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The human cytomegalovirus immediate-early protein pUL37x1
induces the release of Ca2+ stores from the endoplasmic reticulum
into the cytosol. This release causes reorganization of the cellular
actin cytoskeleton with concomitant cell rounding. Here we dem-
onstrate that pUL37x1 activates Ca2+-dependent protein kinase Cα
(PKCα). Both PKCα and Rho-associated protein kinases are required
for actin reorganization and cell rounding; however, only PKCα is
required for the efficient production of virus progeny, arguing that
HCMV depends on the kinase for a second function. PKCα activation
is also needed for the production of large (1–5 μm) cytoplasmic
vesicles late after infection. The production of these vesicles is
blocked by inhibition of fatty acid or phosphatidylinositol-3-phos-
phate biosynthesis, and the failure to produce vesicles is corre-
lated with substantially reduced production of enveloped virus
capsids. These results connect earlier work identifying a require-
ment for lipid synthesis with specific morphological changes, and
support the argument that the PKCα-induced large vesicles are
either required for the efficient production of mature virus par-
ticles or serve as a marker for the process.
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Human cytomegalovirus (HCMV), a ubiquitous β-herpesvirus,
is a major cause of birth defects and an opportunistic agent

in immunosuppressed individuals (1). In addition, it has been
associated with glioblastoma and other cancers (2), cardiovas-
cular disease (3), and immune sensescence (4). Cytomegalovirus
is named for the morphological changes —enlarged cells with
nuclear and cytoplasmic inclusions—observed in cytomegalic
inclusion disease (5). Striking morphological changes have been
documented after infection of cultured fibroblasts with HCMV,
including cell rounding, enlarged nuclei with a distorted kidney-
like shape, and production of a membranous structure adjacent
to the concave surface of the nucleus known as the assembly
compartment (6–8).
Cell rounding is induced by the viral immediate-early protein,

pUL37x1 (9, 10). This membrane-associated protein accumu-
lates in the endoplasmic reticulum and mitochondria (11).
pUL37x1 blocks apoptosis, and thus is also known as the viral
mitochondria-localized inhibitor of apoptosis (12). Cell rounding
results from pUL37x1-induced release of Ca2+ from the endo-
plasmic reticulum into the cytosol, causing reorganization of the
actin cytoskeleton (10).
In the present study, we identified a cellular signaling pathway

activated by pUL37x1. Ca2+ mobilization was found to induce
activation of protein kinase Cα (PKCα), which is required for cell
rounding and the efficient production of progeny virus. PKCα-
dependent cell rounding was substantially blocked by Rho-
associated protein kinase (ROCK) inhibitors, implicating Rho
GTPases in the morphological change; however, inhibition of
rounding did not reduce HCMV yield. Inhibition of PKCα had
a second effect on the morphology of infected cells, blocking the
production of large cytoplasmic vesicles that accumulate during the
late phase of infection. Accumulation of these vesicles required two
enzymes that support lipid synthesis, acetyl-CoA carboxylase

and class III phosphatidylinsoitol 3-kinase (Vps34). Inhibition of
either enzyme not only blocked production of the vesicles, but
also reduced the yield of infectious progeny.

Results
HCMV pUL37x1 Induces Dynamic Changes in Cell Shape. During in-
fection of fibroblasts with HCMV, the earliest visible cytopathic
effect is a change in cell shape caused by pUL37x1 (9, 10). This
viral protein mobilizes Ca2+ from the endoplasmic reticulum
into the cytosol, which induces reorganization of the actin cyto-
skeleton and cell rounding. To confirm and quantify the effect of
pUL37x1 on cell shape, we used a cell-permeable fluorophore,
calcein AM, to monitor the shape of infected cells on confocal
microscopy. At 24 h after mock infection (Fig. 1A, Upper, mock),
cells exhibited an elongated and flattened morphology. When
these cells were infected with WT HCMV, they transformed
from long and thin to rounded at 24 h postinfection (hpi) (Fig.
1A, Upper, 24 hpi). Although individual cells varied, on average
infected cells displayed a 5.9-fold increase in height (z-axis) rela-
tive to mock-infected counterparts (P < 0.001) (Fig. 1B, Upper). At
72 hpi, the cells became less spherical, assuming a hemispherical
shape, with a 4.7-fold increase in the z-axis relative to mock-
infected (P < 0.001). Treatment with a cell-permeable calcium
chelator, BAPTA-AM, prevented the changes induced by in-
fection (Fig. 1A, Upper, +BAPTA).
To verify that the changes in cell morphology are related

specifically to pUL37x1, we expressed this protein in uninfected
fibroblasts. This induced the spherical shape, and treatment with
BAPTA-AM prevented the change (Fig. 1A, Lower, pUL37x1).
Conversely, a mutant virus (BADsubUL37x1) unable to express
pUL37x1, and thus unable to induce Ca2+ flux to the cytosol
(10), produced only modest changes in shape (1.3- and 1.6-fold
increase in the z-axis relative to mock-infected at 24 and 72 hpi,
respectively) (Fig. 1A, Lower, BADsubUL37x1; Fig. 1B, Lower,
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average z-axis). Whereas WT virus infection or pUL37x1 ex-
pression alone caused a marked topological change in all cells,
the total cell volume was variable when individual cells were
measured (Fig. 1B, Lower). This variation was expected, because
subconfluent cells at different stages of the cell cycle were
infected to allow precise delineation of cell boundaries for shape
determination. These experiments confirm that the previously
identified cytoskeletal reorganization is accompanied by pro-
found pUL37x1-dependent changes in cell shape.

