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Abstract
The accumulation of misfolded proteins (e.g. mutant or damaged proteins) triggers cellular stress
responses that protect cells against the toxic buildup of such proteins. However, prolonged stress
due to the buildup of these toxic proteins induces specific death pathways. Dissecting these
pathways should be valuable in understanding the pathogenesis of, and ultimately in designing
therapy for, neurodegenerative diseases that feature misfolded proteins.

Introduction
Neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and prion protein diseases
all share a common feature: the accumulation and aggregation of misfolded proteins [1–3].
The presence of misfolded proteins elicits cellular responses that include an endoplasmic
reticulum (ER) stress response that may protect cells against the toxic buildup of misfolded
proteins [3–7]. Accumulation of these proteins in excessive amounts, however, overwhelms
the ‘cellular quality control’ system and impairs the protective mechanisms designed to
promote correct folding and degrade faulty proteins, ultimately leading to organelle
dysfunction and cell death [1–10].

Since the degradation of cellular proteins in general is coupled, via the ubiquitin-mediated
proteasomal degradation pathway, to ER dislocation of many ER substrates [3,9,10], any
conditions that block ER retrotranslocation of proteins and/or proteasome function and
degradation may also result in the accumulation of misfolded protein substrates within the
ER. Thus, misfolded proteins trigger the ER stress response, whether the misfolded proteins
build up within, or outside, the ER (e.g. in the nucleus or cytosol) and transmit toxic
responses across cellular compartments. Misfolded proteins may be deposited as
microscopically visible inclusion bodies or plaques within cells or in extracellular spaces,
and have a high propensity to interact with a wide range of cellular targets to elicit cellular
toxicity [1]. Toxicity may arise due to one or more of a number of factors: inhibition of
synaptic function; loss of synpases leading to disruption of neuronal functions; sequestration
of critical cellular chaperones and vital transcription factors by misfolded proteins;
interference with numerous signal-transduction pathways; alteration of calcium homeostasis;
release of free radicals and consequent oxidative damage; dysfunction of the protein
degradation pathway through the ubiquitinproteasome system; and/or induction of cell-death
proteases leading to programmed cell death.

© 2004 Elsevier Ltd. All rights reserved.
1rrao@buckinstitute.org
2dbredseen@buckinstitute.org

NIH Public Access
Author Manuscript
Curr Opin Cell Biol. Author manuscript; available in PMC 2014 March 31.

Published in final edited form as:
Curr Opin Cell Biol. 2004 December ; 16(6): 653–662. doi:10.1016/j.ceb.2004.09.012.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This review highlights recent advances in understanding the complex regulation of ER stress
and the unfolded protein response (UPR), and their relevance to apoptosis and
neurodegenerative diseases that feature misfolded proteins.

Endoplasmic reticulum stress
The ER is a principal site for biosynthesis of proteins, steroids, cholesterol and other lipids.
It also serves as a site of calcium storage and calcium signaling. The ER serves several
important functions, including the post-translational modification, folding and assembly of
newly synthesized secretory proteins, and its proper functioning is essential to cell survival.
Nascent secretory and membrane proteins that are translocated into the ER lumen start to
fold co-translationally. Post-translational modification, including proper folding, assembly
of individual subunits and oligomerization, is necessary for optimal function. Each co-
translational and post-translational step requires specific and sequential interaction with a
distinct chaperone protein. These chaperone proteins perform diverse roles, including
catalyzing isomerization reactions, maintaining proteins in a folding-competent state,
preventing luminal protein transit through the secretory pathway, and regulating retro-
translocation of misfolded proteins for degradation. Besides providing a unique oxidizing
environment for protein folding, the ER also plays a critical role in discriminating between
normal (native) and abnormal (mutant) proteins. As a membranous compartment associated
with the critical functions mentioned above, the ER is extremely sensitive to changes that
affect its structure, integrity and function. [6,8,11,12]. Thus, changes in calcium homeostasis
leading to calcium depletion from the ER lumen, inhibitors of protein glycosylation,
inhibitors of disulfide-bond formation, virus infection, hypoxia, ischemia and growth factor
depletion can all disrupt protein synthesis, translation and folding, resulting in unfolded or
misfolded proteins. The accumulation of unfolded and/or misfolded proteins causes an
imbalance between the synthesis of new proteins and the ER’s ability to process newly
synthesized proteins, resulting in the failure of the ER to cope with the excess protein load,
which is termed ‘ER stress’ [5,8,13–15]. Cells in turn activate an integrated intracellular
signaling cascade — the ‘unfolded protein response’ — to avert ER stress.

