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Abstract
IL-6 a multi-functional cytokine with important effects in both inflammation and haematopoiesis.
SOCS3 is the primary inhibitor of IL-6 signalling, interacting with gp130, the common shared
chain of the IL-6 family of cytokines, and JAK1, JAK2 and TYK2 to control both the duration of
signalling and the biological response. Recent biochemical and structural studies have shown
SOCS3 binds to only these three JAKs, all of which are associated with IL-6 signalling, and not
JAK3. This specificity is determined by a three residue “GQM” motif in the kinase domain of
JAK1, JAK2 and TYK2. SOCS3 binds to JAK and gp130 simultaneously, and inhibits JAK
activity in an ATP-independent manner by partially occluding the kinase’s substrate binding
groove with its kinase inhibitory region. We therefore propose a model in which each of gp130,
JAK and SOCS3 are directly bound to the other two, allowing SOCS3 to inhibit IL6 signalling
with high potency and specificity
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Introduction: IL-6 Signalling
IL-6 is a pleiotropic cytokine that exerts both inflammatory and anti-inflammatory effects
depending upon its cellular context and is an important differentiation factor during
haematopoiesis (reviewed in [1]). IL-6 belongs to a family of cytokines that also include
IL-11, IL-27, LIF, OSM, CT-1 and CNTF. These cytokines are structurally similar[2] and
signal via association with cell-surface trans-membrane receptors that each consist of a
dimer (or higher-order oligomer) of the common shared chain, gp130 and a cytokine-
specific alpha chain[3, 4].

In classical IL-6 signalling, IL-6 first associates with its specific receptor alpha chain,
IL-6Rα, and this dimer then associates with gp130 to form a hexameric signalling
competent complex with 2:2:2 stoichiometry[5, 6]. Whilst gp130 is expressed on the surface
of most cell-types, IL-6Rα expression is more restricted. However, many cells which do not
express IL-6Rα still respond to IL-6 by virtue of circulating soluble IL-6Rα (sIL-6Rα). This
is termed trans-signalling and is often associated with the pro-inflammatory effects of
IL-6[7, 8]
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In both classical and trans-signalling, once the gp130 dimer is occupied there is an
autoactivation of associated JAKs (Janus Kinases) which are found in an inactive state prior
to cytokine exposure [9]. Based on similarity to receptor tyrosine kinase (RTK) signalling
(for example insulin signalling) [10], activation is thought to occur by auto-phosphorylation
in trans. In more detail, according to this model one JAK molecule bound to one cytokine
receptor chain is phosphorylated by the JAK molecule bound to the other receptor chain
(and vice-versa) within the receptor homo- or hetero-dimer. Activation involves
phosphorylation of specific tyrosine(s) within the activation loop of the kinase [9] which
causes the activation loop to translocate out of the active site in order to allow ATP and
substrate to bind [11]. JAK1, JAK2 and TYK2 have all been found associated with
gp130[12] in certain contexts however genetic deletion of these kinases has implicated
JAK1 as the most important member of the family for gp130 induced signalling[13]. Upon
activation, JAKs then phosphorylate five specific tyrosines on the cytoplasmic domain of
gp130. Four of these phosphotyrosines are recruitment sites for STAT1 and/or STAT3
(Signal Transducer and Activator of Transcription-1 and −3) which are then activated by
phosphorylation, again through the kinase activity of JAK1, JAK2 or TYK2[14]. STAT1
and STAT3 are latent transcription factors and once activated, they translocate into the
nucleus and induce the transcription of appropriate IL-6-responsive genes. Thus STATs are
the primary drivers of the biological response (See Figure 1, left). However, in addition to
the JAK/STAT cascade, the MAP kinase and PI3 kinase pathways are also activated. This is
via the fifth tyrosine, Y759, which, once phosphorylated, is a docking site for SHP2. SHP2 is
activated by phosphorylation after binding and this leads to stimulation of both the MAPK/
ERK and PI3 kinase pathways[15].

