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Abstract
The inappropriate programming of developing organ systems by exposure to excess native or
environmental steroids, particularly the contamination of our environment and our food sources
with synthetic endocrine disrupting chemicals that can interact with steroid receptors, is a major
concern. Studies with native steroids have found that in utero exposure of sheep to excess
testosterone, an estrogen precursor, results in low birth weight offspring and leads to an array of
adult reproductive / metabolic deficits manifested as cycle defects, functional hyperandrogenism,
neuroendocrine / ovarian defects, insulin resistance, and hypertension. Furthermore, the severity of
reproductive dysfunction is amplified by excess postnatal weight gain. The constellation of adult
reproductive and metabolic dysfunction in prenatal testosterone-treated sheep is similar to features
seen in women with polycystic ovary syndrome. Prenatal dihydrotestosterone treatment failed to
result in similar phenotype suggesting that many effects of prenatal testosterone excess are likely
facilitated via aromatization to estradiol. Similarly, exposure to environmental steroid imposters
such as bisphenol A (BPA) and methoxychlor (MXC) from days 30-90 of gestation had long-term
but differential effects. Exposure of sheep to BPA, which resulted in maternal levels of 30-50 ng/
ml BPA, culminated in low birth-weight offspring. These female offspring were
hypergonadotropic during early postnatal life and characterized by severely dampened
preovulatory LH surges. Prenatal MXC-treated females had normal birth weight and manifested
delayed but normal amplitude LH surges. Importantly, the effects of BPA were evident at levels,
which approximated twice the highest levels found in human maternal circulation of industrialized
nations. These findings provide evidence in support of developmental origin of adult reproductive
and metabolic diseases and highlight the risk posed by exposure to environmental endocrine
disrupting chemicals.
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Introduction
The developing fetus, in response to changes in the in utero environment develops
compensatory strategies to overcome insults that they experience. Such compensations could
be adaptive, if they support survival, or disruptive, if they compromise postnatal survival.
Developmental plasticity, the ability of the developing fetus to change structure / function in
response to physiological cues from the mother, underlies the developmental origin of
disease or Barker hypothesis (Barker, 1994). The increased prevalence of some common
diseases may be related to exposure during development to environmental pollutants,
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lifestyle choices of the mother, and medical interventions, all of which can adversely
influence developmental trajectory of target tissue differentiation. This review addresses the
reproductive and metabolic disruptions resulting from exposure to excess native steroids and
environmental steroid receptor modulators with specific focus on those that signal through
estrogen and androgen receptors.

Developmental programming of reproductive / metabolic dysfunction with
native steroids

Steroid hormones play a major role during development in setting the trajectory of
developing organ systems. Because, differentiation of organ systems depend upon precise
exposure to steroid hormones at specific times during development, exposure to low doses
of endocrine disrupting compounds (EDCs) that can signal through steroid receptors during
these hormone sensitive, critical periods of development can lead to long term deleterious
effects on the adult organism. It is well established that inappropriate exposure to excess
testosterone (T) during fetal life leads to phenotypic virilization and behavioral
masculinization in the female offspring (Jost et al. 1973; Gorski, 1986; Wood & Foster,
1998). The amount as well as the timing of T exposure dictates the degree of
masculinization of external genitalia in the female (Wood & Foster, 1998). Inappropriate
perinatal exposure to excess T during early development also disrupts reproductive cyclicity
in several species (Abbott et al. 2006).

For the remainder of the review, focus is on the reproductive and metabolic disruptions
resulting from inappropriate developmental exposure of sheep to native steroids or
environmental steroid mimics. Sheep are exceptionally well suited for investigating
developmental programming of adult disorders. They have long been used as model systems
to study fetal physiology (Harding & Bloomfield, 2004). Their developmental time line
(gestation length: 147 days, puberty in female: ~ 28 weeks) is ideally suited for integrative
studies that address progression of reproductive / metabolic disruption from the initial
developmental insult to manifestation of adult consequences, especially those that involve
detailed hormonal profiling or sequential monitoring of ovarian follicular dynamics.
Importantly, they can be studied in natural social settings thus reducing level of stress. From
a reproductive perspective, ovarian differentiation in sheep is similar to humans with full
follicular differentiation occurring by birth (Fig.1, panel A) (Padmanabhan et al. 2007).
Neuroendocrine aspects of reproductive cyclicity are also similar to human (Goodman &
Inskeep, 2006; McNeilly, 1991).