The unfolded-protein response
In cells from all organisms, ER stress may elicit a set of cellular responses collectively
referred to as the UPR [11,12,16,17] (Figure 1). UPR activation results in, first, a transient
attenuation in the rate of protein synthesis, second, an upregulation of genes encoding
chaperones and other proteins that prevent polypeptide aggregation and participate in
polypeptide folding, and third, retro-translocation and degradation of ER-localized proteins.
These cellular responses minimize the accumulation and aggregation of misfolded proteins
by increasing the capacity of the ER machinery for folding and degradation [11,16,18]
(Figure 1).

UPR and the molecules involved in the UPR signaling pathway were first described in the
yeast Saccharomyces cerevisiae. In eukaryotes, the UPR is a is a coordinated, regulated
response involving three sensor proteins: PERK (PKR-like ER kinase), IRE1 (inositol-
requiring transmembrane kinase/endoribonuclease) and ATF6 (activating transcription
factor 6) [14] (Figure 1). The presence of misfolded proteins and UPR activation triggers
PERK oligomerization and autophosphorylation. Active PERK phosphorylates eukaryotic
translation initiation factor 2α (eIF2α), rendering it inactive and blocking protein translation.
Inactivation of eIF2α prevents the further influx of nascent proteins into the ER lumen, thus
limiting the incoming protein load [19–22] (Figure 1).
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The accumulation of misfolded proteins and UPR activation also lead to the translocation of
ATF6 to the Golgi compartment, where it undergoes regulated intramembrane proteolysis
(RIP) by proteases S1P and S2P, yielding a free cytosolic domain that, following nuclear
translocation, triggers transcriptional upregulation of ER chaperone proteins like GRP78 and
of bZIP transcription factors like CHOP/GADD153 [23,24•,25,26••, 27••,28–30]. The
chaperone proteins facilitate and promote the productive folding of proteins and protein
complexes, maintaining them in a folding-competent state and preventing their aggregation.
UPR activation also induces homodimerization, autophosphorylation and activation of IRE1,
an ER resident transmembrane serine/ threonine kinase receptor protein that also possesses
an intrinsic endoribonuclease activity. Activated IRE1 cleaves a preformed substrate mRNA
at two sites through its endoribonuclease action, resulting in the removal of a 26-nucleotide
intron from a target mRNA [31–33]. The two ends of the cleaved mRNA are ligated
together by tRNA ligase and the newly formed mRNA encodes a transcription factor X-box-
binding protein (XBP-1). XBP-1 binds and activates the promoters of several ER-stress-
inducible target genes that facilitate the retro-translocation and ER-associated degradation of
misfolded proteins [26••,27••,34]. Thus, all of the above-mentioned specific signaling
pathways that constitute the UPR operate to ensure that the protein folding capacity of the
ER is not overwhelmed (Figure 1).

