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Quantized vortices are key features of quantum fluids such as
superfluid helium and Bose–Einstein condensates. The reconnec-
tion of quantized vortices and subsequent emission of Kelvin
waves along the vortices are thought to be central to dissipation
in such systems. By visualizing the motion of submicron particles
dispersed in superfluid 4He, we have directly observed the emis-
sion of Kelvin waves from quantized vortex reconnection. We
characterize one event in detail, using dimensionless similarity
coordinates, and compare it with several theories. Finally, we give
evidence for other examples of wavelike behavior in our system.
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Vorticity in superfluids and Bose–Einstein condensates is
constrained to line-like topological defects called quantized

vortices (1). The evolution of a tangle of such line vortices
defines a dynamical state known as quantum turbulence (see, e.g.,
refs. 2, 3). Quantum turbulence is in some ways similar to classical
turbulence; for example, both show a Kolmogorov energy spectrum
(4, 5). However, many features of quantum turbulence, such as its
velocity statistics (6, 7), are distinct from classical flows.
A fundamental question in quantum turbulence is the nature

of dissipation in the zero-temperature limit (8) where the effects
of friction vanish. The vortex-tangle decay, observed experi-
mentally even for T < 0.1 K (9), requires a different dissipation
mechanism from the classical case; a promising candidate is the
excitation of waves by reconnecting vortices (Fig. 1). In his
pioneering work (11), Kelvin showed that a helical deformation
of a line vortex propagates as a wave. Kelvin waves have long
been used to understand a wide range of flow problems, such as
airplane wakes (12), tornadoes (13), and the dynamics of neu-
tron stars (14), and are also conceptually related to whistler
waves in plasmas (15). Theory and simulations indicate that a
cascade of Kelvin waves transfers energy from large length scales
(the intervortex spacing) to small scales (the vortex-core size)
(16–18), where energy is removed from the system via phonon
emission (19–21).
Kelvin waves have been visualized in classical fluids only on

thin line vortices (22, 23) and on knotted vortex rings (24). Here
we present a unique direct observation of Kelvin waves on quan-
tized vortices and give unique experimental evidence of the
emission of Kelvin waves after vortex reconnection. Because our
fluid is inviscid and the amplitude H of the waves we observe is
much larger than the vortex core size a0 (we have H=a0 > 105),
our system satisfies most of the assumptions originally made by
Kelvin for his eponymous waves.
Kelvin waves on quantized vortices were first detected in-

directly, using torsional oscillators (1, 25), beginning with the
work of Hall in 1958 (26). However, the interpretation of such
experiments has been criticized (27); additional evidence is
therefore needed (1). Ashton and Glaberson (28) measured the
velocity of ions passing through the superfluid as a function of an
applied electric field and found an anomaly that they associated
with the resonant generation of vortex waves. A recent experiment
(29) inferred the presence of Kelvin modes in a Bose–Einstein

condensate by examining the damping. However, to our knowledge,
no direct observation has shown the existence of Kelvin waves on
quantized vortices, and no experimental evidence has shown Kelvin
waves launched from vortex reconnection.
Vortex reconnection in superfluid helium, theorized in 1955

by Feynman (30) and studied extensively both numerically and
analytically (e.g., refs. 31–40), was characterized experimentally
in 2008 by Bewley et al. (41) and Paoletti et al. (6, 42), using
micrometer-sized hydrogen particles to visualize the quantized
vortices. Because the quantized vortices are local minima of the
pressure field, they act as traps for small particles; the motion of the
particles can then be used to visualize the evolution of the vortices.

Results
Using a unique technique to create submicron tracer particles, at
a mean temperature of 1.981 K we slowly cooled the liquid he-
lium at a rate of 0.2 mK/s, and observed a long, clearly decorated
vortex. In Fig. 2A, we show several snapshots in a 2.08 × 0.4-mm
subregion of our measurement area, with the tracer particles
used for further analysis indicated. In multiple frames, captured
at 54.3 Hz, several sections of the vortex were visible over a length
of about 3 mm, appearing initially straight and nearly horizontal.
The normal component of the helium was almost stationary, with
particles dragged in different directions at a maximum velocity of
6 μm/s. Shortly before the snapshots in Fig. 2A, the vortex shown
reconnected with another vortex to the right of the field of
view. Immediately after the reconnection, we observed a wave
propagating down the vortex.
To study the wave motion quantitatively, we track the position

of the particles on the vortex (Fig. 2B). The wave-like motion of
the vortex is clearly visible in the time evolution of the vertical
positions of the particles, plotted in Fig. 3A (see also Movies S1
and S2). The first peak and trough are clearly visible in most of
the tracks, with secondary peaks only in some. We fitted the time
evolution of the maximum and minimum z values of each par-
ticle, indicated respectively by circles and squares in Fig. 3A, and
found ðt− t0Þ1=2 scaling for both, as shown in Fig. 3B. This is
consistent with previous theoretical and experimental studies of
reconnection (6, 32–34, 41), with the assumption that the quantumof
circulation κ= h=mHe ’ 9:97× 10−8  m2=s is the only relevant di-
mensional parameter and with the dispersion relation ωðkÞ∝ κk2