Comparison of sheep treated with T (aromatizable androgen) from days 30 to 90 of gestation
(T30-90 females) with those treated from days 60-90 of gestation (T60-90 females) has
helped address critical period of programming of reproductive and metabolic disruptions.
Comparison of prenatal testosterone (T), prenatal dihydrotestosterone (non aromatizable
androgen, DHT) and T plus flutamide (an androgen antagonist) treatments has helped
address the quality of steroid (androgen or estrogen) responsible for programming adult
dysfunctions (Fig. 1, panel B). Earlier studies with the Dorset breed of sheep found T30-90
females showed progressive deterioration of cyclicity culminating in absent cycles during
the second breeding season (Fig. 2, panel A) (Birch et al. 2003). Studies with other breed of
sheep also found progressive loss of cyclicity (Clarke et al. 1977; Manikkam et al. 2006),
the severity of which differing between breeds. In contrast, majority of the T60-90 females
cycled during the second breeding season (Birch et al. 2003, Savabieasfahani et al. 2005).

Comparison of cycle dynamics of T30-90 and DHT30-90 females during the estrous cycle
found that T30-90 females were characterized by increased preovulatory levels of estradiol,
as well as delayed and severely dampened LH surges (Fig. 2, panel B) (Veiga-Lopez et al.
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2009). Detailed characterization of circulating LH dynamics during the follicular phase
found T30-90 and T60-90 females were characterized by excess LH release (Manikkam et
al. 2008; Savabieasfahani et al. 2005). Studies testing the fertility status of T60-90 females
found that 100% of the T60-90 females (T30-90 females are phenotypically virilized and
natural mating is not possible (Wood and Foster, 1998) were mated by the ram. However,
fecundity was reduced with only 40% of those mated becoming pregnant as opposed to the
90% pregnancy rate in the control herd (Fig. 2, panel C) (Steckler et al. 2007b). Even more
importantly, recent studies found that excess postnatal weight gain amplifies the
reproductive disruptions in T30-90 females (Fig. 3, panel A) (Steckler et al. 2009). These
findings are supportive of the two-step process (Tang et al. 2008), the first involving early
life epigenetic reprogramming of susceptible organ systems and a later event influencing the
severity of the pathologic phenotype (Fig. 3, panel B).

Neuroendocrine disruptions
At the neuroendocrine level, prenatal T treatment reduces hypothalamic sensitivity to all
three major feedback systems involved in the control of cyclic changes in GnRH /
gonadotropin secretion; estradiol (E) negative feedback (Wood & Foster, 1998; Sarma et al.
2005), E positive feedback (Wood & Foster, 1998; Sharma et al. 2002, Unsworth et al.
2005) and progesterone negative feedback (Robinson et al. 1999; Veiga-Lopez et al. 2009)
(Fig. 4). Further investigations have pointed to disruptions of E negative feedback being
programmed by androgenic action of T, with both, T and DHT and not T + flutamide
reducing sensitivity to E (Wood & Foster, 1998, Veiga-Lopez et al. 2009, Jackson et al.
2008). E positive feedback disruptions were found in T30-90 but not DHT30-90 females
suggesting that this disruption is likely programmed via estrogenic actions of prenatal T
(Wood & Foster, 1998, Veiga-Lopez et al. 2009). Studies testing pituitary sensitivity also
found that both T30-90 and DHT30-90 females have enhanced sensitivity to GnRH
suggesting that this aspect is programmed likely via androgenic actions of T (Manikkam et
al. 2008).

