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Nonionic surfactant vesicles for delivery of RNAi 
therapeutics

Delivery of RNAi therapeutics
Gene silencing-based therapy has the potential 
to transform modern medicine [1,2]. Synthetic 
siRNAs or miRNA mimics can be incorpo-
rated into RNA-induced silencing complexes to 
knockdown target genes [3]. A related therapeutic 
strategy to inhibit miRNA function is by intro-
duction of miR inhibitors, sometimes known as 
anti-miRs or antagomirs. It is worth noting that 
RNAi can be induced by gene transfer in the form 
of shRNAs, by either viral or nonviral vectors, 
which are then transcribed and processed into 
active miRNA duplexes by innate endonucleases 
drosha and dicer. However, this strategy requires 
nuclear delivery of a large DNA molecule, such 
as a plasmid, which faces increased challenges in 
delivery [2,4]. By contrast, synthetic RNAi agents 
are much smaller in size (duplexes of oligomers of 
approximately 21 bases in length or in the case of 
anti-miRs, short single-stranded oligomers) and 
can incorporate chemical modifications into the 
backbone and termini for improved stability [5]. 
Despite these advantages, oligonucleotide agents 
are high-molecular-weight polyanions that can-
not readily diffuse across cellular membranes, 
which presents a significant barrier to delivery 
[6,7]. Moreover, these molecules need to resist deg-
radation during systemic circulation, extravasate 
and get across the cellular membrane to reach the 
cytoplasmic site of therapeutic action. The most 
promising strategies for RNAi delivery seem to 
be a combination of oligonucleotide backbone 
chemical modifications and formulation into 
nanoparticles [8].

Nanoparticles for nucleic acid delivery are 
typically synthesized by a self-assembly process 

driven by electrostatic interactions between a 
cationic polymer or lipid and an anionic nucleic 
acid, such as siRNA. A net positive charge of the 
assembled particles can mediate cellular uptake 
via electrostatic adhesion to cellular surfaces, 
which carry a slight negative charge. This basis 
of charge interaction is very helpful in facilitating 
siRNA delivery in vitro [3–4]. However, in vivo, 
highly charged particles are rapidly cleared from 
the circulation due to strong interactions with 
plasma components and the reticuloendothelial 
system [9]. As a result, there is generally little cor-
relation between optimal compositions for high 
delivery efficiency of a delivery vehicle in vitro 
and in vivo [10]. To optimize in vivo delivery, it 
is important to make stable nanoparticles that 
can survive circulation, but not so stable that 
they are rendered inactive following cellular 
internalization. Achieving this balance requires 
rational design of nanoparticle composition 
[11]. A well-known system for siRNA delivery 
is based on stable nucleic acid lipid particles, 
for example, with a composition of cholesterol, 
dipalmitoylphosphatidylcholine, 3-N-[(w-
methoxy poly(ethylene glycol)2000)carbamoyl]-
1,2-dimyrestyloxypropylamine and the cationic 
component 1,2-dilinoleyloxy-3-N,N-dimethyl-
aminopropane [12]. Stable nucleic acid lipid par-
ticles are currently in Phase I and II clinical tri-
als for the delivery of siRNAs; ALN-VSP02 and 
TKM-PLK1, respectively. Lipid nanoparticles for 
siRNA delivery have been the subject of several 
recent review articles [13–15]. Since delivery is key 
to the successful clinical translation of siRNA 
therapeutics, the need for additional effort in this 
area of research is evident.

RNAi is a promising potential therapeutic approach for many diseases. A major barrier to its clinical 
translation is the lack of efficient delivery systems for siRNA. Among nonviral vectors, nonionic surfactant 
vesicles (niosomes) have shown a great deal of promise in terms of their efficacy and toxicity profiles. 
Nonionic surfactants have been shown to be a superior alternative to phospholipids in several studies. 
There is a large selection of surfactants with various properties that have been incorporated into niosomes. 
Therefore, there is great potential for innovation in terms of nisome composition. This article summarizes 
recent advancements in niosome technology for the delivery of siRNA.
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Nonionic surfactant vesicles for 
nucleic acid delivery
Similar to the zwitterionic phospholipids that 
form liposomes, nonionic surfactants with 
a cylindrical geometry are capable of form-
ing bilayer vesicles, termed ‘niosomes’. Like 
liposomes, these vesicles have been used for 
drug [16–31], gene [32–35] and siRNA [36,37] deliv-
ery. Niosomes and liposomes differ in several 
respects. First, surfactants are generally lower 
in cost and are potentially more stable than 
phospholipids, which are subject to oxidation 
and degradation by phospholipases. Indeed, 
niosomes may have longer shelf lives and be more 
stable than liposomes in vivo. The selection of 
synthetic surfactants may be further advanta-
geous to lipids derived from natural sources, 
which can differ from batch to batch in terms 
of purity. A large selection of surfactants that 
display a wide range of properties desirable for 
specific drug delivery applications are readily 
available.