GRP78: the master regulator
The glucose-regulated proteins (GRPs) are Ca2+-binding chaperone proteins with protective
properties whose transcription is induced in response to several stimuli that disrupt ER
structure and function [6,17]. One of the best-characterized glucose-regulated proteins is
GRP78, a 78 kD protein also referred to as BiP. The induction of GRP78 is required to block
ER stress signals, maintain ER function and integrity, ensure protein folding and protect
cells from misfolded protein toxicity [6,17]. It has been well established that diverse
misfolded proteins that accumulate in the cell trigger the same ‘quality control’ pathway,
mainly by converging on GRP78, the ‘master molecule’. GRP78 binds to all three ER stress
sensors (PERK, IRE1 and ATF6) through its peptide-binding domains, and keeps them in an
inactive conformation [18,30,35,36] (Figure 2). The peptide-binding domain of GRP78 also
serves as the binding region for misfolded proteins. When misfolded proteins accumulate in
the cell, they bind to GRP78 and disrupt its interaction with these proximal stress sensors
[11,16,18,36]. While free IRE1 and PERK homodimerize and undergo autophosphorylation
and activation, ATF6 transits to the Golgi for proteolytic activation.

Although GRP78 exists as an ER lumen protein [6,17], several reports have suggested that
GRP78 and its mutant forms may alternatively be expressed on the cell surface, exist as ER
transmembrane proteins, or redistribute to the cytosol and nucleus [37–41,42•,43•]. Recent
studies indicate that either a cytosolic pool of GRP78, or a subpopulation of GRP78 existing
as an ER transmembrane protein, may associate with caspases-7 and -12 and prevent their
activation and release [42•,43•]. These studies highlight the importance of GRP78 as an anti-
apoptotic protein, and provide a link between ER stress, the unfolded protein response and
the cell death program.

ER-stress-induced cell death
As stated earlier, prolonged ER stress and UPR activation completely overwhelm the
cellular protective mechanisms, ultimately triggering cell death. Although there are several
reports implicating various molecules as mediators of ER-stress-induced cell death, the
pathway that links ER stress to programmed cell death is still relatively poorly understood. It
has generally been assumed that the elimination of cells undergoing severe ER stress is
desirable at the organismal level, and the upregulation of GRP78 in some malignant tumors
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is compatible with (although not proof of) this notion [43•,44] In any case, prolonged ER
stress is indeed coupled to specific independent death pathways, as well as triggering cross-
talk between the intrinsic and extrinsic apoptotic pathways.

Studies from multiple laboratories have uncovered the roles of several ER-stress-induced
cell death modulators and effectors through the use of biochemical, pharmacological and
genetic tools. The ER-stress-induced cell death modulators include (but are not limited to)
members of the Bcl-2 family (Bcl-2, Bcl-xL, Bax, Bad, Bik, Noxa, and Bak) [45–47],
p29Bap31 [48–50], c-Abl tyrosine kinase [51], and p53-dependent gene products like
PUMA/Bbc3 and scotin [52,53]. Bcl-2 family members including Bcl-2, Bcl-xL, Bax, Bad,
Bik and Bak have been shown to be associated with the ER, suggesting the involvement of
the Bcl-2 family proteins in ER calcium homeostasis and ER-stress-induced cell death [54••,
55••,56–61].

CHOP/Gadd153, a transcription factor induced during ER stress and subsequently activated
by p38 MAP (mitogen-associated protein) kinase, may also function as an ER-stress-
induced cell death modulator [6,13,62,63]. Deletion of the CHOP gene leads to an
attenuation in the cell death usually induced by ER stress [64,65]. Although the
identification of the downstream target genes that respond to CHOP/Gadd153 is still
unclear, it has been suggested that Gadd153 may promote ER-stress-induced cell death by
down-regulating Bcl-2 expression [65].

Another ER-stress-induced effector protein is BAP31, an ER transmembrane protein that is
cleaved by caspase-8, leading to ER calcium release and subsequent uptake by
mitochondria, followed by mitochondrial cytochrome c release, further caspase activation
and apoptosis. Thus, Bap31 appears be a coordinator of cell death signals between the
extrinsic pathway, the ER and the mitochondrial pathway(s) [45,66,67].

