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Abstract
Noninvasive studies of human brain function hold great potential to unlock mysteries of the
human mind. The complexity of data generated by such studies, however, has prompted various
simplifying assumptions during analysis. Although this has enabled considerable progress, our
current understanding is partly contingent upon these assumptions. An emerging approach
embraces the complexity, accounting for the fact that neural representations are widely distributed,
neural processes involve interactions between regions, interactions vary by cognitive state, and the
space of interactions is massive. Because what you see depends on how you look, such unbiased
approaches provide the greatest flexibility for discovery.

Why does the brain, and not the pancreas or any other human organ, arouse such popular
interest? The key reason is that the brain implements the mind. Understanding how the brain
works could help uncover the fundamental principles of cognition and behavior.

The development of magnetic resonance imaging (MRI) began a new era in cognitive
neuroscience. Exploiting differences in magnetic susceptibility between oxygenated and
deoxygenated blood [blood oxygenation level–dependent(BOLD)contrast], functional MRI
(fMRI) detects metabolic activity, and by inference, neuronal activity, noninvasively
throughout the brain. This technique generates complex data sets: ~100,000 locations,
measured simultaneously hundreds of times, resulting in billions of pairwise relations,
collected in multiple experimental conditions, and from dozens of participants per study.
With this powerful technology in widespread use, data analysis has become the bottleneck
for progress. What is the best way to find the mind in brain data?

This review is organized around four desiderata for examining the mind with fMRI, each
embracing a different aspect of the nature and complexity of human brain function: (i)
neural representations are widely distributed within and across brain regions, (ii) neural
processes depend on dynamic interactions between regions, (iii) these interactions vary
systematically by cognitive state, and (iv) the space of possible interactions has high
dimensionality. All four complexities can be accounted for by harnessing recent advances in
large-scale computing. Such unbiased approaches are beginning to reveal how disparate
parts of the brain work in concert to orchestrate the mind.

Distributed Representations
The most basic approach for finding the mind in the brain is to test for homologies between
mental functions and brain regions. The expectation that functions should align to discrete
regions emerged from studies of patients with focal brain damage, an emphasis in systems
neuroscience on brain “areas,” and theoretical views about modular brain organization. This
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approach identified several specialized brain regions, including areas for perception, action,
language, emotion, and memory.

In fMRI, brain activity is not measured at the level of regions but rather in terms of
volumetric pixels (voxels). The average amplitude of BOLD activity evoked by trials
relative to baseline (“activation”) identifies voxels that are responsive to the function
engaged by that trial type (Fig. 1). A classic discovery is that discrete clusters of voxels in
visual cortex are selective for particular object categories (1). This univariate approach
remains dominant and productive; for example, it was used recently to show that category
selectivity may, in fact, be organized as a continuous gradient, with each voxel reflecting a
point in semantic space (2).

There is nothing intrinsically flawed about measuring activation in a voxel or region in
isolation from the rest of the brain. Limitations can arise, however, from the use and
interpretation of this approach, especially when voxels or regions are assumed to be
independent. Although fMRI discretizes the brain into images, the underlying areas of tissue
are not necessarily discrete. Because the goal is to understand the brain—not the content of
these images per se—methods sensitive to dependence between voxels are necessary.

Multivariate pattern analysis (MVPA) was developed in response (3). This technique relies
on tools from machine learning to decode patterns of activation across voxels. One of the
first discoveries enabled by MVPA was that information about a category is present
throughout visual cortex, beyond voxels with the strongest activation to that category (4).
This was a watershed moment: Seemingly atomic mental functions could be reflected in
distributed and overlapping patterns in the brain.

The value of MVPA is especially clear when the overall activation in a region is weak or
similar across conditions, but the pattern over voxels is informative. For instance, it has long
been known that expectations influence perception—but how? There are two potential
mechanisms: Either neurons coding for expected stimuli in sensory cortex are suppressed to
minimize the redundancy of information in the brain, or neurons coding for unexpected
stimuli are suppressed to sharpen population responses around expected stimuli. Neuronal
activity in visual areas, such as V1, should decrease on average in both cases, which leads to
attenuated but indistinguishable activation. However, MVPA revealed more information
about expected versus unexpected stimuli in V1, consistent only with sharpening (5).

As another example, how can we hold vivid images in our mind's eye? Frontal and parietal
regions that help maintain information in working memory lack detailed visual selectivity,
and visual areas with the needed selectivity show little delay-period activation in working
memory tasks. Despite this weak activation, however, MVPA of visual cortex can
successfully decode what information is being held in mind (6, 7)—revealing that sensory
machinery is recruited for working memory.