Ovarian disruptions
In addition to reproductive neuroendocrine disruptions, prenatal T treatment resulted in
larger ovaries with a multifollicular morphology (Fig. 5, panel A) (West et al. 2001). These
effects appear not to be facilitated by the androgenic actions of T as prenatal DHT treatment
failed to create a multifollicular ovarian phenotype (West et al. 2001; Steckler et al. 2007a).
Detailed morphometric analyses found prenatal T and DHT treatment enhanced follicular
recruitment with only prenatal T treatment reducing ovarian follicular reserve to ~ 50% by
the end of the first breeding season (Smith et al. 2009) (Fig. 5, panel B). Similarly, detailed
daily ultrasonographic evaluation found that follicles persist longer in prenatal T-treated
female (Manikkam et al. 2006) (Fig. 5, panel C) and this appears to be programmed by
estrogenic actions of prenatal T (Steckler et al. 2007a). As such, the multifollicular
phenotype of prenatal T females appears to be the consequence of both enhanced follicular
recruitment and failure to regress. Immunohistochemical studies found that prenatal T
treatment increases androgen receptor expression in the stroma and granulosa cells during
fetal life and culminates in increased granulosa cell androgen receptor expression in antral
follicles of adult females (Ortega et al. 2009). Taken together these studies document that
excess exposure to T disrupts the ovarian trajectory with some aspects programmed by
androgenic and others estrogenic actions of T.

Metabolic dysfunctions
In addition to the neuroendocrine and ovarian disruptions, prenatal T treatment leads to
intrauterine growth restriction (IUGR), low birth weight and postnatal catch-up growth
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(Manikkam et al. 2004), risk factors for adult well being (Boney et al. 2005; Dulloo, 2008).
Developmental changes in the insulin-like growth factor (IGF) / IGF binding protein
(IGFBP) system in the prenatal T-treated sheep were consistent with changes in growth
trajectory with a reduction in IGF bioavailability evident during IUGR and an increase
during postnatal catch-up growth (Crespi et al. 2006, Manikkam et al. 2004). Prenatal T-
treatment also culminated in insulin resistance (DeHaan et al. 1990; Hansen et al. 1995;
Recabarren et al. 2005; Padmanabhan et al. 2009) with programming of insulin resistance
facilitated via androgenic actions of prenatal T (Padmanabhan et al. 2009). Importantly, the
window of susceptibility for developing insulin resistance was found to be confined to a
shorter programming window, namely 60-90 days of gestation (Padmanabhan et al. 2009).
Recent studies assessing the impact of prenatal T excess revealed tissue specific regulation
of members of the insulin-signaling cascade (Nada et al., 2009). At the hepatic level, there
was a general downregulation of many members of the insulin signaling cascade consistent
with liver being insulin resistant. In contrast, prenatal T excess upregulated many members
of the insulin signaling cascade at the level of the adipose tissue supportive of increased
insulin sensitivity (Nada et al., 2009). Our unpublished observations also indicate increased
visceral adiposity in the prenatal T-treated females. Radiotelemetric studies found that the
T30-90 females are also hypertensive (King et al. 2007). Metabolic disruptions have also
been reported in other prenatal T treated animal models (Abbott et al. 2006, Demissie et al.
2008).

Male reproduction
In contrast to several studies addressing the impact of prenatal T excess in female sheep,
limited information is available addressing the impact of prenatal T excess on male
reproduction / metabolism in sheep. Prenatal T treatment increased ano-genital distance in
the male offspring compared to controls (Manikkam et al. 2004), altered the developmental
trajectory of gonadal responsiveness to GnRH in prepubertal males (Recabarren et al. 2007)
and culminated in reduced sperm count and motility (Recabarren et al. 2008). Prenatal T
treatment also increased the volume of the sexually dimorphic nucleus in the males (Roselli,
2007), a complex of aromatase-expressing neurons, whose size has been correlated with
sexual attraction in rams. Exposure to an aromatase inhibitor prenatally (days 50-80 of
gestation) has also been correlated with decreased adult mounting behavior (Roselli, 2006).
Information is lacking as to whether prenatal T excess disrupts the metabolic axis in the
ovine male.