Recent data have also implicated the calcium-binding protein apoptosis-linked gene 2
(ALG-2) and valosin-containing protein (VCP) as mediators of ER-stress-induced
programmed cell death (PCD). However, there is a growing realization that some such
mediators may be specific for a given inducer or set of inducers: for example, ALG-2 was
found to mediate ER-stress-induced apoptosis when thapsigargin, but not tunicamyin or
brefeldin-A, was the inducer; VCP, however, was found to be a mediator for all three
inducers [68]. Together with caspase-12, caspase-9, caspase-7, ATP and Ca2+ (and,
potentially, other molecules), VCP and ALG-2 trigger ER-stress-induced cell death [68].
VCP also functions as a sensor of abnormally folded proteins, and has been shown to act as
a cell death effector in polyglutamine-induced cell death [69,70].

In addition to the two main pathways that initiate the caspase cascade — namely, the death
receptor (extrinsic) pathway, which involves caspase-8 (or caspase-10), and the
mitochondrial (intrinsic) pathway, which involves caspase-9 as the apical caspase [71–73]
— studies from multiple laboratories point to a caspase-12-mediated intrinsic apoptotic
pathway that involves the endoplasmic reticulum and the UPR [42•,74–76,77•,78•].
Caspase-12, which is associated with the ER, is specifically involved in apoptosis that
results from ER stress (at least in murine cells; whether the human caspase-12 gene actually
encodes an enzymatically active caspase remains controversial [42•,68,74–76,77•,79]).
Caspase-12 may be activated by m-calpain, a cysteine protease activated by perturbed
calcium homeostasis in ER-stressed cells, or by caspase-7, which is recruited to the ER in
stressed cells, or by ER-stress-activated IRE1, which recruits caspase-12 through tumor
necrosis factor receptor-associated factor 2 (TRAF2) protein [75,76,80]. Caspase-12,
together with caspase-9, triggers a downstream apoptotic pathway that is independent of
Apaf-1, cytochrome c and mitochondria [77 𠈢,78•,81]. A recent study also implicates human
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caspase-4 in ER-stress-induced cell death. Caspase-4 is primarily activated in ER-stress-
induced apoptosis and may function as an ER-stress-specific caspase in humans [82].

ER stress, UPR and neurodegeneration
Misfolded proteins, and the associated ER stress, are emerging as virtually constant features
of neurodegenerative diseases. That UPR- and ER-stress-induced cell death could be
involved in the pathogenesis of several neurodegenerative disorders (as opposed to being
causally unrelated correlates) comes from several recent reports. The accumulation of
misfolded proteins resulting in alterations in the structure of organelles, including the ER,
has been observed in transgenic models of HD, AD and ALS, as well as in huntingtin-null
mice [83–99]. Examples of such misfolded proteins, and related complexes, include the
neurotoxic oligomers of the Aβ-peptide in AD [100–102]; cytoplasmic inclusions (Lewy
bodies) that stain for α-synuclein, parkin and an unfolded form of the PAEL (parkin-
associated endothelin receptor-like) protein [2,102–105] in PD; intracellular inclusions in
degenerating neurons and glia that stain for mutant CuZnSOD [83,106,107] in murine
models of ALS; and the expanded polyglutamine (poly Q) aggregates that trigger ER-stress-
induced cell death in HDand other polyglutamine expansion diseases [104,105,108, 109•,
110,111]. Since these neurodegenerative diseases may be caused by specific mutant proteins
that accumulate as misfolded proteins and escape degradation, it is likely that ER stress
plays an important pathogenetic role in these diseases.