�� Composition of niosomes
Niosomes are typically composed of nonionic 
surfactants and cholesterol [38]. The ability to 
form bilayer vesicles from surfactants depends 
on their hydrophile–lipophile balance (HLB) 
value and critical packing parameter, as well as 
other factors. A critical packing parameter in 
the range of 0.5–1 indicates that a surfactant 
is likely to form spherical vesicles [39,40]. The 
optimal HLB value for high-loading efficiency 
niosomes is approximately 8.6. Surfactants with 
either higher or lower HLB values form vesicles 
with lower stability and lower volumes of entrap-
ment [41–44]. The addition of cholesterol may be 
used to further increase the stability of niosomes.

Nonionic surfactants
Common nonionic surfactants that can be used 
to prepare niosomes are classified by chemical 
structure as described below (Figure 1) [38,39,45,46].

�� Alkyl ethers and alkyl glyceryl ethers such as 
polyoxyethylene 4 lauryl ether (Brij® 30), 
polyoxyethylene cetyl ethers (Brij 58) and 
polyoxyethylene stearyl ethers (Brij 72 and 
Brij 76; Sigma Aldrich, MO, USA); 

�� Sorbitan fatty acid esters such as Span® 20, 
Span 40, Span 60 and Span 80 (Sigma 
Aldrich); 

�� Polyoxyethylene fatty acid esters (polysorbate) 
such as Tween® 20, Tween 60 and Tween 80 
(Sigma Aldrich);

�� Gemini surfactants [47,48];

�� Bola Surfactants [49,50].

Cholesterol
Cholesterol may be combined with nonionic sur-
factants for the preparation of niosomes [51,52]. 
The gel-to-liquid phase transition of niosomes 
can be impeded by adding cholesterol, resulting 
in niosomes that are more rigid and less likely to 
lose the drug [39]. In a recent study, a 1:1 ratio of 
cholesterol and nonionic surfactants was shown 
to be optimal for producing physically stable 
niosomes [38], possibly owing to interactions 
between the surfactant and cholesterol [53].

Charge inducer components
Niosomes are often stabilized by the inclu-
sion of a charged lipid. Examples of commonly 
used anionic lipids include dicetyl phosphate, 
dihexadecyl phosphate and lipoamine acid. For 
nucleic acid delivery, a cationic surfactant may 
be used so that the niosomes form electrostatic 
complexes with the negatively charged oligo
nucleotides [39,46]. A slight net surface charge 
of the nisome–oligonucleotide complexes leads 
to increased colloidal stability. However, exces-
sive net charge can lead to rapid removal from 
systemic circulation by the reticuloendothelial 
system. Thus, a careful balancing of charge is 
essential to form an effective delivery vehicle.

Applications of niosomes
Niosomes constitute a versatile delivery plat-
form that can be used in various pharmaceuti-
cal applications in addition to oligonucleotide 
delivery, as described in Table 1.

�� Niosomes as nucleic acid carriers
Like cationic liposomes, cationic niosomes can 
be used for nucleic acid delivery. Typical com-
ponents of cationic niosomes include a nonionic 
surfactant, cholesterol and a cationic lipid [33,35]. 
Niosomes have been used successfully for topi-
cal gene delivery [46] and for synthesis of DNA 
vaccines [54,55]. In one study, plasmid delivery 
into rat skin mediated by niosomes resulted 
in high levels of b-galactosidase and luciferase 
reporter gene expression [56]. Manosroi  et  al. 