Translational significance
The reproductive phenotype of T30-90 sheep parallels features seen in women with
polycystic ovarian disease (PCOS) (Table 1). PCOS is one of the most common
reproductive disorder affecting >100 million women worldwide with the economic burden
exceeding several billion dollars annually in the U.S. women with PCOS are characterized
by oligo- / anovulation, hyperandrogenism, polycystic ovaries, LH hypersecretion and
reduced fecundity with most manifesting insulin resistance (Franks, 1995). Some view
PCOS as a clinical phenotype of the metabolic syndrome (Essah & Nestler 2006; Sam &
Dunaif, 2003). Because the reproductive and metabolic phenotype of prenatal T-treated
sheep recapitulates characteristics of women with PCOS, they provide a valuable cost-
effective resource for addressing the mechanisms underlying the etiology of development of
PCOS phenotype. The constellation of reduced insulin sensitivity, hypertension and visceral
adiposity found in prenatal T treatment suggest that these animals may also be suitable for
understanding the developmental origin of the metabolic syndrome phenotype (Mikhail,
2009).
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Developmental programming by endocrine disruption chemicals
The inappropriate exposure to steroids is becoming a major concern in the context of
development of adult pathologies. The fetus is exposed to exogenous steroids via failed
contraception, use of anabolic steroids or inadvertent exposure to environmental compounds
with estrogenic or anti-androgenic activity. Public concern has been mounting over harmful
effects of environmental EDC, which can interfere with hormone signaling by acting as
agonists or antagonists (Damstra et al. 2002; Hotchkiss et al. 2008). Of particular concern is
the contamination of our environment and our food sources with the synthetic androgenic
and estrogenic EDCs, which have the potential to disrupt normal androgen and estrogen
signaling. This review focuses predominantly on two such EDCs namely, bisphenol-A
(BPA) a widely used industrial plasticizer and methoxychlor (MXC), a pesticide. BPA is
widely used in the manufacture of epoxy resins and polycarbonate plastics and accounts for
most estrogenic activity in landfill leachates (Vandenberg et al. 2009; Ranjit et al. 2009). It
has been detected in river water and sediments, and more recently, in indoor air and dust
(Vandenberg et al. 2009; Ranjit et al. 2009). MXC, was used to control pests in agricultural,
dairy, and domestic settings and found to persist in the environment (National Research
Council, 1999). Both these EDCs have been shown to possess estrogenic and anti-
androgenic properties (Vandenberg et al. 2009, Staub et al. 2002).

Targeting critical periods established by treating with native steroids, our recent studies
found that prenatal BPA and MXC treatment had differential effects on the reproductive axis
(Savabieasfahani et al. 2006). Prenatal BPA treatment, like prenatal T treatment, resulted in
low birth weight offspring, early hypergonadotropism and severely dampened or absent
preovulatory LH surges (Fig. 6, panels A, B, C). In contrast, MXC had no effect on somatic
growth (Fig. 6, panel A) but delayed the onset of LH surges (Fig. 5, panel C). The levels of
BPA achieved in maternal circulation following administration of 5 mg / kg body weight of
BPA (Fig. 6, panel D) were 2-3 fold higher than the highest levels observed in the maternal
circulation of U.S. women (Fig. 6, panel E) (Padmanabhan et al. 2008) and other
industrialized nations (Vandenberg et al. 2009, Schonfelder et al. 2002). MXC levels in
abdominal fat (Savabieasfahani et al. 2006) were several-fold higher than that found in
human population (Botella et al. 2004). Comparison of reproductive defects in BPA and
MXC treated females with prenatal T-treated model reveal considerable similarities between
prenatal BPA and T treated models (Table 2). Both groups of animals showed reduced birth
weight, LH excess and severely dampened preovulatory LH surges (Savabieasfahani et al.
2006). Others studies in sheep found administration from days110 to 115 days of gestation
of octylphenol, a alkylphenol polyethoxylate used in detergents and pesticides with
estrogenic properties, suppressed FSH levels in both female and male offspring (Sweeney et
al. 2000). Administration of octylphenol starting from day 70 of gestation to birth advanced
the time of puberty in female offspring (Wright et al. 2000).