Thus recent studies have suggested the following: first, a role for presenilin-1 in the
activation of IRE1 and induction of the UPR [112]; second, a role for GRP78 (Bip) in
binding and limiting the production of Aβ peptide; and third, reduced cytotoxicity of the β-
amyloid peptide in caspase-12 deficient mice, suggesting a link between the role of the UPR
and ER stress in AD [75,113]. In mouse models of AD featuring the overexpression of
mutant presenilin-1, the UPR is downregulated and neurons are highly susceptible to ER-
stress-induced cell death [114– 121]. Neurons expressing PS1 mutations exhibit increased
sensitivity to death induced by DNA damage, and the hypersensitivity to DNA damage is
correlated with increased intracellular Ca2+ levels, induction of p53, upregulation of the
Ca2+-dependent protease m-calpain, mitochondrial membrane depolarization and activation
of caspase-12 [114–117]. Another ER protein, HERP (homocysteine-induced ER-stress-
responsive protein), regulates PS-mediated Aβ generation and accumulation and the
formation of senile plaques and vascular Aβ deposits. These data, taken together, implicate
caspases and misfolded or unfolded Aβ in UPR-induced apoptosis [122].

Several lines of transgenic mice engineered to express mutant forms of the CuZnSOD gene
develop a motor neuron disease (MND) that resembles human familial amyotrophic lateral
sclerosis (FALS). These mice show prominent degeneration of mitochondria and ER in
spinal cord neurons [123–126]. Aggregate formation leading to extensive dilation of the ER
is also observed in mouse models of ALS featuring the expression of CuZnSOD mutants,
and this is not observed with the expression of wild-type CuZnSOD protein [84,86,125–
127]. Furthermore, in tissue culture models, mutant CuZnSOD (but not wild-type
CuZnSOD) aggregates in association with the ER and induces ER-stress-associated
increases in the levels of GRP78/BiP [123]. The viability of neurons expressing the mutant
CuZnSOD is protected by overexpressing heat-shock-protein 70 (HSP70), arguing that
protein folding plays a role in cytotoxicity, at least in this model [128].

PD is characterized pathologically by the loss of dopaminergic neurons, primarily in the
substantia nigra pars compacta, and by the presence of ubiquitinated protein deposits in the
neuronal cytoplasm (Lewy bodies), as well as by protein inclusions within neurites. These
deposits and inclusions contain aggregates of α-synuclein (a small presynaptic protein of
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incompletely defined function), which is mutated in some of the familial cases of PD [129–
133]. In a Drosophila model of PD, overexpression of wild-type or mutant α-synuclein
triggers dopaminergic neuron cell loss that is prevented by overexpression of Hsp70 [134•].
Similarly, mutations in another protein dubbed parkin — a member of the E3 ubiquitin
ligase family of proteins — result in autosomal recessive juvenile parkinsonism (ARJP)
[135,136]. Overexpression of normal parkin inhibits ER-stress-induced cell death triggered
by cellular parkin that is mutated in juvenile parkinsonism, suggesting that accumulation of
misfolded mutant parkin (or one of the targets of its E3 ligase activity) might contribute to
the selective dopaminergic neuronal cell death observed in ARJP [135–137]. One potentially
critical target, a putative G-protein-coupled transmembrane polypeptide named PAEL
receptor, is a parkin-binding protein, and may be a target for degradation mediated by the E3
ligase activity of parkin. Overexpression of this receptor unfolds the protein, decreasing its
solubility, and results in unfolded-protein-induced cell death. A marked increase in PAEL
receptor, presumably due to a defect in parkin-mediated degradation, was demonstrated in
the brains of ARJP patients [136,138,139].

Toxins including rotenone, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-
phenylpyridinium (MPP+) cause the death of dopaminergic neurons in vitro and in vivo, and
are widely used to model PD. Treatment of dopaminergic cells with these drugs triggers the
induction of a large number of genes involved in ER stress and the unfolded protein
response, such as ER chaperones and elements of the ubiquitin-proteasome system
[140,141]. These results are also compatible with the notion of a link between PD, the UPR
and ER stress.

