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Background: Anaplastic thyroid cancer (ATC) is one of the most aggressive malignancies in humans, and its progression is 
poorly controlled by existing therapeutic methods. Curcumin has been shown to suppress inflammation and angiogenesis. In this 
study, we evaluated whether curcumin could augment docetaxel-induced apoptosis of ATC cells. We also analyzed changes in 
nuclear factor κB (NF-κB) and cyclooxygenase-2 (COX-2) expression levels to delineate possible mechanisms of their combined 
action.
Methods: ATC cells were cultured and treated with curcumin and docetaxel alone or in combination. The effects on cell viability 
were determined by MTS assay. Apoptosis was assessed by annexin V staining and confirmed by flow cytometric analysis. Cas-
pase, COX-2, NF-κB levels were assayed by Western blotting.
Results: Curcumin combined with docetaxel led to lower cell viability than treatment with docetaxel or curcumin alone. Annexin 
V staining followed by flow cytometric analysis demonstrated that curcumin treatment enhanced the docetaxel-induced apoptosis 
of ATC cells. Additionally, curcumin inhibited docetaxel-induced p65 activation and COX-2 expression.
Conclusion: We conclude that curcumin may enhance docetaxel’s antitumor activity in ATC cells by interfering with NF-κB and 
COX-2. Our results suggest that curcumin may emerge as an attractive therapeutic candidate to enhance the antitumor activity of 
taxanes in ATC treatment.
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INTRODUCTION

Anaplastic thyroid cancer (ATC) is one of the most aggressive 
malignancies in humans. Multidisciplinary treatments, includ-
ing radiotherapy and chemotherapy, poorly control the pro-
gression of this disease, and the mean survival is less than 1 
year after initial diagnosis [1]. Therefore, discovery of new 

and improved therapeutic strategies are critical for improving 
the quality of life and survival rates of patients with ATC.
  Curcumin is a polyphenolic natural product found in tur-
meric, a commonly used food coloring and flavoring agent. 
The active component of turmeric, curcumin, has been shown 
to have antiviral, antibacterial, antioxidant, anti-inflammatory, 
antiproliferative, and antiangiogenic activities [2,3]. Studies 
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conducted in both animals and humans have suggested that 
curcumin is a promising candidate for the treatment of inflam-
mation and cancer [4-7].
  Docetaxel is an anticancer microtubule-stabilizing agent that 
induces apoptosis by suppressing the microtubule dynamics of 
the mitotic apparatus [8,9]. Docetaxel arrests cells in the G2/M 
phase, leading to increased susceptibility of cancer cells to ra-
diotherapies and chemotherapies [10-12]. It is severely dose-
limited because of its adverse side effects, including neutrope-
nia, diarrhea, nausea, and fatigue [13]. Combination therapies 
to reduce its toxicity at higher doses and/or to increase its effi-
cacy at lower doses are highly desirable, and could have a sig-
nificant impact on therapeutic outcome. Studies have shown 
that docetaxel alone was only modestly effective against ATC 
in clinical trials [14]. However, available evidence suggests 
that combined therapy with radiation and/or other pharmaco-
logical agents may be more effective [15-17].
  In this study, we attempted to increase the sensitivity of ATC 
cells to docetaxel by simultaneous treatment with curcumin 
and analyzed the apoptotic signaling pathways in treated cells. 
Here, we report for the first time that curcumin augments the 
growth-inhibitory and proapoptotic effects of docetaxel, possi-
bly by interfering with nuclear factor κ light-chain enhancer of 
activated B cells (NF-κB) and cyclooxygenase-2 (COX-2) sig-
naling pathways. Our results suggest that a curcumin-docetaxel 
combination could be a useful therapeutic agent for the treat-
ment of ATC.

METHODS

Materials
Human anaplastic thyroid carcinoma cell lines 8505C and 
CAL62 were a gift from Dr. Shong (Asan Medical Center, Uni-
versity of Ulsan College of Medicine, Seoul, Korea). The ATC 
cell line FRO (wild type) was provided by J.A. Fagin (Univer-
sity of Cincinnati College of Medicine, Cincinnati, OH, USA), 
and the cell line KTC-2 was obtained from Kawasaki Medical 
School (Okayama, Japan) [18]. 
  Docetaxel and curcumin were purchased from Sigma (St. 
Louis, MO, USA). They were dissolved in dimethyl sulfoxide 
(DMSO, Sigma) at appropriate concentrations prior to dilution 
in culture medium such that the final concentration of DMSO 
would not exceed 0.1%.
  Antiactin, antirabbit immunoglobulin G (IgG), and anti-
mouse IgG horseradish peroxidase-conjugated secondary anti-
body were purchased from Santa Cruz Biotechnology (Santa 

Cruz, CA, USA). Antibodies against NF-κB, cleaved caspase-3 
and caspase-9 were obtained from Cell Signaling Technology 
(Beverly, MA, USA). A polyclonal antibody against COX-2 
was procured from Abcam (Cambridge, MA, USA).