Studies testing the effects of BPA and MXC in male sheep are not available. The only
available information testing effects of EDC in male sheep comes from studies testing the
effects of octylphenol. Prenatal octylphenol treatment from days 70 of gestation to birth
reduced testis weight and Sertoli cell number in newborns (Sweeney et al. 2000) but not
semen volume / concentration and motility in adult males (Sweeney et al. 2007). As
opposed to the limited information available in sheep, a large volume of literature already
exists relative to impact of BPA on the male offspring using rodent models. These rodent
studies provide evidence that prenatal BPA exposure leads to disruptions in the male
reproductive system, which include constricted urethra and prostate hyperplasia and cancer
(Talsness et al. 2009; Diamanti-Kandarakis et al. 2009). A recent study found exposure to
BPA from gestational day 12 to postnatal day 21 reduced sperm count and motility leading
to subfertility in the offspring with effects persisting in F2 and F3 generations (Salian et al.
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2009). Similarly exposure to MXC orvinclozolin during gestation resulted in reduced
spermatogenic capacity and increasedincidence of male infertility with effects transferred to
subsequent generations (Anway et al. 2005).

Conclusions
Studies discussed in this review centering on sheep as a model system enforce that the
organizational program involved in establishing the adult phenotype is the result of the
interplay between genetic susceptibility and developmental insults (Fig. 7). These findings
reinforce the concern that inappropriate exposure to steroid hormones / steroid mimics pose
to the well being of the developing offspring. The pathology programmed in sheep by BPA
and MXC provides further support for the deleterious effects of EDCs on developing organ
systems. Clearly, an understanding of mechanisms underlying developmental
reprogramming following exposure to EDCs is essential for developing interventions to
prevent development or reduce severity of pathology in adults. Several recent studies point
to restoration of function via methylation by dietary supplements (Waterland, 2006; Pennisi,
2005; Burdge et al. 2009; Dolinoy et al. 2007), providing hope that dietary interventions
may be beneficial in improving human health. Environmental exposures are modifiable risk
factors and can be effectively regulated at the personal, behavioral as well as the regulatory
policy level. For instance, exposure to BPA through sources such as over consumption of
fast food and canned food and overuse of baby bottles, can be addressed through public
health education campaigns and by health care providers, including physicians, nurses,
social workers, and dentists. At the policy level, environmental justice advocates can
mobilize efforts to protect poor neighborhoods from exposures to EDCs.
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Fig. 1.
Panel A: Schematic showing the time of appearance of different classes of follicles in sheep,
timing of establishment of hypophyseal portal vasculature to pituitary and timing of
appearance of LH and FSH in circulation and pituitary during fetal life in sheep. Panel B:
Schematic showing the timing and duration of the various steroid / EDC treatments used in
studies discussed in this review.
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Fig. 2.
Panel A: Plasma progesterone profiles from representative control, T60-90, and T30-90
females during the first and second breeding seasons are shown on the left. On the right are
shown percentages of sheep cycling during the first and second breeding seasons. (modified
from Birch et al. 2003. Panel B: Patterns of LH (closed circles) and E (open circles) from
control (top), T30-90 (middle), and DHT30-90 (bottom) following estrous synchronization
with PGF2α (Veiga-Lopez et al. 2009). Panel C: Percentage of T60-90 females mated and
becoming pregnant following estrous synchronization. Estrus was synchronized with two
injections of PGF2α administered 11 days apart. Mating was determined by heavy rump
markings left by a fertility-proven raddled ram (modified from Steckler et al. 2007b).
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Fig. 3.
Panel A:Percent of control (C), over-fed control (OFC), T30-90 (T) and overfed T30-90
