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ABSTRACT If an optically active (chiral) sample is placed
in a microscope and illuminated with circularly polarized
light, an image can be formed that is related to the circular
dichroism of each feature of the sample. A theoretical investi-
gation has been done for the circular differential image ob-
tained by subtracting the images formed under right- and left-
circularly polarized light. Two types of differential images are
possible: (i) dark-field images formed from light reflected or
scattered by the sample and (ii) bright-field images formed
from light transmitted through the sample. The sign and mag-
nitude of each feature in a circular differential image strongly
depend on the structure of the sample. The dark-field circular
differential images are most sensitive to large features with
dimensions similar to the wavelength of illumination whereas
the bright-field images are most sensitive to the short-range
molecular order. Applications of circular differential imaging
may include clinical fingerprinting of normal and transformed
cells and structural analysis of individual cellular components.

Chiral objects interact differently with right- and left-circu-
larly polarized light. The ability of certain substances to
transmit the two circularly polarized lights with different
speeds is known as optical rotatory dispersion (ORD) and
the ability to absorb different amounts of the two is known
as circular dichroism (CD). These phenomena constitute
what traditionally has been called optical activity. More re-
cently, it has been established that chiral objects also have
the ability to scatter different amounts of right- and left-cir-
cularly polarized light (1-5). It is possible to measure the dif-
ference in the scattered light intensity at each direction in
space when right- and left-circularly polarized light are inci-
dent on the sample. The resulting difference scattering pat-
tern has been termed circular intensity differential scattering
(CIDS). It has also been shown that the circular intensity
differential scattering can give rise to an apparent circular
dichroism (6).
The relationship between the chirality of the illuminated

object and the handedness of the incident light makes tech-
niques based on optical activity very sensitive to changes in
the structure of the object.

If an imaging system (a lens or a microscope) is placed
between the chiral sample and the detector, an image can be
formed. The image produced by left-circularly polarized illu-
mination will be different from the image produced when the
illumination is right-circularly polarized. The difference be-
tween these two images is called a circular differential im-
age. The information contained in a circular differential im-
age will not be the same as the information in an image pro-
duced using unpolarized light. In the latter case, the optical
contrast that distinguishes one feature of the sample from

another is provided by differences in the absorption and in-
dex of refraction of various parts of the sample. In a circular
differential image, the contrast is provided by differences in
the interaction of different parts of the sample with left- and
right-circularly polarized light.

It will be shown below that the intensity of each feature in
a circular differential image is proportional to the "optical
activity" of that feature in the particular direction from
which the sample is being viewed. This optical activity may
take the form of circular dichroism or circular intensity dif-
ferential scattering and contains information on the chiral
structure of each feature. This structural sensitivity is per-
haps the most important property of circular differential im-
aging. For example, circular differential imaging can be used
to follow the organization of a chromosome as a function of
the cell cycle and obtain information on the super-organiza-
tion of chromatin. In clinical applications it may be possible
to correlate the circular differential imaging pattern of a cell
with the type of cell, the stage of the cell cycle, and whether
the cell is normal or transformed (neoplastic). That is, a cir-
cular differential image can be used as a fingerprint of the
state of the cell.

THEORY
Consider a sample made up of a collection of small groups
that are capable of interacting with the incident illumination.
The scattering and absorptive properties of each group can
then be described by a polarizability tensor, a. Some of the
optical activity of the sample will result from the intrinsic
properties of each individual group, and this information is
contained in the polarizability tensors associated with the
groups. This optical activity is due to the short-range struc-
ture of the sample and is manifested primarily as circular
dichroism. The remainder of the optical activity arises from
the long-range spatial organization of the collection of
groups as a whole and is manifested primarily in the circular
intensity differential scattering.

After the light has interacted with the sample, two qualita-
tively different imaging experiments are possible: (a) Bright-
field imaging, in which the microscope and detector are
placed directly behind the sample. (b) Dark-field imaging, in
which the microscope and detector are placed at an angle to
the incident beam. Fig. 1 shows the experimental geometry.
We present here a brief derivation of the major results of

the theory. A detailed discussion will be published else-
where. The image calculation has been treated in the follow-
ing way.