HCMV pUL37x1 Activates PKCα. Given the role for Ca2+ in the
topological changes (Fig. 1) and cytoskeletal reorganization (10)
after infection, we hypothesized that the Ca2+-dependent kinase
PKCα might contribute to the process because it can modulate
the actin cytoskeleton (13, 14). Cytosolic Ca2+ induces the
translocation of Ca2+-bound PKCα to the plasma membrane,
where the kinase is activated although its interaction with diac-
ylglycerol (15). To test whether HCMV induces the translocation
of PKCα, we transfected fibroblasts with a plasmid expressing

PKCα fused to GFP (16, 17), and then mock-infected or infected
the cultures. Analysis of 2D optical sections by confocal mi-
croscopy revealed that a portion of PKCα-GFP was translocated
from the cytoplasm to foci at the plasma membrane at 8–16 hpi
with WT HCMV (Fig. 2, Upper, mock vs. WT), but not with
BADsubUL37x1 (Fig. 2, Lower Center and Right). Consistent with
a role for pUL37x1-driven Ca2+ flux, BAPTA-AM inhibited PKCα
translocation after infection with WT virus (Fig. 2, Lower Left).
Treatment with a PKCα-specific shRNA (Fig. 3A, Right) or

antagonist (Gö6976) substantially blocked remodeling of the
actin cytoskeleton and cell rounding at 24 hpi when assayed by
actin staining (Fig. 3A, Left) or by observing cell shape (Fig. 3B).
Consistent with an earlier report (18), WT virus also sub-
stantially reduced cell surface staining with vinculin (Fig. 3A,
Upper), a protein found at the intersection of actin bundles and
membrane attachment sites (19). Vinculin staining was not re-
duced by infection after treatment with PKCα-specific shRNA or
drug. PKCα-specific shRNA delayed the production of progeny
and reduced HCMV yield by a factor of nearly 100 (Fig. 3C), and
Gö6976 reduced virus yield to a similar extent (Fig. 3D). Thus,
PKCα activity is necessary for the morphological changes in-
duced by pUL37x1 and for the timely and efficient production of
progeny virus.
PKCα can activate the Rho GTPase, RhoA, by phosphory-

lating and inducing release of the rho guanine dissociation in-
hibitor (20). RhoA in turn can impact the actin cytoskeleton
(21, 22) through multiple downstream effectors, including the
Rho-associated protein kinases (ROCK1 and ROCK2) (23).
Because pharmacologic inhibition of ROCKs can alter fibro-
blast shape (24, 25), we tested for a role of the kinases in
the morphological changes induced by HCMV. We used two
structurally unrelated antagonists at doses expected to inhibit
both ROCKs (Y27632, 10 μM; GSK429286A, 140 nM). The
drugs substantially blocked the cell rounding normally observed
at 24 hpi with WT HCMV when assayed by actin staining (Fig.
4A) or by monitoring cell shape (Fig. 4B). The cells transitioned
directly to the hemispherical shape characteristic of the late
phase of infection. Although they altered the program of
morphological changes, neither drug influenced the yield of
HCMV (Fig. 4C). We conclude that the transient cell rounding
evident at 24 hpi is not required for optimal virus replication in
cultured fibroblasts.
Activated PKCα interacts with the primary caveolar protein,