Interactive Processes
The advent of MVPA eliminated a bias to interpret brain regions as having homogeneous
and discrete functions. This approach helped capture another core aspect of brain function:
Regions do not work in isolation, with computation depending on local and long-range
interactions. This can be reflected in fMRI coactivation: Voxels containing interacting
neurons are more likely to activate together, which could produce distributed patterns visible
to MVPA.

However, a limitation of most uses of MVPA is that they focus on (patterns of) activation
and are thus blind to certain kinds of interactions. Voxels need not vary in activation to have
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selectivity: Neuronal populations may generally be active, with their function defined on the
basis of which specific neurons are communicating with each other (8). (This is not a flaw of
MVPA itself, which, as discussed later, can work with any kind of pattern.)

Examining temporal correlations in BOLD activity between voxels—functional connectivity
(9)—helped address this issue. Even if a voxel has stable activation across experimental
conditions, its functional connectivity with other voxels may vary. This technique has
limitations, including that BOLD correlations do not indicate neuronal communication, say
little about directionality, and must be interpreted cautiously (two voxels may interact with a
common third voxel or a global factor, such as head motion, rather than each other).
Nonetheless, some initial concerns have been allayed: Correlation is generally an
appropriate metric, candidate neuronal substrates exist (10), and functional connectivity is
anatomically constrained (11).

The most common application of functional connectivity is examining intrinsic correlations
while participants rest, typically by modeling whole-brain BOLD activity with the time
course from a seed region. This approach has helped characterize the functional architecture
of the brain, namely, how regions group together into broader systems. One such system is
the “default network,” a set of regions that are robustly correlated at rest. However, this
finding did not fully realize the promise of functional connectivity for new discovery, as the
same network had previously been identified in terms of baseline activation (12).

The added value of this approach is more apparent in a study that examined the default
network with higher temporal resolution (13). Accelerated multiband fMRI sequences
revealed that the default network may not be a stable network: Over time, its constituents
interact differently with each other and with the rest of the brain. The existence of these
temporally distinct “modes” is consistent with the neuronal populations above—the function
of a region in the default network may only be definable with respect to its functional
connectivity at that moment. Such investigations may also enhance our understanding of
disorders like Alzheimer's disease, which targets the default network, as reflected in amyloid
plaque deposits and disrupted function (12).

Active Tasks
The proliferation of functional connectivity eliminated a bias toward using activation as the
basic unit of study, placing emphasis on pairwise relationships instead. However, as noted
above, most functional connectivity studies are conducted at rest. There are advantages to
this, including that data sets can be collected and compared across research sites and clinical
populations (14). But, if the goal is to understand the mind, resting connectivity is only
partly the answer—cognition is neither manipulated nor measured. Indeed, functional
connectivity can be similar over rest and task states, but this is not guaranteed (15). For
instance, resting connectivity itself is influenced by recent tasks (16, 17).

Studying connectivity during tasks is a more direct way to understand how cognitive
processes are realized in the brain. There are many flavors of task-based functional
connectivity, each with strengths and weaknesses (9). To highlight one approach,
“background connectivity” retains the simplicity of resting connectivity but accounts for
different cognitive states (18). The logic is that BOLD activity contains two task-related
sources of variance: evoked activity related to stimuli and responses and endogenous
activity related to establishing and maintaining the current cognitive state (19). After
accounting for nuisance variables, precise models of the evoked activity leave the
endogenous activity in the residuals, which can be correlated across voxels to estimate
background connectivity in different cognitive states.
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As a case study, consider selective attention—our ability to prioritize sensory input that is
important for achieving one's current goals (20). In humans, this has typically been
examined with activation. For example, when shown a blended image of a face and a scene,
attending to the face activates face-selective visual cortex and attending to the scene
activates scene-selective visual cortex (21). Attended information gets prioritized because
these strengthened representations compete better against those of unattended information.

A different mechanism is suggested by models of cognitive control, which emphasize the
guidance of activity along neural pathways (22), and by neurophysiological studies, which
link attention to long-range synchrony (23). Attention may act as if switching train tracks:
Goals represented in frontal and parietal cortex establish connections between visual areas to
route sensory information along relevant pathways. We recently found evidence consistent
with this mechanism (Fig. 2): In the task above, attending to faces increased background
connectivity between brain area V4 and face-selective cortex, and attending to scenes
increased connectivity between V4 and scene-selective cortex (24). This modulation of
connectivity predicted behavior, was unrelated to activation, and persisted without
stimulation. These findings in the human brain join with recent findings in nonhuman
primates (25, 26) to form a coherent story about how functional connectivity within the
visual system supports attention.

Task-based connectivity is especially useful for understanding how brain systems influence
each other. For example, we frequently make decisions between options with which we have
no direct experience, such as new restaurants or books—how is this possible? Interactions
between the striatum and hippocampus may help: When a stimulus is rewarded, the value
created in the striatum not only attaches to the rewarded stimulus, but also, via functional
connectivity, to other associated stimuli reactivated in the hippocampus—creating
preferences by association (27). This technique can even be used to study how entire brains
influence each other: during communication, the brains of speakers and listeners become
coupled, and the extent of coupling predicts comprehension (28).