Cell culture
8505C, FRO, and KTC2 cells were grown in RPMI 1640 me-
dium, and CAL62 cells were grown in Dulbecco’s modified 
Eagle’s medium and both media types were supplemented 
with 10% fetal bovine serum and 1% penicillin/streptomycin 
(all reagents from Invitrogen Life Technologies, Paisley, UK). 
Cells were grown in a 5% CO2 humidified incubator main-
tained at 37°C.

Cell proliferation assay
Cell viability was measured by a CellTiter 96 AQueous One 
Solution Cell Proliferation Assay according to the manufactur-
er’s instructions (Promega, Madison, WI, USA). Aliquots of 
4×103 cells were plated onto each well of a 96-well micro-
plate (Falcon, Franklin Lakes, NJ, USA) in 100 µL complete 
growth medium and incubated with 1, 2, 5, 10, or 20 nM of 
docetaxel in the presence or absence of 1, 5, 10, 25, or 50 µM 
curcumin or 0.1% DMSO (control) for 24 to 48 hours. Follow-
ing this, 20 µL of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy
methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt 
was added to each well and incubated for an additional 3 
hours. The relative cell proliferation rates were determined in-
directly by quantifying the color developed at 490 nm using a 
96-well plate reader. Each experiment was performed in tripli-
cate, and repeated a minimum of three times with three inde-
pendent cultures.

Annexin V staining
Annexin V staining was performed using the Annexin-V-FITC 
apoptosis detection kit (BD Pharmingen, San Diego, CA, 
USA) according to the manufacturer’s protocols. Briefly, cells 
were harvested, resuspended in 100 μL binding buffer, and 
stained with 5 μL Annexin-V-FITC staining solution in the 
dark at room temperature (RT) for 15 minutes. The samples 
were analyzed by flow cytometry (Becton Dickenson, Frank-
lin Lakes, NJ, USA) using CellQuest software.

Preparation of cell extracts
Cells were grown in 150-mm dishes in medium containing 10% 
FBS at 37°C. After 24 hours, cells were treated with docetaxel (5 
nM) and/or curcumin (10 µM) or vehicle for 24 hours. Follow-
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ing this, cells were washed twice with ice-cold phosphate buff-
ered saline (PBS), collected in 1 mL PBS and centrifuged at 
4°C for 5 minutes at 1,200 rpm. The cell pellet was then resus-
pended in 50 µL of M-PER mammalian protein extraction re-
agent (Pierce, Rockford, IL, USA) containing a cocktail of 
protease inhibitors (Pierce). After incubating for 20 minutes on 
ice, the lysate was centrifuged for 10 minutes at 14,000 rpm. 
The supernatant was stored at -80°C until use. Protein concen-
trations were determined using a BCA protein assay kit (Pierce) 
according to manufacturer’s protocol. Nuclear extracts was 
prepared from cells using the NE-PER nuclear and cytoplas-
mic extraction kit (Pierce) following the manufacturer’s in-
structions. 

Western blotting
Forty micrograms of protein was loaded onto 10% to 15% 
polyacrylamide gels and separated by sodium dodecylsulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). Separated 

proteins were transferred onto a nitrocellulose membrane (Mil-
lipore Corp., Bedford, MA, USA) and blocked with Tris-buff-
ered saline/0.1% Tween 20 (TBST) containing 5% nonfat dry 
milk for 1 hour at RT. After washing four times with TBST, 
membranes were incubated with desired concentrations of pri-
mary antibodies in blocking solution at 4°C overnight. After 
washing four times with TBST, the blots were incubated with 
horseradish peroxidase-conjugated species-specific secondary 
antibodies (Santa Cruz Biotechnology) in TBST for 1 hour at 
RT. The blots were washed again four times with TBST, and 
the complexes were visualized using an Immun-Star WesternC 
Chemiluminescent kit (Bio-Rad, Hercules, CA, USA) in a Bio-
Rad Molecular Imager ChemiDoc XRS imaging system (Bio-
Rad). Western blotting was performed using lysates from at 
least three independent experiments. Intensities of the bands 
developed after the application of HRP substrate were quanti-
fied using the Bio-Rad Molecular Imager ChemiDoc XRS im-
aging system (Bio-Rad). Relative expression levels of various 

Fig. 1. Effects of docetaxel and/or curcumin treatment on the proliferation of 8505C, CAL62, FRO, and KTC2 cells. (A) 8505C cells 
were grown on 96-well plates and treated with varying doses of docetaxel (DOC) or curcumin (CUR) for 24 hours. (B) 8505C cells were 
grown on 96-well plates and treated with a combination of docetaxel (5 nM) and curcumin (10 µM) for 24 hours. (C) CAL62, FRO, and 
KTC2 cells were treated with docetaxel (5 nM) and curcumin (10 μM). Bars represent mean±SD. CTL, cell only; NS, no significant.
aP<0.001; bP<0.05.
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proteins were estimated by densitometric analysis using actin 
expression levels as a standard.