caveolin-1 (26, 27). Caveolin-1 is a major constituent of lipid
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Fig. 1. Morphological changes induced by pUL37x1. (A) pUL37x1 induces
calcium-dependent shape changes after infection. Fibroblasts were mock-
infected or infected with WT or pUL37x1-deficient (subUL37x1) HCMV. Al-
ternatively, cultures (5 × 106 cells) were electroporated with 5 μg of
a pUL37x1 expression plasmid in the absence of infection. Cells were ana-
lyzed at 24 and 72 hpi or at 24 h after electrophoration by treatment with
5 μM fluorophore calcein AM for 1 h, followed by spinning disk confocal
Z-stack live cell imaging and reconstruction of 3D images. Where indicated,
cells were pretreated with 10 μM BAPTA-AM for 1 h before infection or
transfection. (B) Quantification of infected cell height and volume. (Upper)
Height and volume measurements of 10 individual cells selected from mock-
infected, WT-infected, and subUL37x1-infected fibroblasts treated with cal-
cein AM. (Lower) Average (Avg) height from the surface of the plate (z-axis)
and volume (Vol).
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Fig. 2. Calcium-dependent transport of PKCα to the plasma membrane
requires expression of pUL37x1. Fibroblasts were electroporated with 5 μg of
PKCα-GFP expression plasmid, infected 24 h later with WT or subUL37x1, and
assayed for fluorescence (green) at the indicated times after infection.
HCMV IE1 (red) was monitored to confirm infection, and DNA was stained
with DAPI (blue). Where indicated, cells were pretreated with 10 μMBAPTA-AM
for 1 h before infection or transfection.
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rafts (28, 29), which serve as dynamic signaling scaffolds (30) and
whose spatial distribution in the plasma membrane is driven in
part by proteins linked to the underlying cortical actin cyto-
skeleton (31, 32). Given the PKCα-dependent perturbation of
the cytoskeleton during infection (Fig. 3B) and its association with
caveolin, we tested the possibility that on infection, the kinase
might translocate to lipid rafts, whose proteins are experi-
mentally defined as detergent-resistant membrane (DRM) proteins.

Fibroblast membranes were solubilized with Triton X-100,
and DRM proteins were identified by flotation in sucrose gra-
dients. A portion of the PKCα floated near the top of the gra-
dient, coincident with the DRM marker ganglioside GM1 at 24
and 72 hpi with WT HCMV (Fig. 5A, Upper, fractions 8 and 9).
In contrast, PKCα from extracts of mock-infected or BADsu-
bUL37 virus-infected cells traveled with the detergent-soluble
fraction, as demonstrated by its coincidence with the transferrin
receptor (Fig. 5A, Lower, fractions 2–7).
At 72 hpi, a 45-kDa polypeptide that reacted with PKCα-

specific antibody was present in the DRM fraction in place of the
full-length 80-kDa protein (Fig. 5A, Upper Right, fractions 7–9).
Previous studies have shown that μ-calpain, a Ca2+-activated
protease, can cleave PKCα to produce a 45-kDa catalytic frag-
ment and a 36-kDa regulatory fragment (28, 33). When μ-calpain
was knocked down by shRNA treatment (Fig. 5B, Left), the
amount of the 45-kDa species in total cell extracts was reduced
at 72 hpi (Fig. 5B, Right), suggesting that the protease is re-
sponsible for PKCα cleavage during infection. All of the PKCα in
the DRM fraction was cleaved (Fig. 5A, Upper Right, lanes 7–9),
whereas only a portion of the total PKCα was cleaved (Fig. 5A,
Upper Right and Fig. 5B), indicating that μ-calpain acts at the
membrane. Knockdown of μ-calpain also decreased virus yield
(Fig. 3C), indicating that cleavage of PKCα or another target of
the protease is required for optimal virus production. A 45-kDa
fragment produced by μ-calpain cleavage has been reported to
exhibit constitutive PKCα activity (14, 34), raising the possibility
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Fig. 3. PKCα is required for actin reorganization after infection. (A) shRNA-
mediated knockdown of PKCα inhibits actin reorganization after infection.
(Right) Fibroblasts were treated with PKCα-specific shRNAs (1–3) or a non-
specific shRNA (NS), and kinase levels were assayed 10 d later by Western
blot analysis using antibody to PKCα. Cellular GAPDH was monitored as
a loading control. (Left) shRNA-treated cells were mock-infected or infected
with WT virus at a multiplicity of 3 pfu/cell. Treatment with 1 μM Gö6976,
a PKCα-specific inhibitor, was initiated at 1 h after infection and continued
until 24 hpi, when cultures were assayed for actin (green) and vinculin (red).
pUL37 (purple) was monitored to confirm infection, and DNA was stained
with DAPI (blue). (B) Reduced PKCα activity inhibits cell rounding at 24 hpi.
Fibroblasts received solvent (DMSO) or 1 μM Gö6976 beginning 1 h after
infection with WT or subUL37x1 and analyzed by treatment with 5 μM flu-
orophore calcein red-orange AM for 1 h, followed by spinning disk confocal
Z-stack live cell imaging and reconstruction of 3D images. Cultures received
fresh medium plus drug every 24 h. (C) PKCα and μ-calpain (μC-1) are re-
quired for optimal HCMV yield. Fibroblasts treated with a nonspecific shRNA
(black diamonds) or PKCα-specific shRNA (green squares) or μ-calpain (red
triangles) were infected with WT HCMV, and extracellular virus was quan-
tified by a TDIC50 assay. (D) Virus production was assayed by TDIC50 at 96 hpi
in cultures treated with 1 μM Gö6976.
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that over time, infection may uncouple PKCα from its normal
dependence on Ca2+ and lipids.