(i) The electric field scattered or transmitted by the sam-
ple is calculated using classical scattering theory (3, 7-9).
For the dark-field experiment, E(r') is the field scattered by
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through the lens, but before beginning to propagate toward
the detector screen) to be

Ef(r')=ei-lr')E(r') [3]

where Ef and E are the electric fields on the far and near
faces, respectively, and r' is a position vector in the lens
plane (see Fig. 1). The phase function O(r') is given by (7)

4(r') = knAo- k(r')2/2f,

FIG. 1. Geometry for the differential imaging calculations. (Up-
per) The vectors ko show the direction of the incident light for the
bright-field (B) and dark-field (D) experiments. The other variables
are the distance between the sample and the lens, ro; the distance
between the lens and the detector screen, d; the lens aperture diame-
ter, a; the direction of propagation of the scattered light, k; the posi-
tion in the lens plane, r'; and the position in the detector screen
plane, r. (Lower) Variables used in describing the relation between
the sample and the imaging system are shown.

the sample (5):

k2eikro kr)2oE(r') = Escatt(r') = ei/ r')2/2ro(1 kk)
rO

Zeiik(r'ro)ri/rra. EoEoe.ko(ri+ro) [1]

where k = 2rr/X is the wavenumber of the incident light, r' is
a position vector in the lens plane, ro is the distance between
the sample and the lens plane, k is a unit vector pointing
from the center of the lens toward the sample, ro is the vec-
tor from the sample to the center of the lens, ri = Ri - ro
[where Ri is the vector pointing from the center of the lens to
the ith group (see Fig. 1)], ai is the polarizability tensor of
the ith group, and E0, E, and ko are the amplitude, polariza-
tion, and wavevector of the incident light. In Eq. 1, we have
assumed that the lens aperture and the dimensions of the
sample are much smaller than the distance ro between the
scatterer and the lens. Also, the field in Eq. 1 is computed in
the first Born approximation-that is, we have assumed that
there is no appreciable induced-dipole-induced-dipole inter-
action between groups or multiple scattering in the sample.
Some of the effects of dipole-dipole interactions and multi-
ple scattering can be taken into account by the use of the
second Born approximation. This amounts to replacing ai in
Eq. 1 with an effective polarizability that contains the cou-
pling information (7, 10). Higher-order terms of the Born se-
ries can be treated in a similar way.
For the bright-field experiment, the electric field at the

near face of the lens includes both incident and scattered
waves:

E(r') = EoEoeiko~r' + Escatt(r'). [2]

(ii) We take the imaging apparatus to be a single thin lens.
That is, after the scattered or transmitted light has left the
sample and arrived at the lens, the effect of the imaging sys-
tem is to modulate the phase of the field as a function of
position in the lens plane, while the polarization and magni-
tude of the field are not altered at all. Specifically, we take
the electric field on the far face of the lens (after passing

where k = 2ir/X is the wavenumber of the incident light, n is
the index of refraction of the lens material, A0 is the thick-
ness of the lens at its widest point, (r')2 = Ir'12, and f is the
focal length of the lens. It can be shown (11) that a lens with
these properties behaves according to geometrical optics.
We have therefore chosen the simplest possible image-form-
ing device for the purpose of investigating the general prop-
erties of circular differential images. The theory can be ex-
tended in principle to large-aperture lenses (12). However, it
is important that the imaging system be insensitive to the
polarization of the scattered light.

(iii) Once the electric field is known on the lens, we calcu-
late the propagation of the field outward from the lens to-
ward the detector screen by using vector diffraction theory
in the Fresnel limit (13). It is customary in thin-lens calcula-
tions to use scalar diffraction theory at this point. However,
here we are interested specifically in effects caused by the
polarization of light, and so vector diffraction theory is ap-
propriate.

If the lens aperture a is small compared to the distance d
between the detector screen and the lens plane (see Fig. 1),
the electric field on the detector plane is given by (13)

iei
E(r) = k2rrk

[fperture n x Ef(r')exp(-ikf r + -r )dS], [5]

where r is a position vector pointing from the center of the
lens to a spot in the detector plane, r = Irl, r = r/r, and ft is a
unit vector normal to the surface of the lens plane. The inte-
gration in Eq. 5 is over the surface of the lens aperture. We
choose the lens and detector planes to be parallel to the xy
plane, so that the unit vector normal to the surface, fi, is
along the z axis.