Statistical analysis
All data are expressed as the mean±SD. Differences between 
groups were examined for statistical significance by perform-
ing analysis of variance (GraphPad Prism program) and/or Stu-
dent t tests. P<0.05 indicated a statistically significant differ-
ence.

RESULTS

Docetaxel in combination with curcumin induces enhanced 
cell death in 8505C anaplastic thyroid carcinoma cells
Both docetaxel (1, 2, 5, 10, and 20 nM) and curcumin (1, 5, 
10, 25, and 50 µM) used independently showed inhibitory ef-
fects on ATC cell proliferation. Compared to controls, cotreat-
ment with docetaxel and curcumin significantly reduced the 
number of cells (Fig. 1A, B). Treatment of 8505C cells with 25 
μM curcumin resulted in 50% growth inhibition. Importantly, 
the addition of treatment with 5 nM docetaxel resulted in a 2.5-
fold decrease in the curcumin concentration that was needed to 
achieve 50% growth-inhibition. Therefore, we conducted ex-
periments using 10 μM curcumin and 5 nM docetaxel. Al-

though we attempted to extend our findings to other well-es-
tablished cellular models of human ATCs (CAL62, FRO, and 
KTC2), we did not observe the synergistic effects of docetaxel 
and curcumin as observed in 8505C cells (Fig. 1C).

Docetaxel in combination with curcumin enhances 
apoptosis in 8505C thyroid carcinoma cells
To confirm the effects of cotreatment with docetaxel and cur-
cumin on 8505C cells, the cells were treated with the drugs for 
24 hours. After Annexin V staining, cells were analyzed by 
flow cytometry. Cells treated with a combination of docetaxel 
and curcumin showed increased Annexin V staining as com-
pared with cells treated with either docetaxel or curcumin alone 
(Fig. 2).

Increased expression of proapoptotic proteins in 8505C 
cells treated with docetaxel and curcumin
To identify the mechanism underlying the enhanced apoptotic 
response of 8505C cells to co-treatment with docetaxel and 
curcumin, we assessed the expression of proapoptotic proteins 
by SDS-PAGE followed by Western blotting. Cells were treat-
ed with 5 nM docetaxel and 10 μM curcumin for 24 hours, and 
whole-cell lysates were subjected to Western blotting. Cotreat-
ment with curcumin and docetaxel increased the expression of 
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Fig. 2. Apoptosis-promoting effects of docetaxel (DOC) and curcumin (CUR) treatment. 8505C cells were cultured in 100-mm petri 
dishes and treated with docetaxel (5 nM) and/or curcumin (10 µM) for 24 hours. Apoptosis was assessed by Annexin V staining followed 
by flow cytometry analysis. Bars represent mean±SD. CTL, control.
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proapoptotic proteins. Compared to controls, an active form of 
caspase-3 (cleaved caspase-3, 17-, and 19-kDa bands), and 
caspase-9 (including cleaved caspase-9, 37 kDa) were signifi-
cantly increased in cells treated with docetaxel and curcumin 
(Fig. 3).

Effects of docetaxel and curcumin on NF-κB activation 
and COX-2 expression
To examine the effects of docetaxel on NF-κB signaling, cells 
were treated with docetaxel and/or curcumin for 24 hours, and 
nuclear extracts from drug-treated cells were subjected to 
Western blotting. Compared to controls, the presence of p65 in 
the nuclear fraction was markedly decreased in cells treated 
with curcumin alone or with curcumin and docetaxel (Fig. 4). 
These results confirmed not only the phenomenon of docetax-
el-induced NF-κB activation but also that curcumin inhibited 
this process (Fig. 4). Further, we found that curcumin treatment 
resulted in the down-regulation of COX-2 protein expression 
(Fig. 5).
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DISCUSSION