HCMV pUL37x1 Induces PKCα-Dependent Accumulation of Large
Cytoplasmic Vesicles. The cytoplasmic virion assembly compart-
ment (AC) is an HCMV-induced membranous structure formed
proximal to the concave surface of the infected cell nucleus
(6–8). The AC is thought to be where virions acquire tegument
proteins and envelopes. Early endosome antigen-1 (EEA1) is
a cellular protein present in early endosomes (35) that partic-
ipates in endosomal membrane fusion (36) and is localized to the
AC within infected cells (37, 38). Our findings confirm these
characteristics, showing that EEA1 was colocalized with two
markers of the AC, a Golgi component targeted by HPA lectin
and the late viral protein pUL99 (Fig. 6A, Upper). EEA1 and
pUL99 also localized at the periphery of large vesicles. Similar
vesicles have been described previously (7, 39). EEA1 binds to
the head group of phosphatidylinositol-3-phosphate (PtdIns3P)
(35, 40), and pUL99 associates with membranes through its
myristoyl modification (41), so it is likely that the two proteins
associate with the large vesicles at their membranes. The vesicles
ranged in size from approximately 0.5 μM to nearly 5.0 μM in
diameter (Fig. 6B, Upper Left), and they were also evident on

examination of cells by differential interference contrast (DIC)
microscopy (Fig. 6B, Upper Right). Although EEA1 and pUL99
appeared in the AC after infection with BADsubUL37x1, no
large vesicles with pUL99 were generated (Fig. 6A, Lower).
Furthermore, no large vesicles were detected in mutant virus-
infected cells by DIC microscopy (Fig. 6B, Lower Right), ruling
out the possibility that the vesicles accumulated but did not as-
sociate with the viral protein.
It was recently reported that siRNA-mediated knockdown of

EEA1 modulates the activation of PKCα (42). Given our results
showing a role for PKCα in the production of infectious virus
(Fig. 3C), we surmised that a PKCα-EEA1 functional connection
might be relevant to HCMV replication. We initially tested the
possibility that, like PKCα, EEA1 might associate with lipid rafts
after infection. EEA1 was present in the DRM fraction of WT-
infected cells, but not in that of mock-infected or BADsubUL37-
infected cells (Fig. 6C). Whereas only full-length (180 kDa)
EEA1 protein was detected in mock-infected or BADsubUL37x1-
infected cells, both full-length protein and three more rapidly mi-
grating bands (∼70, 50, and 40 kDa) reacted with the EEA1-specific
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antibody in the DRM fraction of WT virus-infected cells. The
origin and functional significance of these fragments are un-
known; nevertheless, we can conclude that PKCα and EEA1
cosediment with the DRM fraction in response to the action
of pUL37x1.
Because EEA1 normally localizes to the early endosome

membrane (35), its association with the large pUL99-positive
vesicles suggests that they might be functional early endosomes.
To test this possibility, we monitored the uptake of Alexa Fluor
594-labeled dextran from the medium, an assay in which the
dextran accumulates in early endosomes (43). The pUL99-
positive vesicles were again readily identified by DIC imaging
(Fig. 7, yellow arrows). Although small vesicles internalizing
labeled dextran were clearly visible, there was no evidence of
dextran uptake into the large vesicles at 96 or 120 hpi (Fig. 7,
Top and Middle). Furthermore, shRNA-mediated knockdown
of Vps34 showed no diminution of the Alexa Fluor 594 signal in
the small vesicles (Fig. 7, bottom panels), in agreement with
previous observations (44). These results suggest that the large
vesicles are not functional early endosomes.
Given the colocalization of PKCα and EEA1 in the DRM

fraction of infected cells, we tested the possibility that PKCα is
required for accumulation of the large vesicles. Treatment of

infected cells with a PKCα-specific shRNA (Fig. 8A) or antag-
onist (Fig. 8B) blocked vesicle formation, demonstrating a role
for the kinase in their generation. DIC microscopy readily
detected the vesicles in the absence of drug (Fig. 8 A and B,
Upper Right), but failed to detect them when PKCα activity was
reduced (Fig. 8 A and B, Lower Right), ruling out the possibility
that vesicles accumulate lacking pUL99.

Vps34 Kinase Is Required to Generate the Large Vesicles and for
Envelopment of Capsids. Vps34 phosphorylates phosphatidylino-
sitol to generate PtdIns3P. The fact that EEA1 binds to PtdIns3P
within endosomes (36) led us to explore the role of Vps34 during
infection. As expected, shRNA-mediated knockdown of Vps34
(Fig. 9A, Left) reduced PtdIns3P levels in uninfected fibroblasts
by a factor of 7–8 (Fig. 9A, Right). The knockdown eliminated
accumulation of the large pUL99-positive vesicles in WT virus-
infected cells (Fig. 9B, Right), whereas a nonspecific shRNA had
no effect on the production of these vesicles (Fig. 9B, Left).
Electron microscopy (Fig. 9C) showed that all cytoplasmic cap-
sids observed in infected cells treated with a nonspecific shRNA
were enveloped, whereas <1% of capsids were enveloped af-
ter treatment with Vps34-specific shRNA (Fig. 9D, Left).
Knockdown of Vps34 did not significantly alter the number of
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Fig. 7. Large infection-specific cytoplasmic vesicles do not exhibit early endosome activity. (Top) Fibroblasts were infected with WT HCMV and 96 h later
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cytoplasmic capsids (Fig. 9D, Center), but the production of
infectious virus was reduced by ≥1,000-fold (Fig. 9D, Right),
consistent with the loss of enveloped capsids. Virus yield was
also reduced by pharmacologic inhibition of Vps34 with 3-
methyladenine.
As noted above, the C-terminal FYVE domain of EEA1