Dark-Field Circular Differential Imaging. All parts of the
calculation are now specified. To obtain the image electric
field (i.e., the field arriving at the detector) in the dark-field
case, we substitute Eqs. 1, 3, and 4 into Eq. 5:

E(r) = C I F(k,ri)e-i'krir x [k x (aEa o] [6]

where Ak = k - ko is the momentum-transfer vector for scat-
tering in the k direction,

=
iEok3 * exp[i(knAo + ko * ro + kr + kro)]

2irrIT

and F(k,ri) is given by

F(k,ri) = faperkture i(!r+F~krt) =ilure eXP2 (ro r f)

- i k + kr;) rdS.
Io

[7]

[4]
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The integral in Eq. 7 is commonly found in imaging theories
based on scalar diffraction theory. It is this integral that
gives the localized field intensity that will produce an image
of the scattering sample. In Eq. 7 the quantity 1/rO + 1/r -
1/f appears. According to geometric optics, the condition
for a thin lens to produce a focused image is 1/rO + 1/d -
1/f = 0, where d is the distance from the lens plane to the
detector plane (see Fig. 1). For points in the detector plane
near the lens axis, d r, and we may set the first term in the
argument of the exponential in Eq. 7 equal to zero. The sec-
ond term in the exponential can be rewritten in terms of the
magnification of the imaging system:

(k + ')-) r' = - [(x + mxd2 + (y + my,)2]'/2rcos X (r'),

where xi and yi are the x and y components of ri, x and y are
the x and y components of r, and m = r/rO is the lens magnifi-
cation. The remaining integration may be performed direct-
ly:

F(k,ri) = F(pi) = 2ra2 (f [8]

2 Pi]
where J1 is the Bessel function of the first kind of order 1, pi
= [(x + Mxi)2 + (y + Myi)2]1/2 and A/X = (m + l)f/a. The
function F(pi) reaches a maximum when pi = 0 (that is, when
x = -mxi and y = -myi) and diminishes for all nonzero val-
ues of pi.
To calculate the dark-field circular differential image, we

must calculate the image intensity at the detector for right-
and left-circularly polarized illumination and then subtract.
To do this, we substitute left- and right-circular polarization
vectors for the incident polarization vector Eio in Eqs. 5 and 6
and square the electric field to obtain left- and right-circular
intensities. The unit vectors for left- and right-circular polar-
ization are

1 1
L= - (£ + i42) and R = - ( - i;E2), [9J

respectively, where 1, E2, and ko form a right-handed or-
thogonal coordinate frame. After some algebra, we obtain

L-IR = |Cl2 >1 F(pi)F(pj) AIij (k,ko),
i;;R

larized. In the case where i = j, AIij is the difference in the
left and right intensities scattered by a single group. The
pairwise differential intensities AMij (i 7 j) arise due to inter-
ference between image fields for the groups i andj and corre-
spond to the interference fringes that occur in ordinary light
microscopy. For groups that are well resolved from each
other, these pairwise differential intensities do not contrib-
ute. The self-differential intensities, AJii, arise from the in-
trinsic optical activity of each individual group and corre-
spond to well-resolved image points in ordinary microscopy.
The chief result of our theory then is that the circular differ-
ential image is composed of a collection of image spots and
interference fringes much like an image produced with unpo-
larized light, except that in the circular differential image
each feature has an apparent intensity proportional to the
circular differential intensity lij (which may be positive or
negative) instead of the total intensity, Iij = hjL + IijR-
To illustrate these properties, we have used the expres-

sions derived above to calculate dark-field circular differen-
tial images of the three helices shown in Fig. 2. Two of the
helices are the same size and have the same orientation with
respect to the incident light but have opposite handedness.
The third helix is right-handed and smaller by a factor of 3.
Fig. 3 compares the circular differential image with the usual
image. The light is incident from the bottom of Fig. 3 toward
the top, and the point of view is from directly above at 900 to
the direction of incidence. The incident wavelength is equal
to one-tenth the pitch of the large helices. The differential
images of the two large helices are roughly equal in shape
and size but opposite in sign; this indicates that the helices
have opposite handedness. The usual image does not reveal
the sense of the helix. We have used a very short wavelength
to make up for the low resolution required by the approxima-
tions in the theory.