Figure 1. Nonionic surfactant commonly used to prepare niosomes (facing page). Structures of alkyl ethers and alkyl glyceryl 
ethers (Brij®; Sigma Aldrich, MO, USA), sorbitan fatty acid esters (Span®; Sigma Aldrich), polyoxyethylene fatty acid esters (Tween®; 
Sigma Aldrich), Gemini surfactants 1 and 2, and Bola surfactants.
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demonstrated the use of elastic cationic niosomes 
composed of Tween 61 (Sigma Aldrich), cho-
lesterol and DDAB as a topical delivery system 
for the tyrosinase gene as a treatment for vitiligo 
[57]. To improve the stability and cellular delivery 
of oligodeoxynucleotides (ODNs), Huang et al. 
prepared PEGylated cationic niosomes by modi-
fying cationic niosomes with a PEG-conjugated 
lipid. Complexes of PEGylated cationic niosomes 
and ODNs showed a neutral z-potential with 
a particle size of approximately 300 nm. The 
PEG modification significantly decreased the 
serum binding and particle aggregation in the 
presence of serum, provided greater resistance 
to serum nuclease and enhanced the efficiency 
of ODN delivery [32]. Vyas et al. developed a 
niosome-based delivery system for DNA vac-
cines. DNA encoding hepatitis B surface anti-
gen was encapsulated in niosomes composed 
of Span  85 (Sigma Aldrich) and cholesterol. 
The results showed that immunization using 
topical niosomes can elicit a comparable serum 
antibody titer and cytokine levels compared 
with those following intramuscular administra-
tion of recombinant hepatitis B surface antigen 
and topical administration of DNA vaccines in 
liposomes [54]. Gene transfer efficiency medi-
ated by cationic niosomes is influenced by their 
composition, including the types of surfactants 
and cationic lipids used [32–35,58]. Paecharoenchai 
et al. investigated the effect of the structure of 
cationic lipids on pDNA transfection in HeLa 
cells mediated by cationic niosomes. The cationic 
niosomes were composed of Span 20, cholesterol 
and spermine derivative-based cationic lipids 
with varying acyl chain lengths (carbon [C]14, 
C16 and C18). The results showed that the 
transfection efficiency of the Span 20–niosomes 
was the highest for the spermine–C14 formu-
lation following the order of: spermine–C14 > 
spermine–C16 >  spermine–C18. In addition, 
Span 20–niosomes showed low cytotoxicity and 
hemolytic activity [35].

�� Niosomes as siRNA carriers
In addition to gene delivery, niosomes have 
been shown to facilitate siRNA delivery [36,37]. 
A general scheme for noisome-mediated siRNA 
delivery is shown in Figure  2. For example, a 
Span 80-based cationic niosome formulation, 
also known as SPANosome, was developed 
specifically for siRNA delivery. It contained 
1,2-dioleoyl-3-trimethylammonium-propane as a 
cationic lipid and d-a-tocopheryl PEG‑1000 suc-
cinate as a PEGylating lipid [36] at 1 or 5 n/n%. 
The particle size of empty SPANosomes was 
25–40  nm, which decreased with increasing 
amounts of d-a-tocopheryl PEG-1000 suc-
cinate in the formulation. Optimization of the 
SPANosome–siRNA formulation was carried out 
by altering the siRNA/surfactant ratio. A decrease 
in this ratio resulted in smaller particle sizes and 
increased z-potential. The SPANosome–siRNA 
formulation showed colloidal stability for at least 
3 weeks.

Gene silencing activity mediated by 
SPANosome
Gene silencing activity was evaluated in MDA-
MB-231-green fluorescent protein (GFP) cells, 
which were stably transfected with GFP, using 
SPANosomes carrying the siRNA siGFP. GFP 
silencing was shown to be dose dependent and 
reached 66% with the optimized formulation, 
which was greater than the silencing activity of 
Lipofectamine® 2000 (Life Technologies, CA, 
USA). In another experiment, the aromatase gene 
silencing mediated by SPANosome–siRNA was 
investigated in SK-Br-3 cells with a siRNA target-
ing aromatase, siArom. The results based on aro-
matase assay showed approximately a 77% knock-
down by SPANosome–siRNA and the efficiency 
was greater than that of lipofectamine–siRNA. 
No significant cytotoxicity in MDA-MB-231 
cells was observed with the SPANosome–siRNA 
formulations at concentrations below 20 µg/ml 
(~100 nM) siRNA [36]. SPANosomes have yet to 

Table 1. Pharmaceutical applications of niosomes.

Fields of application Type of encapsulated drugs/agents Ref.