for Kelvin waves of frequency ω and wavenumber k (43).
In theoretical vortex-filament models, the velocity of the su-

perfluid is calculated from the position of the vortices sðσ; tÞ,
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where σ is the arc length along the vortex, using the Biot–Savart
integral. Schwarz (10) laid the foundation for studying vortices after
reconnection, using the so-called local induction approximation
(LIA) (44). This approximation truncates the Biot–Savart integral
by neglecting nonlocal terms, reducing it to a much more tractable
form. We note that this approximation has in fact been redis-
covered several times (45) since the original work of Da Rios in
1906 (46). The LIA implies

∂s
∂t

’ β
∂s
∂σ

×
∂2s
∂σ2

; [1]

where β ’ κ. We neglect logarithmic corrections that depend on
the radius of curvature of the vortex and the core size, absorbing

them into the constant parameter β. This equation has self-similar
solutions for the evolution of the vortex shapes after reconnection
(33, 47) and predicts emission of Kelvin waves as an inevitable
consequence of the relaxation of any angle-like configuration (8).
Note that waves excited by the relaxation of a cusp are localized
and polychromatic unlike, for example, the periodic waves artifi-
cially excited on straight vortices in recent numerical studies of the
Kelvin wave cascade (48, 49). First we define the dimensionless
similarity coordinate η= σ=

ffiffiffiffi
βt

p
. Then, substituting a self-similar

solution of the form sðσ; tÞ= ffiffiffiffi
βt

p
GðηÞ into the LIA equation gives

1
2
G−

1
2
ηG′=G′×G″; [2]

where the primes denote differentiation with respect to η. How-
ever, solutions to this simple equation cannot exactly describe
our system, which is at finite temperature. Coupling between the
superfluid and the residual normal component via the mutual
friction must be included. Therefore, we consider a modified
LIA equation with a phenomenological temperature-dependent
damping term αðTÞd2s=dσ2 as done by Schwarz (10) and Lipniacki
(33), which after the substitution used to obtain Eq. 2 results in

1
2
G−

1
2
ηG′=G′×G″+ αðTÞG″: [3]

Solutions to Eq. 3 are a two-parameter family of curves that can
be completely specified by the temperature-dependent damping
term αðTÞ and the initial curvature c0, which determines, via
integration of Eq. 3, the opening angle between the two tails
of the retracting vortex line (illustration in Fig. 1B). Note that
c0 =A=4, where A is the dimensionless prefactor of the scaling
law of the interfilament separation distance. Based on our tem-
perature and previous measurements of the mutual friction co-
efficient (50), we estimate α = 0.27.
In addition to the LIA model, we considered novel simi-

larity solutions of a Biot–Savart model akin to that described by
Hormoz and Brenner (51) but modified to include the damping
term, which leads to an equation analogous to Eq. 3:

1
2
G−

1
2
ηG′=G′×G″+ αG″+F½G�: [4]

The additional term F½G� approximates nonlocal contributions to
the velocity of the filament. We solve Eq. 4 using coupled-delay
differential equations to incorporate the nonlocal interactions.
As with LIA, the solutions are a two-parameter family of curves
characterized by the prefactor A and the temperature-dependent
constant α.
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Fig. 1. (A) Schematic diagram of two vortices reconnecting and exchanging
tails, where the red and blue arrows represent the direction of vorticity. (B)
After reconnection, the relaxation of the vortex excites Kelvin waves thought
to propagate in a self-similar manner. Reprinted with permission from Schwarz
KW, Phys Rev B Condens Matter 31:5782–5804 (1985). Copyright 1985 by the
American Physical Society, http://prb.aps.org/abstract/PRB/v31/i9/p5782_1.
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Fig. 2. (A) Four frames of our movie sequence (see Movie S1) along with
circled particles used in the tracking analysis. (B) The positions of the particle
tracks on the upper branch show oscillatory behavior after the reconnection
event. The cross is the estimated location of the reconnection event.
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Fig. 3. (A) The vertical position of the particle tracks on the upper branch
shows marked oscillatory behavior just after the observed reconnection. (B)
The observed maxima and minima of the vertical positions from A. These are
consistent with the expected behavior for spatial scales close to a reconnec-
tion event z− zo ∼ ðt − toÞ1=2.