In addition to driving the biological response, activated STAT3 also induces expression of
SOCS3 (Suppressor of Cytokine Signalling-3). SOCS3 in turn terminates the JAK/STAT
signalling cascade, forming a negative feedback loop that allows the cell to return to its
basal (unstimulated) state (Figure 1, right). This action of SOCS3 appears to be the primary
mechanism by which IL-6 signalling is regulated within the organism. This review will
focus on the mechanism by which SOCS3 inhibits IL-6 (and IL-6 family) signalling.

Discovery of the SOCS proteins
In 1997 the SOCS family of proteins were discovered concurrently by the groups of Hilton
(Walter and Eliza Hall Institute, Australia), Yoshimura (Kurume University, Japan) and
Kishimoto (Osaka University, Japan)[16–18]. Each group used a different approach. Hilton
et al., used an expression cloning methodology to identify proteins capable of inhibiting the
IL-6-induced differentiation of the mouse M1 myelomonocytic cell-line and discovered, and
named, SOCS1 (Suppressor of Cytokine Signalling 1). Yoshimura’s group discovered the
same entity via a yeast two-hybrid screen aimed at identifying proteins that bind to JAK and
termed the protein JAB (JAK-binding protein). Finally, Kishimoto et al isolated a protein
(SSI-1) on the basis of a short region of sequence similarity with STAT3. SSI-1 was found
to be related to the SH2 domain-containing protein CIS (Cytokine inducible SH2 domain
containing protein) and identical in sequence to SOCS1/JAB identified by the other two
groups. Collectively, these three manuscripts described the major attributes of the SOCS1
protein: (A) That its expression is induced by a variety of cytokines; (B) it then inhibits the
signalling cascade initiated by those same cytokines, forming a negative feedback loop; (C)
it acts by binding to, and directly inhibiting, JAK with (D) the end result that STAT
activation is curtailed.

At the same time as they discovered SOCS1, the group of Hilton et al., cloned two other
proteins with similar domain architectures, termed SOCS2 and SOCS3. These three
proteins, in addition to the already identified protein CIS[19–21], all contained an SH2
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domain (responsible for binding phosphotyrosine residues) and a short, approximately 40
amino acid domain at their C-terminus that the authors termed the SOCS box. Subsequently,
an extensive search of the genome databases discovered a further four proteins that shared
this common domain structure (SH2 domain-SOCS box domain) and these were termed
SOCS4-7[22].

The SOCS family
Evolutionarily, SOCS proteins are first seen in animals having bilateral symmetry[23].
Recent analyses suggest the existence of three SOCS proteins in these organisms:
orthologues of CIS/SOCS1/SOCS2/SOCS3 as well as SOCS4/5 and SOCS6/7[23, 24].
Whilst certain species, most notably the fruit fly D. melanogaster have lost one or more of
these three subgroups, they are all represented in vertebrates where they have expanded to
form the eight family members seen in mammals. Of these three subgroups it is the CIS/
SOCS1/SOCS2/SOCS3 class which are strictly associated with the control of cytokine
signalling whereas the function of the SOCS4-7 homologues may also include regulation of
RTK (Receptor Tyrosine Kinase) signalling such as that initiated by epidermal growth factor
[25, 26], [27, 28].

The most notable feature of the SOCS family is their SOCS box domain[22]. The SOCS box
is responsible, via an interaction with elonginsB/C and Cullin5, for promoting the
ubiquitination of target proteins[29–31]. In general, these target proteins are cytokine
receptors and thus SOCS proteins mostly function to control cytokine action by inducing the
degradation of specific cytokine receptors[29, 31–34].

However the two most potent SOCS family members, SOCS1 and SOCS3 act primarily via
a different mechanism[35, 36], distinct from that common to other SOCS proteins[26, 37–
42]. They function by directly inhibiting the enzymatic activity of the JAKs, the initiators of
the intracellular signalling cascade induced upon cytokine exposure and this mode-of-action
is the major subject of this review.