binds to the head group of PtdIns3P (35, 40). Transfection
with a plasmid expressing a dimerized EEA1 FYVE domain
(2xFYVE-GFP) (45) before infection blocked the production of
pUL99-containing vesicles (Fig. 10A), presumably because
2xFYVE-GFP acted as a dominant negative protein, preventing
the interaction of EEA1 with PtdIns3P. To confirm the re-

lationship between de novo synthesis of PtdIns3P and the ac-
cumulation of the large pUL99-containing vesicles, we assayed
for the presence of PtdIns3P in the vesicles using the GST-
2xFYVE reporter (Fig. 10B). The vesicles contained PtdIns3P,
as predicted by the presence of EEA1 (Fig. 6A) and their Vps34-
dependent accumulation (Fig. 9B).
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Fig. 8. PKCα is required for the production of large cytoplasmic vesicles
after infection. (A) Knockdown of PKCα blocks production of large vesicles.
Fibroblasts were treated with PKCα-specific shRNA or a nonspecific shRNA
(NS), as described for Fig. 3. Cells were infected with WT virus and assayed by
immunofluorescence for pUL99 (green) and actin (red) or by DIC microscopy
at 96 hpi. (B) A PKCα antagonist blocks production of large vesicles. Fibro-
blasts were treated with solvent (DMSO) or 1 μM Gö6976 beginning 1 h after
infection with WT virus. Cells received fresh medium with drug every 24 h,
and were assayed by immunofluorescence for pUL99 (green) or by DIC mi-
croscopy at 96 hpi. Arrows indicate large vesicles identified in the immu-
nofluorescent and DIC images of the same cell.
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Fig. 9. Vps34 is required for the production of large cytoplasmic vesicles
and enveloped HCMV progeny. (A) Vps34 is required for the production of
vesicles. (Left) Fibroblasts were treated with nonspecific (NS) or Vps34-spe-
cific shRNAs (1 and 2) and 10 d later assayed by Western blot analysis using
Vps34-specific antibody. GAPDH was assayed as a loading control. (Right) At
10 d after treatment with shRNAs, fibroblasts were assayed for PtdIns3P
content. (B) At 10 d after treatment with shRNAs, fibroblasts were infected
with WT HCMV and assayed for pUL99 (green) and actin (red). (C) Vps34 is
required for the efficient production of infectious, enveloped virions. Rep-
resentative electron micrographs are shown, with red arrows denoting
enveloped particles and yellow arrows denoting capsids within cells treated
with nonspecific or Vps34-specific shRNA after infection with WT virus. (D)
Quantification of encapsidation and yield. (Left) A total of 200 cytoplasmic
capsids were counted in nonspecific and Vps34-specific knockdown cells at
96 hpi with WT virus. (Center) Enveloped and nonenveloped capsids were
counted in 50 fields, and the average ± SE numbers were determined.
(Right) Fibroblasts treated with a nonspecific shRNA, Vps34-specific shRNA,
or 5 mM 3-methyladenine (3-MA), added at 1 h after infection, were infected
with WT HCMV, and extracellular virus yields were determined by plaque
assay at 120 hpi.
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To further probe the requirement for de novo synthesis of
lipids to produce the vesicles, we treated infected cells with 5-
tetradecyloxy-2-furoic acid (TOFA) (46). This drug inhibits
acetyl-CoA carboxylase, blocking the production of malonylCoA,
which is required by both fatty acid synthase and elongases to
produce fatty acids. We have shown previously that this drug
reduces the yield of HCMV by >1,000-fold (47), and here we
found that it blocked the production of the large pUL99-positive
vesicles as well (Fig. 10C, Upper). Soraphen A, a second acetyl-
CoA carboxylase inhibitor (43), also blocked the production of
large vesicles (Fig. 10C, Lower Left). DIC microscopy failed to
detect the vesicles in the presence of soraphen A (Fig. 10C,

Lower Right), ruling out the possibility that pUL99-deficient
vesicles accumulate.