Bright-Field Circular Differential Imaging. In the previous
discussion, we considered dark-field circular differential im-
aging, in which the sample is viewed at an angle to the inci-
dent illumination. When the lens and detector are placed di-

[10]

where the differential intensity AJij is given by

Mij (k,ko) = IijL -ijR,

with

'iJLR = 2Re {e-i ,R at (1-kk) a ELR}[11J

and rij = rj - ri * at is the Hermitian conjugate of ai (i.e.,
['t4mn = [ai]nm). In arriving at Eq. 11, we have taken Fr k,
which is valid for images in the portion of the detector screen
close to the lens axis.
The differential intensity Alij(kko) is the scattering optical

activity of the sample in the k direction due to the pair of
groups i and j (7, 10, 14). That is, if the two groups bear a
chiral geometrical relationship to each other, then AJij is the
difference in- the light intensity scattered in the direction of
view when the incident light is left- and right-circularly po-

FIG. 2. Three helices. The two large helices are equal in size
(pitch = 600 nm, radius = 300 nm, 3 turns long) but have opposite
handedness. The helix on the left is left-handed, and the helix on the
right is right-handed. The small helix has a pitch of 200 nm and radi-
us of 100 nm and is also 3 turns long.
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one originating from the incident fielol and one originating
from the scattered field:

E(rEO) = E1(r, 0) + Es(rEo), [12]

where e is the incident polarization, E is the total image
field, El is the image field due to the incident light, and Es is
the image field due to the forward-scattered light (given by
Eq. 6 with k = ko). The field El is given by

EI(roo) =

Cr x(k( x~~~~aeorture ex2 r Ifr
o (o

o~D - i(kr - ko) * r']dS,

b

where

ieC'= -e kEoeikn'
2irr

If the lens aperture has a finite diameter, the integration in
Eq. 13 is very difficult. However, this field is the one that
provides the bright background illumination in a bright-field
experiment, and, therefore, we expect it to be very slowly
varying over the surface of the detector screen. The smaller
the aperture the more slowly varying the background field is.
It can be shown that even if the aperture is taken to be infi-
nite, El is still approximately constant for the portion of the
detector screen near the lens axis. For an infinite aperture,
then, Eq. 13 becomes

EI(rEO)= Cfe x (ko x EO)( k ) exp[ (x + y2)]

[14]

FIG. 3. Images of the helices in Fig. 2. (a) Normal image. (b)
Circular differential image. In both images, the light is incident from
the bottom and the point of view is from above, at 900 to the direc-
tion of incidence. The aperture a, focal length f, and magnification
m of the lens have been chosen so that the resolution length, A = (m
+ 1)fX/a, is equal to 4X. The incident wavelength is 60 nm; the
maximum differential intensity is about 0.3 times as large as the total
image intensity. The small helix image intensities have been divided
by 5 to facilitate plotting. Continuous contours indicate positive val-
ues of the circular differential image whereas dotted contours indi-
cate negative values.

rectly behind the sample, the electric field arriving at the
lens plane has two parts: the forward-scattered electric field
and the incident electric field. In classical electrodynamics it
is the interference between these two fields that leads to ab-
sorptive effects. The primary difference between the bright-
field and dark-field differential imaging experiments is the
presence of these absorptive effects in the bright-field im-
age.
When Eq. 2 for the electric field at the near face of the lens

is substituted into Eqs. 3 and 5, two image fields will result

where we have used 1/r - 1/f = 1/rO, and the second equa-
tion holds for portions of the detector screen near the lens
axis (r ko).
To find the bright-field differential image we square Eq. 12

with E = EL or R (as defined in Eq. 9) and subtract:

IL IR = (IL IR)I
+ 2Re{EI(reL) * E*(rEL) - EI(r,4R) * ES(r, R)}

+ (IL IR)S, [15]

where

(IL- IR)I = IEI(r,EL)| - IEI(r,E)I2 =

and

(IL IR)S = IES(r,)L)2 - IEs(r, R)I2.