SOCS3 is the primary regulator of IL-6 signalling
Despite SOCS1 being discovered on the basis of its ability to inhibit IL-6 action when
overexpressed[17, 18], genetic deletion studies have surprisingly shown that SOCS1 plays
little, if any, role in inhibiting IL-6 in vivo[43]. Rather it is SOCS3 that is the family member
responsible for inhibiting IL-6 under physiological conditions[44–46]. This is a cautionary
tale regarding the interpretation of the effects of individual SOCS proteins on various
cytokines; whilst many SOCS proteins inhibit a number of different cytokines when
artificially over-expressed, under normal conditions their activity is usually highly specific
for only a few cytokines. This has been made clear by genetic deletion of SOCS1 and
SOCS3 in mice which has highlighted their true role as regulators of signalling by
interferon-α/γ36,40–43 and IL-6/G-CSF/Leptin/LIF[44, 46–50] respectively.

SOCS3 controls the duration of IL-6 signalling
Genetic deletion of SOCS3 in mice is lethal due to placental insufficiency as a result of
dysregulated signalling by LIF[48]. Therefore, confirmation of the important role that
SOCS3 plays in regulating signalling by other IL-6 family members, including IL-6 itself,
has been via conditional knockout of the Socs3 gene. The first such studies were knockouts
of SOCS3 in hepatocytes[46] and macrophages[44] (using cre recombinase under control of
the Albumin or LysM promoters respectively) and the use of Socs3−/− fetal liver cells to
repopulate wild-type mice[51]. These experiments showed that the loss of SOCS3 had a
profound effect on the duration of signalling induced by exposure of these cells to IL-6. For
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example, when wild type mice are injected with IL-6, activated (phosphorylated) STAT1
and STAT3 are detectable in liver cells from approximately 15 minutes after IL-6 exposure,
but return to basal (undetectable) levels after approximately 30 minutes and 2 hours
respectively[46] (Figure 2a). Loss of SOCS3 has no effect on the magnitude or time of
initiation of JAK/STAT signalling after IL-6 exposure but led to a four- and two-fold
increase in the persistence of activated STAT1 and STAT3 respectively. Whilst a 2–4 fold
increase may seem like only a mild molecular defect it has drastic consequences for the
animal. Mice lacking SOCS3 in their haematopoietic system (vavCre) develop a lethal
inflammatory disease, largely due to dysregulated IL-6 signalling[45].

SOCS3 shapes the cells response to IL-6
As well as controlling the duration of IL-6 signalling, SOCS3 also helps shape the cell’s
response to IL-6. For example, the transcriptional output of Socs3−/− macrophages
stimulated with IL-6 differs not just quantitatively but also qualitatively from that of wild-
type cells. In particular, loss of SOCS3 leads to an IL-6-induced transcriptional response that
in part resembles that for interferon-γ with a number of interferon-inducible genes being
switched on by IL-6 in these cells[51]. Likewise, IL-6 stimulation of Socs3−/−

haematopoietic progenitor cells skewed differentiation toward the macrophage lineage rather
than neutrophil lineage seen with wild-type cells, again indicating that it shapes the response
to IL-6 rather than simply inhibiting it[52]. One explanation for this phenomenon is that, in
addition to inducing the phosphorylation of STAT3, IL-6 also induces low level STAT1
activation. In the presence of SOCS3, this activation of STAT1 is even more effectively
curtailed than is the activation of STAT3[46, 53] thus preventing induction of a STAT1
(interferon-γ-like) transcriptional response. In the absence of SOCS3 therefore, STAT1 is
“on” for long enough to induce the transcription of interferon-inducible genes leading to a
qualitatively different cellular response.

SOCS3 interacts with gp130, the shared receptor for IL-6 family cytokines
STAT3 is activated by a number of different cytokines and is a powerful inducer of SOCS3
expression[54] . However, SOCS3 only feeds back to inhibit STAT3 that is activated in
response to particular cytokines (for example IL-6) and not others (for example IL-10 or
interferon-γ)[44, 51, 55]. The key to this specificity is that SOCS3 directly interacts with
gp130, the co-receptor for IL-6 family cytokines[56–58]. This allows SOCS3 to specifically
target the IL-6 signalling cascade and not those induced by other cytokines.