(OFT) females that showed a luteal progesterone increase following estrus synchronization
with progesterone. Note that almost all of the overfed T30-90 females were anovulatory
(modified from Steckler et al. 2009). Panel B: Schematic showing the two step model of
programming severity of reproductive dysfunction with the first insult occurring from
prenatal T excess during fetal life and the second metabolic insult stemming from
overfeeding.
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Fig. 4.
Neuroendocrine feedback systems involved in the control of GnRH / LH secretion that are
reprogrammed by prenatal T excess. GnRH / LH release is under the control of negative
feedback action of estradiol (E) which is predominant during the prepubertal and anestrus
period (feedback 1), stimulatory feedback action of E responsible for generation of the
preovulatory LH surge (feedback 2) and negative feedback action of progesterone,
operational during the luteal phase (feedback 3) (modified from Foster et al. 2007).
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Fig. 5.
Panel A: Follicular morphology of ovary from control and T30-90 females. Note the
disrupted nature of follicular development in T30-90 sheep (from West et al. 2001). Panel
B: Mean (± SEM) number of primordial and growing follicles on fetal days 90 and 140 and
10 months of age in control (open bars), T30-90 (closed bars) and DHT30-90 (gray bars)
ovaries (from Smith et al. 2009). Panel C: Ovarian follicular dynamics determined by
ultrasonography for 8 days in both ovaries control and T30-90 sheep during the first
breeding season (from Manikkam et al. 2006). Each line represents only one follicle and
follicles from both ovaries are shown in the same panel. Only follicles that reached a size of
3 mm and persisted for at least 2 days are shown. Note the increase in maximum size and
duration of the largest follicles on the ovary in T30-90 sheep compared to controls.
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Fig. 6.
Panel A: Birth weight of control (open bars), prenatal MXC (gray bars) and BPA-treated
(closed bars) female offspring (Savabieasfahani et al. 2006). Panel B: Mean circulating
levels of LH in prepubertal control (open bars), prenatal MXC (gray bars) and BPA-treated
(closed bars) female offspring (Savabieasfahani et al. 2006). Panel C: Circulating patterns
of LH from 3 control, 3 prenatal MXC- and 3 BPA-treated females taken at 2 hourly
intervals for 120 h, after induction of luteolysis with 2 injections of PGF2α 11 days apart
(Savabieasfahani et al. 2006). Panel D: Levels of circulating BPA achieved in control (open
circles) and BPA treated (closed circles) pregnant sheep on day 50, 70 and 90 of gestation
(days 20, 40 and 60 of treatment) following administration of 5 mg / kg / daily
administration of BPA s.c. (Savabieasfahani et al. 2006). Panel E: Maternal levels of BPA
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(mean ± SEM) in Southeastern Michigan relative to maternal age (Padmanabhan et al.
2008).
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Fig. 7.
Schematic showing organizational palette of adult phenotype as influenced by genetic and
epigenetic interactions.
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Table 1

Characteristics of women with PCOS vs. prenatal T-treated sheep

Attributes Women with PCOS Prenatal T-treated
sheep

Anovulation Yes Yes

Hyperandrogenism Yes (functional) Yes

Hypergonadotropism Yes Yes

Reduced sensitivity to steroids Yes Yes

Multifollicular ovaries Yes Yes

Increased follicular recruitment Yes Yes

Altered insulin sensitivity Yes Yes

Insulin resistance Yes Yes

Fetal growth retardation Yes
A Yes

Altered behavior Yes Yes

Hypertension Yes
B Yes

Visceral adiposity Yes Yes (observational)

Obesity amplification Yes Yes

A
Spanish cohort

B
Risk factor in PCOS
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Table 2

Characteristics of prenatal T, BPA and MXC treated sheep

Attributes Prenatal
T-treated

Prenatal
BPA-treated

Prenatal
MXC-treated

Hypergonadotropism Yes Yes No

Cycle disruption Yes Yes Yes

Dampened LH surge Yes Yes No

Increased amplitude of E2 Yes Yes No

Delayed LH surge onset Yes Yes No

Fetal growth retardation Yes Yes No
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