The quantity (IL - IR)1, the background illumination, does
not contribute to the differential image. The quantity (IL -
IR)s is just the dark-field differential ifnage evaluated for
scattering in the forward direction and has already been dis-
cussed. The remaining terms in Eq. 15 contain the absorp-
tive effects. Usually the incident field is much larger than the
scattered field, and so these absorption terms should give
the primary contributions to the bright-field image. In the
first Born approximation, the forward-scattered light cannot

[13]

404 Biophysics: Kc,,Iler et aL

a

(5)
(D 0

O (9)
(.o a

0 (9)
<9

0

1..\-,

, "'. 2ir iro
=tz c EO

k



Proc. NatL. Acad. Sci. USA 82 (1985) 405

contribute at all to the differential image, and (IL - IR)s = 0.
Substituting Eqs. 6 and 14 into Eq. 15, we obtain for the
absorption terms which dominate the circular differential im-
age:

CDI= -KZF(pi)AI bS [16]

where

ABabs = Iabs - iabs

with S = IM(iL,R * ai LR) and K = 2EA2L

abs is proportional to the difference in the absorbed inten-
sities for left- and right-circularly polarized light. The minus
sign in front of the right-hand side of Eq. 16 is due to the fact
that the transmitted intensity IL or IR in Eq. 15 is equal to the
incident intensity minus the absorbed intensity: IL,R = IOLAR
- ILR(in the absence of any appreciable forward scatter-
ing).

It can be shown that at the position of a well-resolved fea-
ture the bright-field circular differential image reduces to ap-
proximately the circular dichroism of the feature. In the
bright-field experiment, therefore, the circular differential
image is essentially a map of the circular dichroism of each
feature of the sample.

Usually the circular dichroism is sensitive to molecular
structures of size on the order of a few tens of angstroms (6).
The differential image in the bright-field case will therefore
mainly contain information on short-range structure in the
sample. However, if the sample is capable of appreciable
scattering, the difference in total scattering cross-sections
for left- and right-circularly polarized light can also contrib-
ute to the apparent circular dichroism. This contribution is
largest when the dimensions of the scatterer are of the order
of the incident wavelength. For incident wavelengths outside
the absorption bands of the groups, only the differential scat-
tering effects contribute to the circular dichroism. Inside the
absorption bands, the absorptive circular dichroism is usual-
ly dominant, though the scattering contribution also in-
creases as the absorption bands are approached (6).

SUMMARY AND DISCUSSION
The circular differential image can be thought of as a two-
dimensional mapping of the optical activity of the sample.
Each feature in the image is differentiated from surrounding
features by the differences in its optical activity rather than
by differences in absorption or refractive index. This has
two advantages. First, samples that have little or no contrast
in an ordinary optical image may show contrast in a differen-
tial image. In effect, areas of differing structure and confor-
mation are "stained" by their differing optical-activity prop-
erties. Second, the sign and magnitude of the optical activity
of each feature ate characteristic of structural properties that
are too small to be resolved by the microscope directly. This
should be especially valuable for parts of the system whose
structure changes with time or environment: for example,
the folding and unfolding of chromatin.
The optical activity of each feature in the sample manifests

itself differently at different angles of observation with re-

spect to the incident light and at different wavelengths of
light. When the sample is viewed from directly opposite the
source of illumination (bright-field experiment), the optical
activity is primarily circular dichroism and is sensitive main-
ly to short-range molecular structure when the incident
wavelength is inside the absorption bands. When the sample
is viewed at an angle to the illuminating beam (dark-field ex-
periment), the optical activity is due to circular differential
scattering and is sensitive mainly to structures with dimen-
sions similar to the incident wavelength. In the visible and
UV regions this means very long-range macromolecular
structure of dimensions on the order of thousands of ang-
stroms.

In the previous discussion, we have considered only thin
samples (that is, samples thin compared to the depth of field
of the imaging device but not necessarily two-dimensional).
Indeed, the form we have used for the scattered field (Eq. 1)
implies that all parts of the sample are in focus simultaneous-
ly. This has been adequate for our purposes here, but it is
worth pointing out that contributions to the image from out-
of-focus parts of the sample can be naturally accounted for in
the theory by adding extra electric fields to the scattered
field with the same form as in Eq. 1, but with different values
of the distance ro between a particular part of the sample and
the lens. The images from these extra fields will not satisfy
the thin lens equation, 1/r + 1/ro = 1/f, and so will not be in
focus, but they will contribute to the differential image. In
this respect then, the differential image is quite similar to the
normal image, and sectioning and Fourier-transform itnage-
analysis techniques should be applicable.
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