SOCS3 binds gp130 with high affinity [56, 57, 59, 60]. The interaction occurs via the SH2
domain of SOCS3 that binds to a motif on gp130 (centered upon pTyr759) only once it has
been phosphorylated. As Tyr759 is only phosphorylated by JAK after IL-6 stimulation,
SOCS3 cannot bind to an unstimulated IL-6 receptor and this ensures that a cell can still
respond to the first wave of IL-6 stimulation, even if SOCS3 is present in the cytoplasm (for
example if a different cytokine has already induced its expression). The interaction between
the SOCS3 SH2 domain and gp130 has been well described both biochemically[56, 57, 59]
and structurally[61] (see Figure 2b) and there are a number of features of the interaction
responsible for its high affinity that are worth noting.

SH2 domains bind phosphotyrosine residues in peptides and proteins[62–66] but usually
only when embedded within a particular sequence motif. This specificity is generally
achieved by an interaction with the so-called BG loop of the SH2 domain (sometimes
termed the specificity-determining loop) and amino-acids located 2–4 residues downstream
(i.e. C-terminal) of the phosphotyrosine on the target molecule. For the vast majority of SH2
domains therefore, specificity and affinity for a target sequence are encoded only by the
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pTyr residue and the amino-acids immediately downstream of it. However, SOCS3 is
unusual in that it also has a requirement for specific residues upstream of the
phosphotyrosine on its target molecules[56]. In particular, SOCS3 contacts a hydrophobic
residue at the pY-2 position on gp130, a valine. The interaction with this valine adds 10-fold
to the affinity with which SOCS3 targets gp130[56] (KD=100nM) compared to a typical
SH2-target interaction which is usually of micromolar affinity[66]. The SH2 domain of
SHP-2 is similar in this regard and SHP-2 is known to bind a number of SOCS3 targets[56,
57, 67]. In addition to the pY-2 interaction, the BG loop of SOCS3 makes extensive contacts
with the Val-Val-His sequence in the pY +3 to +5 region of gp130[61] which also
contributes to the high affinity. In addition to gp130, SOCS3 also interacts with the
receptors for leptin[58], G-CSF[68] and potentially EPO[69] although all of these
interactions are at least 10-fold weaker than that seen for gp130. These interactions reveal a
minimal consensus motif of V/L-X-pY-X-X-V/L-V/L-X.

The other major feature of the SOCS3 SH2 domain is that it contains a large (35 amino acid)
unstructured loop inserted immediately prior to the specificity determining BG loop[60].
This loop is a PEST motif (Pro, Glu, Ser, Thr rich motif), a motif first described by Rogers
on the basis of their being found in a number of intra-cellular proteins with very short half-
lives[70]. The PEST motif does not effect the structure of the SH2 domain, as a comparison
between the NMR structure of wild-type SOCS3[71] and the crystal structure of a PEST-
deleted construct[61] clearly shows. Neither does it interfere with the SH2 domain function
as both wild-type and PEST-deleted SOCS3 bind a gp130 phosphopeptide with similar
affinties[71]. Rather it reduces the stability of SOCS3 inside the cell and leads to its
proteolytic degradation in a mostly non-proteasome dependent fashion when tested in 293T
cells[71]. Several other SOCS proteins are predicted to contain a PEST motif although this
has not yet been verified by half-life studies. The most obvious is CIS, which contains a
predicted PEST motif in the same position within its SH2 domain as SOCS3[60]. SOCS3 is
known to have an extremely short half-life in certain cell-types[72]. This is likely the result
of several mechanisms, including ubiquitination of lysine6[72], the presence of the SOCS
box[73, 74] and PEST motif itself. SOCS3 turnover appears necessary for the cell to be able
to respond to subsequent rounds of cytokine stimulation and therefore its half-life is strictly
regulated.

The interaction of SOCS3 with gp130 at pTyr759 is competitive with the binding of SHP2. It
has been shown that SOCS3 deletion (but not just deletion of its SOCS box) leads to hyper-
phosphorylation of SHP2, presumably via increased accessibility to its binding site on
gp130, in response to LIF stimulation of embryonic stem (ES) cells32,[75]. Phosphorylation
of SHP2 appears to be the major mechanism of activating the MAPK/ERK pathway in IL-6/
LIF signalling[76]. Consequently, Socs3−/− ES cells display extended activation of pERK1/2
in response to LIF signalling32,[75]. Socs3−/− ES cells, unlike wild-type ES cells, display
reduced self-renewal and spontaneous differentiation into primitive endoderm in the
presence of LIF and this differentiation could be prevented by the use of MAPK/ERK
pathway inhibitors[75]. This indicates that this mode of inhibition by SOCS3 (attenuation of
MAPK signalling) is independent of its E3 ligase activity and has an important role in the
biological outcome of IL-6/LIF signalling.