Discussion
Multiple lines of evidence demonstrate that PKCα is activated by
pUL37x1 after HCMV infection of fibroblasts: (i) pUL37x1 in-
duced the Ca2+-dependent translocation of the kinase to the
plasma membrane (Fig. 2), a hallmark of PKCα activation; (ii)
the kinase resided in the DRM fraction after infection (Fig. 5A),
consistent with earlier reports that activated PKCα interacts with
caveolin-1 (26, 27), a constituent of lipid rafts (28, 29); and (iii)
inhibition of PKCα activity reduced the yield of infectious virus
(Fig. 3 C and D).
We have identified two consequences of PKCα activation.

First, the kinase altered cell shape. Both PKCα activity (Fig. 3 A
and B) and ROCK activity (Fig. 4 A and B) were required to
induce cell rounding at 24 hpi. Only PKCα was critical for the
efficient production of progeny virus (Figs. 3 C and D and 4C),
arguing that cell rounding is not required for optimal virus
replication. Second, PKCα (Fig. 8) and de novo lipid synthesis
(Figs. 9B and 10C) were required for the accumulation of large
vesicles within infected cells, and their appearance correlated
with the efficient envelopment of capsids to produce infectious
progeny (Fig. 9 C and D). These vesicles link earlier observations
showing a requirement for de novo lipid synthesis to produce
HCMV progeny (47, 48) with a specific morphological change in
infected cells.
The effect of pUL37x1 on cell shape was confirmed by analysis

of 3D reconstructions of cells loaded with a fluorescent dye,
showing that fibroblasts undergo dynamic Ca2+-dependent mor-
phological changes as infection proceeds (Fig. 1). Uninfected
fibroblasts were elongated and flat. By 24 hpi, the cells were
spherical, and by 72 hpi, they converted to a more elongated,
hemispherical shape. The dynamic changes in shape might result
from a transient effect of Ca2+ mobilization; that is, the bulk of
stored Ca2+ might be released to the cytosol and activate PKCα
and ROCK signaling when pUL37x1 first accumulates. Alter-
natively, the virus or cell might modulate Ca2+-signaling path-
ways as the infection proceeds, driving changes in shape. For
example, μ-calpain–mediated cleavage (Fig. 5) might generate
constitutive PKCα activity (14, 34). The inhibition of p53 tran-
scriptional activity by HCMV (49, 50) also could contribute to
the change in shape, because p53-deficient mouse fibroblasts
cultured in 3D matrices undergo a ROCK-dependent transition
from an elongated to spherical morphology (24). One conse-
quence of p53 loss is increased cell movement, which could
support the spread of HCMV within an infected host. Indeed,
the levels of many cell-surface adhesion molecules change after
infection (51), and the altered shape could result from multiple
changes that promote detachment of infected cells from their
substrates. Thus, altered cell shape might contribute to the
spread of virus within an infected host via cell motility rather
than mediating a cell-autonomous effect on virus yield.
Additional morphological changes besides altered cell shape

were noted after infection with HCMV (6). The nucleus was
enlarged and assumed a kidney shape, the viral AC was formed,
and large cytoplasmic vesicles accumulated (Fig. 6 A and B). The
vesicles, which have been reported previously (7, 39), ranged in
diameter from approximately 0.5 μM to nearly 5 μM. They
appeared late during the infection cycle, and the EEA1 early
endosome marker and pUL99 virion protein localized at their
periphery. The large vesicles did not accumulate after infection
with a pUL37x1-deficient virus, when the AC was visualized by
staining with multiple markers (Fig. 6A).
How does pUL37x1 control formation of the large vesicles?

PKCα activity induced by the viral protein (Fig. 2 and Fig. 5A) is
required (Fig. 8). However, although the kinase can localize to
early and late endosomes (52) as well as recycling endosomes
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Fig. 10. Accumulation of large vesicles during the late phase of infection
requires de novo fatty acid biosynthesis and PKCα activity. (A) A dimerized
FYVE motif blocks production of infection-specific vesicles. Fibroblasts re-
ceived no plasmid (Left) or received a plasmid expressing 2xFYVE-GFP
(Right), and were infected 24 h later with WT virus. Cells were assayed at 96
hpi for 2xFYVE-GFP (green), pUL99 (red), and the Golgi tag, HPA lectin
(purple). (B) Infection-specific vesicles contain PtdIns3P. WT-infected fibro-
blasts were assayed at 96 hpi for 2xFYVE-GFP binding (purple), pUL99
(green), and EEA1 (red). Arrows identify vesicles in the immunofluorescent
and DIC images of the same cell. (C) Acetyl-CoA carboxylase inhibitors block
the accumulation of infection-specific vesicles. Fibroblasts were treated with
solvent (DMSO), 10 μg/mL TOFA, or 100 nM soraphen A starting at 1 h after
infection with WT virus. Cells received fresh medium with drug every 24 h,
and were assayed for pUL99 (green) or by DIC microscopy at 96 hpi.
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(53), how the enzyme supports formation of the large vesicles is
unclear. Their production also requires de novo fatty acid (Fig.
10C) and PtdIns3P biosynthesis (Fig. 9B), leading us to speculate
that pUL37x1 is acting to facilitate their genesis in part through
a second Ca2+-dependent kinase, calmodulin kinase kinase
(CaMKK). CaMKK has been shown to be required for HCMV-
induced activation of glycolysis and efficient production of virus
progeny (54), and it could be activated by pUL37x1-induced release
of Ca2+ stores into the cytosol. Because elevated flux through
central carbon metabolism leads to increased efflux of carbon to
the fatty acid biosynthetic pathway in HCMV-infected cells (47),
pUL37x1-mediated activation of CaMKK might facilitate the de
novo lipid synthesis required for production of the large vesicles.
Although the vesicles contain PtdIns3P and EEA1 (Fig. 10B),