ATC is highly resistant to standard therapeutic interventions, 
including surgical treatment, radiation therapy, and chemo-
therapy. Recently, it has been found that targeted therapeutic 
agents enhance the susceptibility of tumors to ionizing radia-
tion by interfering with intracellular signal transduction path-
ways and DNA repair, thereby leading to senescence-like ter-
minal growth arrest [19-21].
  Previous studies have shown that paclitaxel is a promising 
candidate for therapeutic intervention in anaplastic thyroid 
carcinoma cases [21,22]. Docetaxel, similar to paclitaxel, has 
been shown to be clinically effective against solid tumors. How-
ever, chemotherapeutic agents such as taxanes and gemcitabine 
induce NF-κB activation, resulting in drug resistance and ther-
apeutic failure.
  The transcription factor NF-κB regulates genes involved in 
cell survival and proliferation [23]. Thus, NF-κB suppresses 
apoptosis by up-regulation of antiapoptotic proteins [24]. In 
addition, elevated basal NF-κB activity, as found in various 
types of human cancers, causes resistance to chemotherapy 
[25-27]. Therefore, the NF-κB signaling pathway has been an 
attractive target for the development of chemotherapeutic 
drugs. Combination therapy has the potential of producing syn-
ergistic effects on tumor suppression without adverse events. 
Meng et al. [15] reported that in nude mice xenograft models, a 
combination of NF-κB inhibitor (DHMEQ) and docetaxel was 
more effective in inhibiting ATC tumor growth than treatment 
with either of the drugs alone. However, the NF-κB inhibitor 
caused only a transient inhibition of NF-κB activity, resulting 
in an early restoration of p65 DNA binding [28].
  Curcumin has been reported to inhibit a number of targets, 
including NF-κB, COX-2, kinases associated with survival 
signaling (IKK, NIK, and AKT), ERK, and other proteins in-
volved in cell cycle regulation. Thus, curcumin shows a broad 
range of activities owing to its ability to target multiple path-
ways involved in regulating diverse cellular processes [29]. In 
a previous study, NF-κB was bound constitutively in melanoma 
cell lines. NF-κB binding activity was decreased when treated 
with curcumin compared with controls [30]. The mechanisms 
responsible for the inhibition of tumor growth by curcumin are 
diverse and appear to involve a combination of anti-inflamma-
tory, antioxidant, immunomodulatory, proapoptotic, and anti-
angiogenic properties via pleiotropic effects on genes and cell 
signaling pathways at multiple levels [31]. At the molecular 
level, curcumin disrupts functional and physical interactions 

between ɑ6ß4 integrins and human epidermal growth factor re-
ceptor (EGFR) and blocks integrin ɑ6ß4/EGFR-dependent 
pathways in carcinoma cells [32], in addition to inhibiting 
MMP-2, MMP-9, and vascular endothelial growth factor [33].
  The potential therapeutic role of curcumin in conjunction 
with other therapeutic agents has previously been explored 
[34]. In bladder cancer cell lines, curcumin was shown to act 
as a counterbalance to reverse paclitaxel-induced NF-κB acti-
vation [35]. Here we demonstrated, for the first time, the syn-
ergistic antiproliferative and proapoptotic effects of a combi-
nation of docetaxel and curcumin treatment on 8505C ana-
plastic thyroid carcinoma cells. In the present study, we found 
that treatment with docetaxel in combination with curcumin 
enhanced the inhibition of cell proliferation and increased in-
duction of apoptosis in ATC cells as compared to treatment 
with docetaxel alone. We also showed that curcumin counter-
acts the effects of docetaxel on NF-κB activation and COX-2 
expression in 8505C cells. Thus, docetaxel activated NF-κB 
and increased COX-2 expression, and treatment with curcum-
in suppressed both docetaxel-induced NF-κB activation and 
COX-2 expression in 8505C ATC cells.
  Induction of COX-2 in tumor cells by docetaxel may be a 
protective mechanism, counterproductive to the overall anti-
angiogenic and antitumor effects of docetaxel [36]. COX-2 
plays an important role in tumor progression by promoting an-
giogenesis, stimulating cell growth, and inhibiting apoptotic 
cell death [37-39]. Cornetta et al. [40] reported that the expres-
sion of COX-2 was upregulated in well-differentiated thyroid 
cancer, and this was not observed in the normal thyroid. Over-
expression of COX-2 may inhibit apoptosis, enhance angio-
genesis, and promote cell invasion. Our results suggest that 
curcumin may counteract the adverse clinical outcomes aris-
ing from increased expression of COX-2 in ATC cells.
  In conclusion, our study results suggest that curcumin aug-
ments the therapeutic efficacy of docetaxel by lowering its 
threshold concentration required for inhibiting cell prolifera-
tion and inducing cell death. Additionally, inhibition of docetax-
el-induced NF-κB activation and COX-2 expression by cur-
cumin in 8505C cells revealed a potential anti-angiogenic effect 
of the combination therapy. Taken together, our findings will 
lead to improved clinical outcomes in ATC therapy.
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