The interaction of SOCS3 with gp130 is a key molecular determinant of its specificity and
its ability to inhibit cytokine signalling. However, whilst the SH2 domain-gp130 interaction
is sufficient to inhibit the MAPK/ERK pathway post IL-6 stimulation it is not sufficient to
inhibit the JAK/STAT signalling cascade. Its ability to inhibit the JAK/STAT pathway relies
upon an interaction with, and inhibition of, JAK whilst both entities are scaffolded on
gp130. This is largely due to the “kinase inhibitory region” (KIR) of SOCS3 and this
mechanism will now be discussed in detail.
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The Kinase Inhibitory Region (KIR) of SOCS3 allows it to directly inhibit
JAK’s catalytic activity

SOCS3 in mice and humans is a 225 amino acid protein that, like all SOCS proteins,
contains an SH2 domain (residues 45–185) and a SOCS box domain (residues 186–225)[18,
22]. SOCS3 also contains a short N-terminal segment (residues 1–44), the most notable
feature of which is the so-called Kinase Inhibitory Region (KIR)[77–80], an 8–12 amino
acid sequence that allows it to directly inhibit JAK’s catalytic domain and is absolutely
required for function (Figure 2b).

The existence of the KIR was first identified in both SOCS3 and SOCS1 in two seminal
papers by Yoshimura’s group in 1999[78, 79]. These manuscripts defined the KIR as a 12
amino-acid sequence (residues 22–33), upstream of the SH2 domain. The KIR is only found
in SOCS1 and SOCS3 and has been shown to be required for both interaction with, and
inhibition of, JAK[78]. Although they are unstructured in the absence of JAK[60, 61, 71],
the first eight residues of the KIR adopt an extended conformation that occupies the
interface between the JAK kinase and the SOCS3 SH2 domain when the two proteins are in
complex[81]. The four C-terminal residues of the KIR are also structured upon JAK binding,
forming an extra, N-terminal, turn on the ESS (extended SH2 subdomain) helix. The ESS
helix is a 14-residue alpha-helix immediately prior to the N-terminus of the SH2 domain and
is a feature that is shared by all eight SOCS proteins. This helix is integral to the stability of
the SOCS3 SH2 domain as, when deleted, the protein becomes unstable. The ESS covers a
large hydrophobic surface on the under-side of the central β-sheet of the SH2 domain which
gives it a very fixed geometry relative to the rest of the domain. This geometry may be
important for positioning KIR in the case of SOCS1 and SOCS3. Now that the structure of
SOCS3 in complex with JAK has been solved, we favour a redefinition of the KIR as
consisting of residues 22–29 of SOCS3 and the ESS helix as residues 30–44 (Figure 2b).

The KIR inhibits JAK by partially blocking the substrate binding groove on the surface of
the kinase (Figure 2c). This prevents substrates (for example STAT3) from accessing the
active site. Tyrosine kinases catalyse the transfer of the terminal (γ) phosphate from ATP to
a tyrosine hydroxyl moiety and are therefore two-substrate enzymes: ATP (the phosphate
donor) and the tyrosine-containing protein/peptide (the phosphate acceptor). Whilst the
tyrosine-containing protein/peptide is occluded from its binding site when SOCS3 is bound
to JAK, ATP binding remains unperturbed (Figure 2c). This makes SOCS3 a non-
competitive inhibitor (with regards to ATP) of JAK and may be an important aspect to its
function as it does not need to compete with the high concentrations of ATP found in the
cytoplasm[82].