markers of early endosomes (35, 36), they did not accumulate
dextran from the medium (Fig. 7), as would have been expected
for functional early endosomes (43). The vesicles could be
byproducts of elevated lipid synthesis. Newly synthesized lipids
might initially contribute to membrane formation within the AC,
and the large vesicles might subsequently arise from fusion of AC
membranes during the late phase of infection. As a result, they
could be functionally inert or redundant with smaller vesicles
located in the AC. If this were the case, then pUL37x1 might
modify the AC to facilitate the envelopment of capsids. Alter-
natively, because inhibition of large vesicle formation by abro-
gation of Vps34 activity (Fig. 9B) was correlated with reduced
envelopment of capsids and reduced production of progeny virus
(Fig. 9 C and D), it is conceivable that HCMV capsids also
mature at the large vesicles; that is, envelopment might occur
both within the AC and at the large vesicles.
HCMV pUL37x1 causes the release of Ca2+ stores, initiating

a cascade of events required for the efficient production of viral
progeny. The identification of PKCα as a key element of this
cascade provides a framework for further dissection of the
complex interplay between signal transduction and morphologi-
cal alterations after HCMV infection.

Methods
Viruses, Cells, Plasmids, and Drugs. WT HCMV strain AD169 (BADwt) and
a pUL37x1-deficient derivative (BADsubUL37x1) have been described pre-
viously (10, 55). HCMV was propagated in primary human foreskin fibro-
blasts maintained in DMEM containing 10% FCS. Infectious HCMV was
quantified by a tissue culture infectious dose 50 (TCID50) assay on fibroblasts,
and all infections were performed at a multiplicity of 5 pfu/cell unless
specified otherwise.

Plasmids expressing pUL37x1-GFP (a gift from A. Watson, Children’s Na-
tional Medical Center, Washington, DC) (10), PKCα-GFP (a gift from
C. Larsson, Lund University, Lund, Sweden) (16), and 2xFYVE-GFP (a gift from
H. Stenmark, Oslo University Hospital, Oslo, Norway) (56) have been de-
scribed previously. The PKCα inhibitor Gö6976 (Sigma-Aldrich) (57), ROCK
inhibitors Y27632 (Enzo Life Sciences) (58) and GSK429286A (Selleckchem)
(59), acetyl-CoA carboxylase inhibitors 5-tetradecyloxy-2-furoic acid (TOFA;
Cayman) (46) and soraphen A (a gift from Kadmon Pharmaceuticals) (60),
and 3-methyladenine (Sigma-Aldrich) (61) were prepared in DMSO and di-
luted into cell culture medium at the indicated final concentrations. Cultures
received fresh drug-containing medium every 24 h.

Immunofluorescence Assays. Indirect immunofluorescence was performed
using antibodies to HCMV pUL37x1 (10), HCMV pUL99 (62), HCMV IE1 (63),
EEA1 (Enzo Life Sciences), and vinculin (Sigma-Aldrich), together with Alexa
Fluor 568-conjugated anti-mouse secondary antibody (Invitrogen). Actin was
detected with Alexa Fluor 488 phalloidin (Invitrogen), and the Golgi tag
Alexa Fluor 488-conjugated lectin HPA (Life Technologies) served as
a marker for the HCMV AC. Nuclear DNA was stained with DAPI (Invitrogen).
Fluorescent and DIC images were captured with a Leica SP5 confocal mi-
croscope, and images were analyzed with Volocity 3D image analysis
software (Perkin-Elmer).

To monitor cell shape and volume, 5 μM calcein green AM or calcein red-
orange AM (Invitrogen) was added to culture medium, and cells were incubated
for 30 min at 37 °C. Single live cells were examined by confocal laser scanning
fluorescence microscopy (Perkin-Elmer Ultraview RS-3), image stacks were ren-
dered into 3D images, and cell volumes were determined using Volocity 3D
image analysis software.

To monitor endocytosis, cells were incubated with 3 mg/mL rhodamine B-
labeled dextran (10 kDa; Life Technologies) for 10 min at 37 °C, washed, and
then refed with dextran-free medium. After incubation at 37 °C, internalized
dextran was observed by fluorescence microscopy.

