to
within 3.235Å of the native structure.

The prediction of 1VJK trained on 1LXD (Supporting Information Figure S3B) also shows a
funneling effect. The top 10% of the ranked structures of 1VJK have a BBRMSD between
0-1.827Å. Once again this shows a remarkable ability to identify the more viable structures
below 2Å.

3.4. Evaluation of Proteins in CATH’s Level A: Architecture
The prediction of 3HAK trained on 3CUO exhibits a strong linear correlation (Figure 3C)
with a remarkable funneling effect. The top 10% of the ranked structures of 3HAK have
BBRMSDs between 0.022-1.864Å. This provides evidence for the success of our approach
within the Architecture level of the CATH tree.

The prediction of 3CQT trained on 2H3L (Supporting Information Figure S4A) shows
similar results with the top 10% of the results demonstrating a BBRMSD between 0-5.939Å
to the native structure. The expanded BBRMSD range in this instance compared to the
previous results is due to one anomalous structure with a BBRMSD of 5.939Å. Elimination
of this one anomalous structure would produce results spanning the range of 0-2.079Å
BBRMSD, which is similar to the previous outcomes.

The prediction of 20ZT trained on 1VJK (Supporting Information Figure S4B) reveals a
cluster of structures between 5Å and 6Å that appear as good structures in the graph. The top
10% of the ranked structures of 2Z0T had a BBRMSD between 0-5.701Å. In this instance,
five anomalous structures were the culprits with BBRMSD’s ranging between
5.205-5.701Å. Elimination of these five structures would result in BBRMSDs ranging
between 0-1.131Å.

3.5. Evaluation of Proteins in CATH’s Level C: Class
The prediction of 2EPI trained on 1VJK also demonstrates a strong linear correlation (Figure
3D) and an extraordinary funneling effect, considering that structures at this level display
the least amount of structural similarity. In this exercise, the original structure was predicted
to be eighty-ninth. The original structure was not in the top thirty but the BBRMSD of the
top 10% was between 0.107-1.890Å. Even though the original structure was not predicted in
the top thirty structures, the selected structures exhibited significant structural similarity to
the native structure (under 2Å).

The prediction of 1TQG trained on 3CUO shows a very strong linear correlation
(Supporting Information Figure S5A). However, a number of structures ranging from 0Å to
over 4Å have been ranked highly by ANN. Therefore the top 10% of structures for 1TQG
have a BBRMSD between 0.076-4.316Å and demonstrate a potential difficulty in predicting
structures which share structural similarity only within the Class level of CATH.

The prediction of 1SMX trained on 3CQT shows a strong linear correlation (Supporting
Information S5B) and illustrates a strong funneling effect. The original structure was
predicted to be twelfth overall. These results are notable with the two structures only sharing
mostly β secondary structures. 1SMX’s top thirty structures have a BBRMSD that range
between 0-3.338Å. This would refine a protein from 6.933Å down to 3.338Å.
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4. Discussion
Our first experiments demonstrated the consistent ability in utilizing ANN based evaluation
of SCOPE’s energy profile in application to structures that exhibit a strong evolutionary
relationship. During the generalization exercises, we demonstrated the practical application
of our presented work to identify viable structures to within 1.5-3.0Å of the native structure
of the unknown protein. Our presented experiments utilized the CATH classification of a
protein to establish the required structural similarity between the training and testing
proteins. To that end we have presented results spanning the most similar and related
proteins (Homologous superfamily) and conclude with studies using the most dissimilar
proteins (Class). The Homologous superfamily experiments show the existence of the
funneling effect at this level, and demonstrate the ability to identify the native protein
structure within the top 10% of the ranked structures. The experiments also present a
potential approach to improve the structural quality of a protein by over 3Å; in fact, in most
cases the protein could be improved to less than 2Å. The testing of proteins with the same
Topology, but different Homologous superfamiles, demonstrated that an ANN was able to
predict proteins with similar accuracies to the Homologous superfamily level. The
experiments in this section displayed results that were able to identify a protein structure to
within 3.235Å in one instance, and to under 2Å in the other instances. It is important to note,
that the funneling effect still exists in these experiments, however some anomalous
behaviors are starting to be observed. Also of note, the linear correlation coefficient is not
associated with the prediction of the original structure; this is summarized in Table 2 which
demonstrates that the experiment with the worst linear correlation coefficient did not have
the worst prediction. The next two sets of experiments, using proteins with the same
Architecture and the same Class respectively, also reveal surprisingly promising results with
respect to the ANN’s ability to predict the original structure. The examples examining
protein structural similarity in the Architecture level still show that the native structure was
predicted to be in the top 14% or better. The funneling effect can still be seen but the
predicted anomalous structures are becoming more frequent at this level; if the anomalous
structures are removed, however, then an ANN has the ability to identify structures of the
unknown protein to less than 2.1Å. When experiments involving the same Class of proteins
are conducted, there is a long line of structures that are being predicted by the ANN to be
good structures - with the original structure being predicted out of the top thirty best
structures in most cases.

When combined with an ANN, the energy profile produced by SCOPE has demonstrated the
potential to improve the structural quality of an unknown protein from 7Å to approximately
2Å. Our presented method of evaluating protein structures purely based on biophysical
energies clearly shows a strong funneling effect that is otherwise missing from traditional
force fields.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
An example of the SCOPE output.
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Figure 2.
Using the same set of 4997 derivative structures of 1A1Z: A) energy-based evaluation of the
derivative structures as a function of their similarity to the native structure measured by
BBRMSD; B) linear regression analysis of structural viability utilizing SCOPE’s energy
profile (scaled Van der Waal and scaled electrostatic energy terms); C) linear regression
analysis of structural viability utilizing SCOPE’s energy profile and the inclusion of a
hydrogen bond energy term.
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Figure 3.
ANN Refinement of Proteins in CATH’s A) Level H: Homologous superfamily, using 1N02
for training (yellow) and 3CZZ for testing (red) with 19 hidden neurons; B) Level T:
Topology, using 3CQT for training (yellow) and 3FB9 for testing (red) with 16 hidden
neurons; C) Level A: Architecture, using 3CUO for training (yellow) and 3HAK for testing
(red) with 11 hidden neurons; and D) Level C: Class, using 1VJK for training (yellow) and
2EPI for testing (red) also with 11 hidden neurons.
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