SOCS3 inhibits JAK1, JAK2 and TYK2 but not JAK3
Whilst the KIR is required to inhibit JAK, it is not sufficient. There is no detectable
inhibition of JAK using a SOCS3 KIR peptide[82]. The structure of SOCS3 bound to JAK2
shows that only approximately 20% of the buried surface area within the complex involves
the KIR. The majority of the SOCS3:JAK affinity is derived from an interaction between the
SH2 domain of SOCS3 and JAK. It is important to note that this does not involve the
classical phosphotyrosine binding groove on the SH2 domain, which remains accessible for
binding to gp130. Rather it is on the opposing face of the domain and also involves residues
on the ESS. This surface wraps around helix αG of JAK, in particular a three residue
“GQM” (Gly-Gln-Met) motif at its N-terminal end.

Interestingly, this GQM motif is only found in JAK1, JAK2 and TYK2 but not JAK3. In
vitro inhibition assays have shown that SOCS3 can only directly inhibit JAK1, JAK2 and
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TYK2 and that the GQM motif is responsible for this specificity[82]. Thus all three JAKs
found associated with gp130 are susceptible to SOCS3 inhibition whilst JAK3 is not. The
GQM motif is conserved in JAK1, JAK2 and TYK2 throughout vertebrate evolution and is
always absent in JAK3 suggesting an important distinction.

A model of SOCS3 inhibition of IL-6 signalling
Knockout studies have shown that SOCS3 is a highly potent and specific inhibitor of IL-6
family cytokines, G-CSF and leptin, despite the fact that its expression is induced by a much
larger number of cytokines. Any model of SOCS3 action must explain this specificity. Our
model is centred upon the fact that SOCS3 binds JAK and the IL-6 receptor simultaneously
via two opposing surfaces. Thus it is a particular JAK/Receptor complex that is the true
target of SOCS3, rather than an individual JAK or receptor alone. This allows SOCS3 to
inhibit IL-6 signalling (in addition to G-CSF and leptin) with both (A) high specificity and
(B) high potency (affinity).

Specificity is derived from the fact that only particular JAK/receptor pairs are targeted,
overcoming the redundancy caused by the fact that all cytokines signal through only four
different JAK kinases and six different STAT transcription factors. SOCS3 can inhibit
JAK1, JAK2 and TYK2 however it does so effectively only when they are already bound to
a cytokine receptor that contains a SOCS3 binding site such as gp130, G-CSFR and lepR.

High affinity is derived from the formation of an unusual three-way complex (JAK/gp130/
SOCS3) in which each member is directly bound to the other two (see figure 3). JAK binds
gp130 through its FERM domain and SOCS3 through its kinase domain. gp130 binds JAK
via its Box1 motif and SOCS3 via pY759. Finally, SOCS3 binds gp130 via its
phosphotyrosine binding groove and JAK via the KIR and a surface on the opposing face of
its SH2 domain. This creates a SOCS3:JAK/gp130 avidity that is higher than the mere sum
of the individual SOCS:JAK and SOCS:gp130 affinities, reminiscent of certain antibody-
antigen interactions. This avidity arises from SOCS3 containing two independent binding
sites for the JAK/gp130 complex (see Figure 3).

There are two predictions from this model of SOCS3 action that can be made: (1) it will
inhibit a broad range of cytokines, in fact any cytokine that uses JAK1, JAK2 or TYK2,
when overexpressed and (2) when present at physiological levels it will only inhibit of
cytokines whose receptors contain SOCS3 binding sites. The former phenomenon has been
well described elsewhere[83–85], whilst the latter phenomenon correlates well with the
known specificity of SOCS3 for IL-6, LIF, G-CSF and leptin (all of which use receptors
with SOCS3 binding sites) signalling. To date, the highest affinity SOCS3 binding site is
found on gp130 (pY759). SOCS3 binds gp130 with a >10-fold higher affinity than it does
G-CSFR and LepR. This explains why SOCS3 is such an effective inhibitor of all IL-6
family cytokines.