Full Correlation
Relating brain dynamics to tasks eliminated a bias to assume that functional connectivity is
stationary. Nevertheless, this approach is not fully unbiased, as seed regions typically need
to be chosen. This is problematic for two reasons. First, it resurrects the issue that inspired
functional connectivity in the first place: Seeds are often defined on the basis of activation in
different tasks, which leads to an assumption that regions with robust activation (or
activation differences) are most interactive or that their interactions are most informative.
Second, seeds restrict analysis to a tiny subset of possible interactions. A brain with N =
50,000 voxels contains N(N – 1)/2 = 1,249,975,000 unique voxel pairs, but only N – 1 =
49,999 of these are considered for any given seed. Placing such limits on analysis can
hamper progress when the effects of interest in a field are unknown (29).

Why then does functional connectivity analysis use seeds at all, rather than the full
voxelwise correlation matrix? One reason is to avoid the statistical challenges associated
with big data and to allow more specific models to be tested with greater power. A second
reason is that calculating such matrices is computationally demanding, and seeds shorten
and simplify analysis. With the increased availability of high-performance computing,
however, such compromises are becoming unnecessary.

The full correlation matrix can be represented as a six-dimensional (6-D) autocorrelation
field: For each voxel in the 3-D brain, there is a 3-D brain of functional connectivity with
every other voxel. Computing all pairwise correlations was prohibitively slow in the past—

Turk-Browne Page 4

Science. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



up to hours or days (30). Matrix multiplication can be used for drastically improved
computational speed: If each voxel's time course is mean-centered and the result is divided
by its root sum of squares, the Pearson correlation of any two voxels is reduced to the sum
of pointwise products over time (the dot product), and the full matrix of coefficients is
obtained by the product of a voxels-by-time matrix and its transpose (31). Technological
advances can reduce such large matrix multiplication operations to less than 1 s.

Analysis of the full correlation matrix during rest has started yielding insights into the
topology and dynamics of human brain networks. If each voxel is treated as a node, and all
correlations between that and other nodes above some threshold are treated as edges, then
the resulting binary matrix generates a graph (32). These voxelwise graphs can be
characterized quantitatively with network measures (33), including degree, number of edges
for a node; modularity, density of edges within versus between node clusters; path length,
minimum number of edges between nodes; and centrality, proportion of shortest paths
passing through a node.

In this lexicon, functional brain networks exhibit high modularity and short path lengths (32,
34). High modularity reflects strong connections between nodes that contribute to the same
function, such as in visual cortex, whereas short path lengths reflect connections between
these node communities via “hub” nodes that have high centrality and tend to be connected
to each other, such as in frontal cortex (35). These two properties fit the definition of a
“small-world” network, an organizational scheme found in many biological and
nonbiological complex systems that enables efficient information processing, both locally
within modules and globally across the network (33).

Thinking of brain function as a small-world network has enabled progress on several fronts.
For example, it was recently discovered that although voxelwise graphs from infants' brains
also have small-world properties, their cortical hubs are located in different places than
adults—unexpectedly, in primary sensorimotor cortex (36). There is variation in network
properties even among adults: Some brains have shorter path lengths, and these individuals
score higher on an intelligence test (37). These studies suggest that investigating how
information is integrated across the brain holds particular promise for understanding the
origins and limits of cognition.

Outlook
Taking stock, we have considered four desiderata: fMRI analysis should account for the fact
that neural representations are widely distributed, that neural processes depend on
interactions, that these interactions differ by cognitive state, and that the space of
interactions is massive. Developing approaches that incorporate all of these complexities
holds tremendous potential. Although the full correlation studies described above come
close, they have largely only examined the resting state, missing an opportunity to relate the
brain's large-scale structure and dynamics directly to ongoing cognition.

The full combined approach (or full correlation matrix analysis, FCMA) could involve
several steps (Fig. 3). During an fMRI experiment with different experimental conditions,
whole-brain BOLD activity might be divided into separate time windows for each instance
of a condition. The full correlation matrix would be computed for each window. This
restructures the data from 4-D (3-D brain over time) to 7-D (6-D autocorrelation field over
windows). The resulting matrices might then be mined using MVPA, with voxel pairs
defining the dimensions of a large hyperspace, and the correlation coefficient for each pair
providing the value in that dimension. Several outcome measures are possible, including the
classifier's cross-validation accuracy, which indicates the extent to which task-related
interactions were present. In addition, the weights of the classifier or the output from a
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feature selection step could be used to identify which specific pairwise relationships
discriminated best between conditions. A software toolbox that we developed to implement
this analysis pipeline on a compute cluster shows that it is computationally tractable
(www.princeton.edu/fcma).