4708 | www.pnas.org/cgi/doi/10.1073/pnas.1312536110 Fonda et al.

http://prb.aps.org/abstract/PRB/v31/i9/p5782_1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312536110/-/DCSupplemental/sm01.mov
www.pnas.org/cgi/doi/10.1073/pnas.1312536110


Following the theoretical prediction that the evolution of the
vortex shape is self-similar, we define the similarity coordinates
ζ= ðz− z0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðt− t0Þ

p
and ξ= ðx− x0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðt− t0Þ

p
. This self-simi-

lar assumption is reasonable given the ðt− t0Þ1=2 scaling of the
wave peak, as shown in Fig. 3. We estimate the spatiotemporal
coordinates of the reconnection event ðx0; z0; t0Þ; those values
are adjusted to collapse the tracks. As shown in Fig. 5A, the

trajectories of the individual particles on the vortex collapse
well when rescaled into these similarity coordinates.
Fig. 5 B and C shows a comparison of the Biot–Savart and LIA

curves, with our data rescaled in dimensionless similarity coor-
dinates ξ and ζ. These numerically integrated curves were
computed in 3D and rotated to optimize the fit of their pro-
jection onto the 2D data. For a dense tangle, the results of LIA
are distinctively different from the full Biot–Savart (52) calcu-
lation. However, for the vortex density in our system and the
resolution of our particle tracks, the two models compare equally
well to our similarity-collapsed experimental data.
Although we have focused here on one event, we observed

many other tracks with wave-like motions. Some tracks of par-
ticles moving in wavy and quasi-circular motion are reported
in Fig. 4. Note that a particle trapped on a vortex would appear
to move in a circle if observed in a plane normal to the axis of
propagation for a helical Kelvin wave. In general, however, care
must be taken in interpreting the motion of the particles on a
vortex, as the particles are not locked to a specific point along
the vortex core.
Using submicron ice particles, we have observed the emission

and propagation of Kelvin waves on quantized vortices in super-
fluid helium following vortex reconnection. The resulting wave-
forms are in general agreement with those of theoretical similarity
theories. These waves carry energy away from the reconnection
event and enhance dissipation through mutual friction. Future
studies could examine a broader collection of events to characterize
the distribution of amplitudes and phase velocities present in
quantum turbulence.
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Fig. 4. Particle tracks representing other examples that may be Kelvin
waves. Each point corresponds to the particle position in one frame and is
separated from the next one by 29 ms. The red triangle represents the end
of the track, to clarify the direction of motion.
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Fig. 5. The overlap of the curves described by similarity solutions of LIA and Biot–Savart models (colored curves) to the experimental data in similarity
coordinates (blue circles). We report just the Biot–Savart (B-S) curves as the LIA curves are almost indistinguishable. We show two different curves that are
both in qualitative agreement with the observation: the red curve for the lower-bound value A = 3.3, and the blue curve for the upper-bound value A = 3.75,
obtained from this particular fit to maximize the overlap of the Biot–Savart curves, respectively, with both the lower and upper branch and just the upper
branch of the collapsed data. These values of A correspond, respectively, to intervortex angles of 40° and 29°. In both cases the angles that set the 3D
orientation are free parameters selected by hand. We also show a LIA curve without any damping (thin gray line), to demonstrate the necessity of including
the mutual friction. (A) shows most of the collapsed data, whereas (C) shows in detail the area close to the first peak of the wave marked by the dashed
region in (B). The red cross represents the reconnection estimated origin.
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Method
We discovered a unique technique to create submicron tracer particles di-
rectly into the superfluid state of helium. In the pioneering work of Bewley
et al. (53), the particles were created by injecting a dilute mixture of
hydrogen and helium gas into liquid helium above the λ transition. The
liquid was then cooled into the superfluid regime. During the cooling
process, however, the particles tend to aggregate and float to the surface of
the liquid; few particles remain in the measurement region for temperatures
below 2 K. Similar effects were seen by La Mantia et al. (54). Attempts to in-
troduce particles directly at superfluid temperatures resulted in excessively
large particles that were not acceptable tracers (55).

In contrast, we create frozen tracers directly in the superfluid by injecting
a highly dilutedmixture of atmospheric air and helium gas (56). Wewere thus
able to keep the temperature below 2 K while resupplying tracer particles.
We estimate the particles to be submicron sized by measuring the amount of
light they scatter, according to the procedure described in ref. 56.

Our experimental setup consists of an Oxford Instruments STX cryostat
with five optical windows. The helium sample section has a 1 × 1 × 7.5-cm

rectangular glass cell with 1-mm-thick walls, immersed in a 5-cm diameter
cylindrical bath. The system is illuminated with a 3-mW 532-nm laser, which
is focused into a sheet about 1 cm tall with a full-width at half-maximum
width of about 150 μm. We collected 90° scattered light off frozen tracer
particles from an 8.2-mm square area, using a 105-mm Micro-Nikkor lens.
A Princeton Instrument Pro-EM CCD provides single-photon sensitivity imaging
with a 512 × 512-pixel resolution.

The vortices we observe are longer (up to several millimeters) and straighter
than those from previous studies, because the system is in the superfluid state
for about 0.5 h before measuring. In contrast, the system studied by Paoletti
et al. (6, 42) was driven strongly out of equilibrium by a thermal counterflow
and had a dense tangle of vortices in a larger 5-cm diameter volume.
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