Drug delivery NSAIDs, anticancer, antibacterial, antifungal, antiviral, steroids, 
antiglaucoma, antidiabetics, local anesthetics, muscle relaxants, 
diagnostic agents, contraceptives, hormones, vitamins

[16–31]

Immunization DNA vaccine, vaccine adjuvants [54–61]

Protein/peptide drugs Insulin, vasopressin [38,53–64]

Nucleic acid delivery Plasmid DNA, oligonucleotide [32–35]

siRNA [36,37]

NSAID: Nonsteroidal anti-inflammatory drug.
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be tested in vivo for siRNA delivery so their safety 
remains to be established [56–58].

Cellular uptake mechanism of 
SPANosome–siRNA
SPANosome–siRNA was shown to be internalized 
by tumor cells primarily through the caveolae-
mediated pathway, which does not lead to lysoso-
mal delivery and, thus, is less degradative. By con-
trast, the pathway used by lipofectamine–siRNA 
was primarily clathrin-mediated endocytosis [37]. 
Intracellular trafficking of SPANosome–siRNA 
was studied using molecular beacons as probes 
of cytoplasmic delivery [37]. The results showed 
that SPANosome–siRNA had a longer intracel-
lular half-life and greater delivery of molecular 
beacons into the cytoplasm relative to cationic 
liposomes–siRNA. Since Span 80 is known to 
form nonbilayer cubic phases, it may promote 
the destabilization of the endosomal membrane 
and subsequently enhance cytosolic delivery 
of the molecular beacon. Additionally, Huang 

et  al. reported that Spans enhanced transfec-
tion mediated by cationic liposomes. This effect 
might be due to the abilities of Span to desta-
bilize an endosomal membrane and also to pro-
mote phase transition from the lamellar phase 
to inverted hexagonal phase, resulting in cyto-
plasmic release of DNA [59]. Therefore, nonionic 
surfactants, such as Span 80, can be considered 
as ‘helper lipids’ to cationic lipids with greater 
efficiency than conventional helper lipids such as 
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 
and cholesterol, which are less active in the pres-
ence of serum. Given the wide selection of non-
ionic surfactants commercially available, there is 
ample space for innovation and optimization of 
niosome formulations for siRNA delivery.

Some recent publications on niosomes as gene/
siRNA carriers are listed in Table 2.

Conclusion
siRNA and other oligonucleotide-based thera-
peutics represent great opportunities for drug 
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Figure 2. Niosome–siRNA delivery pathway. siRNA forms an electrostatic complex with the cationic niosome. Niosomes are then 
internalized by the cell and siRNA is released into the cytoplasm to associate with RISC. RISC degrades the sense strand of siRNA and 
recruits the target mRNA, which is subsequently degraded, thus inhibiting translation.
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development. Developing efficient delivery sys-
tems is the key to their successful clinical trans-
lation. Niosomes have shown superior activities 
over well-known lipid-based delivery systems. 
Careful selection of surfactant and lipid compo-
nents determines the encapsulation, pharmaco
kinetic and release properties of niosomes. Like 
liposomes, niosomes may have applications in 
many pharmaceutical fields including conven-
tional drug delivery, protein/peptide delivery, 
vaccine delivery and oligonucleotide delivery. 
Current data appear to suggest that the success 
of niosomes for siRNA delivery may be due to a 
combination of caveolae-mediated cellular entry 
and the membrane bilayer destabilization effect 
characteristic of surfactant molecules.

Future perspective
Niosome technology for the delivery of ODNs 
and siRNA is still in its early stages and there 
is much room for improvement and innova-
tion. A large variety of surfactants and lipid 
combinations that could benefit the delivery 

system remain untested. Concerns relating to 
particle size and long-term colloidal stability 
will need to be addressed by careful adjustment 
of surface charge parameters and perhaps post
production considerations such as lyophiliza-
tion. Determination of the in vivo efficacy of the 
formulation will be necessary moving forward 
to determine if off-target toxicity is a limiting 
factor for niosomes. Thus far, niosomes have 
only been tested in vitro or topically; demon
stration of efficacy via paternal administration 
would further expand its application clinically. 
The application of targeting agents such as 
antibodies may also be of benefit to niosome 
formulations should off-target toxicity present 
an issue. Taken together, niosomes represent an 
exciting opportunity for the treatment of cancer 
and other diseases that do not respond well to 
traditional methods of treatment.

Financial & competing interests disclosure
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Education (Thailand) and the Thailand Research Funds 

Table 2. Niosome-based gene/siRNA delivery systems.

Niosome compositions DNA/siRNA Model Results Ref.