There are several challenges for the large-scale multivariate analysis of task-based
functional connectivity, including consideration of statistical correction, spatial and temporal
resolution, spectral frequency, causality, intersubject alignment, and visualization. Indeed,
although there are likely bigger “big data” in neuroscience, such as cellular-level structural
connectivity and gene expression assays, FCMA presents unique opportunities related to
studying the dynamics of human brain function in vivo and noninvasively. The greater
resolution enabled by multiband fMRI (13)—coupled with consideration of multiple time
windows, window lengths, and phase offsets, as well as a large number of psychological
variables and the rich repertoire of human behavior—increases the computational load by
several orders of magnitude.

Nevertheless, elements of FCMA can be found in the literature. Some studies have
computed large correlation matrices during different cognitive states but did not use MVPA.
Instead, they focused on relating network measures to cognitive states. For example, path
length is shorter when awake compared to when in stage-1 sleep (38) and also in successful
versus unsuccessful auditory learners (39). Other studies have used MVPA to classify
cognitive states but only over smaller regional or subregional correlation matrices (40, 41).

One study of the latter type engaged participants in four tasks: remembering the day's
events, resting with eyes closed, silently singing lyrics, or counting backward (42). The
correlation matrix from 90 functional regions of interest was computed for each task in one
group of participants, and the cells in the matrix (region pairs) selective for each task were
used to construct “connectivity templates” (Fig. 4). Correlation matrices were computed for
the same tasks in a separate group of participants. The task from which these matrices were
obtained could be classified with high accuracy on the basis of their similarity to the other
group's templates.

Conclusions
Interactions between variables may hold the key to understanding complex biological and
social systems (43). There is precedence for this in neuroscience, where physiological
recordings of single neurons are giving way to large multiunit arrays and multiple recording
sites (44). Immensely rich data are generated by fMRI, of which only a fraction is typically
analyzed. An unbiased approach, combining advances in computer science (from large-scale
computing, machine learning, and graph theory) with clever experiments in psychology and
cutting-edge tools from neuroscience, provides a fruitful platform for new discovery about
the human brain—and about the mind that it implements.
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Fig. 1. Standard types of fMRI analysis
(A) Univariate activation refers to the average amplitude of BOLD activity evoked by events
of an experimental condition. (B) Multivariate classifiers are trained on patterns of
activation across voxels to decode distributed representations for specific events. (C)
Resting connectivity is the temporal correlation of one or more seed regions with the
remainder of the brain during rest. (D) Task-based connectivity examines how these
correlations differ by cognitive state. (E) Full connectivity considers all pairwise
correlations in the brain, most commonly at rest.
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Fig. 2. Attentional modulation of functional connectivity
(A) The guided activation theory of cognitive control posits that prefrontal cortex (PFC)
sends feedback to posterior cortex to switch connectivity between areas and establish task-
relevant pathways (22). (B) Such pathways exist in the visual cortex of nonhuman primates:
V4 shows enhanced coherence with the area of V1 containing receptive fields for the
attended target (25). (C) This mechanism also supports category-based selection in human
visual cortex: V4 shows stronger background connectivity with the fusiform face area (FFA)
when faces are attended and with the parahippocampal place area (PPA) when scenes are
attended (24). Figures adapted with permission.
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Fig. 3. Full correlation matrix analysis pipeline
(A) An fMRI data set is divided into time windows, which are labeled with an experimental
condition. (B) Each window contains multiple time points, and each time point corresponds
to a 3-D brain image. (C) The time course of BOLD activity in every voxel is correlated
with every other voxel to produce a full correlation matrix for each window. (D) An
example matrix from a 36-s block of fMRI data is depicted with 39,038 voxels arranged in a
circle and 0.01% of correlations of >0.3 plotted as links (visualization created with Circos,
www.circos.ca). The luminance and thickness of links reflects the absolute correlation in
four graded steps. The surrounding histogram is a count of the number of above-threshold
links per voxel. (E) These matrices can be submitted as examples to MVPA, with each voxel
pair as an input dimension. Data-driven feature selection helps discover meaningful
relationships for classification. For more information: www.princeton.edu/fcma.
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Fig. 4. Pattern analysis of correlations
(A) fMRI data were collected during four cognitive states. (B) The correlation matrix of 90
functional regions during each state. Each cell reflects the correlation between two regions,
thresholded on the basis of the reliability of the correlation across participants. Pairs that
were reliable in more than one state were excluded, generating a task-specific template. Grid
lines demarcate anatomical regions, each containing a variable number of functional regions.
(C) Using these templates, correlation matrices from a second group of participants could be
decoded into cognitive states with high accuracy. Figures adapted with permission from
(42).
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