HD, a fatal autosomal-dominant neurodegenerative disease involving predominantly the
caudate nucleus and the cerebral cortex, causes involuntary movements, emotional
disturbance and cognitive decline. The exact mechanisms underlying neuronal death in HD
are still incompletely defined; however, the molecular basis of HD has been shown to be the
polyglutamine (polyQ) expansion in the N terminus of Huntingtin (Htt), a cytosolic protein
expressed in almost all cells of the body. Numerous theories have been advanced to explain
the selective neurodegeneration in this disease, such as the induction of mitochondrial
dysfunction and subsequent excitotoxic injury, oxidative stress and apoptosis. Studies
demonstrating the involvement of UPR and ER stress in trinucleotide-repeat disorders have
also been reported [142]. The cytoplasmic accumulation of polyQ triggers ER stress,
apparently by inhibiting the ubiquitin–proteasome system [108,110,111•]. Subsequently, ER
stress activates both the TRAF2–ASK1 complex and caspase-12-mediated apoptotic
pathways [108,110], and overexpression of Hsp70 suppresses polyQ toxicity [143].
Postmortem brain samples from patients with Huntington’s disease show a selective
decrease in ER-associated α-glucosidase and fucosyl-transferase activities in the putamen,
suggesting that these changes reflect highly specific alterations in glycoprotein synthesis and
processing and may contribute to the underlying pathology of these disorders [144].

Conclusions
The ER is very sensitive to changes in its environment, and such changes may lead to
disruption of its normal homeostasis. A variety of environmental insults, as well as genetic
diseases associated with the accumulation of misfolded proteins, can all affect the ER
structure, function and integrity, leading to ER stress and contributing to the pathogenesis of
different disease states. Prolonged stress leads to organelle damage and dysfunction, and
ultimately triggers PCD. The accumulation of misfolded proteins seen in various
neurodegenerative diseases leads to an ER stress response, irrespective of whether the
misfolded proteins build up within the ER or outside the ER. Further insights into the
pathways triggered by misfolded proteins, ER stress responses and cell death programs
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should facilitate the development of new therapeutic strategies for neurodegenerative
disorders and other disorders that feature misfolded proteins.
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Abbreviations

AD Alzheimer’s disease

ALG-2 apoptosis-linked gene 2

ALS amyotrophic lateral sclerosis

ARJP autosomal recessive juvenile parkinsonism

ATF6 activating transcription factor 6

eiF2α eukaryotic translation initiation factor 2 alpha

ER endoplasmic reticulum

GRP glucose regulated protein

GRP78/Bip glucose-regulated protein of 78 kilodaltons

HD Huntington’s disease

HSP70 heat-shock-protein 70

IRE-1 inositol-requiring transmembrane kinase/endoribonuclease

PAEL parkin-associated endothelin receptor-like

PCD programmed cell death

PD Parkinson’s disease

PERK PKR-like ER kinase

polyQ polyglutamine

UPR unfolded protein response

VCP valosin-containing protein

XBP-1 X-box-binding protein 1
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Figure 1.
Accumulation of misfolded proteins in the ER can disrupt ER function resulting in ‘ER
stress’. The ER responds by triggering specific signaling pathways including the UPR. The
UPR is coordinately regulated by the three proximal sensors, IRE1, PERK and ATF6. The
activation of all three proximal sensors results in reduction in the amount of new protein
translocated into the ER lumen, increased degradation of ER-localized proteins and
increased protein folding capacity of the ER. ATF6DC represents the 50kD cytosolic bZIP-
containing fragment that translocates to the nucleus to activate transcription.
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Figure 2.
The UPR is negatively regulated by GRP78/Bip, which associates with the three proximal
sensors, IRE1, PERK and ATF6. GRP78 binds to the luminal domains of IRE1 and PERK
and prevents their dimerization and activation. GRP78 associates with ATF6 and prevents
its translocation to the Golgi for further activation. In the presence of misfolded proteins,
GRP78 dissociates from the sensors and binds the misfolded proteins, thus releasing the
sensors from negative inhibition. The three sensors coordinately regulate the UPR through
their various signaling pathways.
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