Tween® 61 (Sigma Aldrich, MO, 
USA):Chol:DDAB (1:1:0.5 M ratio)

Tyrosinase plasmid 
(pMEL34)

Rat skin Higher tyrosinase activity than the 
free plasmid

[57]

Tween 61:Chol:DDAB (1:1:0.5 M 
ratio)

Luciferase plasmid Rat skin Enhanced transdermal absorption 
of luciferase plasmid

[58]

Span® 20 (Sigma 
Aldrich):Chol:spermine–C14 
Span 20:Chol:spermine–C16 
Span 20:Chol:spermine–C18 
(2.5:2.5:1 M ratio)

pEGFP-C2 HeLa cell line High transfection efficiency with 
low cytotoxicity and low 
hemolytic effect; transfection 
efficiency is affected by cationic 
lipid structure

[35]

GDL:Chol:POE-10 b-galactosidase 
reporter

Rat skin Intense staining of follicular and 
epidermal cells

[56]

Span 85 (Sigma Aldrich):Chol 
(7:3 M ratio)

HBsAg BALB/c mice High serum antibody titer and 
endogenous cytokines

[54]

Span 40 (Sigma Aldrich):DC-Chol 
(1:1 M ratio) with PEG2000-DSPE 
(5 mol%)

Oligodeoxynucleotides COS-7 cell line PEGylated cationic niosomes 
showed a higher efficiency of 
oligodeoxynucleotide cellular 
uptake and decreased the binding 
of serum protein

[32]

DOTAP:Span 80:TPGS 
(50:49:1/50:45:5 M ratio) 
SPANosomes

siGFP, siArom MDA-MB-231 cells with/without 
stably transfected GFP, 
aromatase-expressing cell line 
SK-Br-3

Transfection efficiency greater 
than cationic liposome-based 
reagent, 66% GFP gene silencing, 
77% aromatase gene silencing

[36]

DOTAP:Span 80:TPGS (50:49:1 M 
ratio) SPANosomes

FAM-siRNA, Cy3-MB, 
Silencer® renilla 
luciferase siRNA 
(Invitrogen, CA, USA)

SK Hep-1 cells with stable 
luciferase expression, (SK Hep-1 
Luc) and flow cytometry

Divergent cellular pharmacokinetic 
profiles of the niosomes and 
liposomes were associated with 
different cellular entry pathways

[37]

Chol: Cholesterol; DC-Chol: 1-cholesteryl 3-N-(dimethylaminoethyl) carbamate; DDAB: Dimethyl dioctadecyl ammonium bromide; DOTAP: 1,2-dioleoyl-3-
trimethylammonium-propane; FAM: Carboxyfluorescein; GDL: Glyceryl dilaurate; GFP: Green fluorescent protein; HBsAg: Hepatitis B surface antigen; 
PEG2000-DSPE: 1,2-distearoyl-sn‑glycero-3-phosphoethanolamine-N-(PEG)-2000; POE-10: Polyoxyethylene-10 stearyl ether; siArom: siRNA targeting aromatase; 
siGFP: Silencer® enhanced GFP siRNA; Spermine–C14: N1,N1-dimyristeroyloxyethyl-spermine; Spermine-C16: N1,N1-palmitoyloxyethyl-spermine; 
Spermine–C18: N1,N1-steroyloxyethyl-spermine; TPGS: d-a-tocopheryl PEG-1000 succinate.
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Executive summary

Delivery of RNAi therapeutics
�� The potential of RNAi therapeutics has been largely limited by inefficient methods of delivery.

�� Nonviral vectors, which take advantage of electrostatic interactions with RNAi therapeutics, form stable complexes that promote 
delivery to the intracellular target.

Nonionic surfactant vesicles for nucleic acid delivery
�� Niosomes possess a variety of chemical properties that make them advantageous relative to the classically used phospholipids.

�� Niosomes are composed of nonionic surfactants, cholesterol and charge-inducer components.

Applications of niosomes
�� Niosomes have shown success in the delivery of several classes of drug, including nucleic acid-based drugs.

�� Among niosomes, SPANosomes, based on the surfactant Span® 80 (Sigma Aldrich, MO, USA), have experienced success owing to 
utilization of the caveolae-mediated pathway for cellular entry.

Conclusion
�� The development of carrier systems is essential to the implementation of RNAi therapeutics.

�� Niosomes demonstrate increased efficacy over conventional lipid-based delivery systems.

Future perspective
�� Further optimization and characterization of niosome formulations will potentiate its activity and open doors for new treatment 
opportunities for patients.
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