The mechanism of SOCS3 is reminiscent of the inhibition of insulin signalling by
Grb14[86]. Like SOCS3, Grb14 inhibits insulin signalling by binding to a specific
phosphotyrosine on the insulin receptor cytoplasmic domain and then inhibiting its
associated kinase activity by blocking the kinase’s substrate binding site with a short
inhibitory region. The difference is that rather than being bound to a kinase, the insulin
receptor is the kinase and thus both interactions made by Grb14 (scaffolding via its SH2
domain and kinase inhibition by it kinase inhibitory sequence) are with the same molecular
entity, rather than a dimeric kinase/receptor complex consisting of two separate chains.
Given this conservation of mechanism between these major inhibitors of cytokine and RTK
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(receptor tyrosine kinase) signalling pathways it will be interesting to determine whether
other kinase-based signalling pathways are similarly controlled.
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Abbreviations

JAKs Janus Kinases

SOCS Suppressor of Cytokine Signalling)

STAT Signal Transducers and Activators of Transcription

IL-6 Interleukin-6

IL-10 Interleukin-10

IL-11 Interleukin-11

IL-27 Interleukin-27

gp130 glycoprotein 130

OSM Oncostatin M

LIF Leukemia Inhibitory Factor

CNTF cillary neurotrophic factor

CT-1 Cardiotrophin 1

IL-6Rα Interleukin-6 Receptor alpha-chain

GCSF Granulocyte colony-stimulating factor

KIR kinase inhibitory region

SH2 Src homology 2

SHP2 SH2 domain containing phosphatase

PI3K Phosphoinositide 3-kinase

MAPK Mitogen-activated protein kinase

ERK extracellular-signal-regulated kinase
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SOCS3 is the primary feedback inhibitor of IL-6 family signalling

SOCS3 controls the duration of IL-6 signalling and shapes the cells response to it.

SOCS3 binds to gp130, the shared IL-6 family co-receptor

SOCS3 directly inhibits JAK1, JAK2 and TYK2 but not JAK3

SOCS3 targets gp130/JAK complexes

Babon et al. Page 14

Semin Immunol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. IL-6 signalling and its inhibition
Schematic diagram illustrating activation (left) of the JAK/STAT signalling cascade in
response to IL-6 and the termination of signalling (right) catalysed by SOCS3. IL-6 signals
via a cell-surface receptor that consists of a 2:2 gp130(blue):IL-6Rα (orange) tetramer.
Interaction between the cytokine and its receptor induces the autoactivation (in trans) of
Janus Kinases (JAKs,: JAK1, JAK2, TYK2; shown in beige) bound to the cytoplasmic
domain of gp130. Activated JAK then phosphorylates five tyrosines within gp130cyt. Four
of these phosphotyrosines recruit STAT3 or STAT1/STAT3 which are then themselves
phosphorylated, and thereby activated, by JAK, translocate to the nucleus and begin
inducing the transcription of IL-6-responsive genes. STATs also upregulate the transcription
of SOCS3 (red) which binds to the fifth phosphotyrosine in gp130cyt (pY759) and shuts
down the JAK/STAT signalling cascade by binding to JAK and directly inhibiting its
catalytic activity, forming a negative feedback loop. This phosphotyrosine also recruits
SHP-2, which leads to activation of the MAPK/ERK and PI3K pathways (not shown here)
and therefore SOCS3, which competes for this site, is also capable of inhibiting those
signalling cascades. Signalling and inhibition is symmetric with respect to both gp130
chains and is shown here divided into left and right for ease of illustration. The structures
shown are those solved and/or modelled for components of the signalling cascade, Note that
the pseudokinase and SH2-like domains of JAK are omitted for clarity in this figure.
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Figure 2. SOCS3 inhibits the duration of IL-6 signalling by direct inhibition of JAK1, JAK2 and
TYK2 but not JAK3
(A) Schematic diagram showing the effect of SOCS3 on STAT1 and STAT3 activation post
IL-6 stimulation. Shown is a representation of the data from[46] (B). The structure of
SOCS3 (PDB 4GL9) with an explanation of the major functional motifs shown as a
schematic below. Note that the PEST motif is absent from the structure and that the SOCS
box has been modelled based on the structure of the SOCS2 SOCS box (PDB 2C9W). (C)
SOCS3 (red) binds the kinase domains of JAK1, JAK2 and TYK2 and inhibits its catalytic
activity by blocking the substrate binding site with its kinase inhibitory region (black). Note
that SOCS3 remains bound to gp130 (blue) whilst in complex with JAK (beige) and that
ATP binding is unaffected.
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Figure 3.
SOCS3 inhibits IL-6 family signalling by targeting a gp130:JAK dimer.
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