Knockdown of Cellular Protein Expression. Knockdown experiments used
shRNAs (Sigma-Aldrich) with the following target sequences: PKCα shRNA1,
5′-CCGGCTTTGGAGTTTCGGAGCTGATCTCGAGATCAGCTCCGAAACTCCAAA-
GTTTTT-3′; PKCα shRNA2, 5′-CCGGCGAGCTATTTCAGTCTATCATCTCGAGA-
TGATAGACTGAAATAGCTCGTTTTT-3′; PKCα shRNA3, 5′-CCGGCATGGAAC-
TCAGGCAGAAATTCTCGAGAATTTCTGCCTGAGTTCCATGTTTTT-3′; μ-calpain
shRNA1, 5′-CCGGAGAGGAGATTGACGAGAACTTCTCGAGAAGTTCTCGTCAA-
TCTCCTCTTTTTT-3′; μ-calpain shRNA2, 5′-CCGGCGACATGGAGACTATTGGCT-
TCTCGAGAAGCCAATAGTCTCCATGTCGTTTTT-3′; Vps34 shRNA1, 5′-CCGG-
CCACGAGAGATCAGTTAAATACTCGAGTATTTAACTGATCTCTCGTGG TTTTTG-
3′; Vps34 shRNA2, 5′-CCGGCCAAGTGAGAATGGGCCAAATCTCGAGATTTGG-
CCCATTCTCACTTGGTTTTTG-3′; nonspecific shRNA, 5′-CAACAAGATGAAGA-
GCACCAATTCAAGAGATTGGTGCTCTTCATCTTGTTGTTTTTTGT-3′.

Vectors (pLKO.1-puro) expressing shRNAs were packaged, and fibroblasts
were transduced with vectors on three consecutive days, selected using 3 μg/
mL puromycin, and then used for HCMV infection.

Lipid Raft/DRM Assay. Lipid rafts were analyzed using Optiprep sucrose
gradients (64). Approximately 107 fibroblasts were harvested by scraping,
washed twice with culture medium, and lysed at 4 °C in 1 mL of lysis buffer
(1% Triton X-100, 25 mM Tris·HCl pH 6.8, 150 mM NaCl, 5 mM EDTA, 5 mM
iodoacetamide, and protease inhibitor mixture; Roche Diagnostics). The ly-
sate was passed 15 times through an 18-gauge needle, rocked in a tube for
30 min at 4 °C, passed again through the needle, and then mixed with 2 mL
of 4 °C Optiprep (Sigma-Aldrich). A 3-mL sample was placed into an SW41
ultracentrifuge tube, overlaid with 5 mL of 4 °C 30% (vol/vol) Optiprep
followed by 4 mL of 5% (vol/vol) Optiprep, both in 25 mM Tris·HCl pH 6.8,
150 mM NaCl, and 5 mM EDTA. Samples were centrifuged at 200,000 × g at
4 °C for 20 h. Fractions was analyzed by Western blot assay using antibodies
to transferrin receptor (Zymed), EEA1 (Enzo Life Sciences), PKCα, and
μ-calpain (Cell Signaling). Ganglioside GM1 was assayed using biotinylated
cholera toxin B subunit (Sigma-Aldrich).

PtdIns3P Staining and Quantification. Endogenous PtdIns3P was detected
using a biotinylated-GST:2xFYVE probe. The 2xFYVE domain from
a GFP:2xFYVE construct (56) was excised and ligated into pGEX-2T. Control
GST and GST-2xFYVE were purified using glutathione resin (Clontech), fol-
lowed by anion-exchange chromatography with Source 15Q medium (GE
Healthcare). Proteins were then biotinylated with Sulfo-NHS-LC-Biotin
(Pierce). Free biotin was separated from biotinylated protein via two se-
quential runs on a HiTrap desalting column (GE Healthcare), and fractions
containing the biotinylated probe were pooled and stored at −80 °C. To
visualize FYVE binding domains, fibroblasts were washed twice with PBS,
fixed with 4% paraformaldehyde in PBS for 12 h, and then permeabilized
with 0.05% saponin (Sigma-Aldrich) in PBS for 10 min. Cells were then
washed with PBS and quenched with 60 mM NH4Cl2, blocked with 5% BSA in
PBS for 1 h, and incubated with 40 μg/mL biotin-GST:2xFYVE in PBS con-
taining 2% BSA for 1 h, all at room temperature. Cells were then washed
with 2% BSA in PBS and incubated with 1:1,000 streptavidin-Alexa Fluor 647
(Life Technologies) in PBS with 2% BSA for 1 h. Nuclei were stained with
1 μg/mL Hoechst 33342 (Life Technologies).

PtdIns3P was quantified by competitive ELISA (Echelon Biosciences) in
which experimental samples were matched to a standard curve generated
by simultaneous readings of known amounts of PtdIns3P.
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