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HIV-1 immunopathogenesis in humanized mouse models

Liguo Zhang1 and Lishan Su1,2

In recent years, the technology of constructing chimeric mice with humanized immune systems has markedly improved. Multiple

lineages of human immune cells develop in immunodeficient mice that have been transplanted with human hematopoietic stem cells.

More importantly, these mice mount functional humoral and cellular immune responses upon immunization or microbial infection.

Human immunodeficiency virus type I (HIV-1) can establish an infection in humanized mice, resulting in CD41 T-cell depletion and an

accompanying nonspecific immune activation, which mimics the immunopathology in HIV-1-infected human patients. This makes

humanized mice an optimal model for studying the mechanisms of HIV-1 immunopathogenesis and for developing novel

immune-based therapies.
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INTRODUCTION

Human immunodeficiency virus type I (HIV-1) infection is charac-

terized by progressive CD41 T-cell depletion and acquired immuno-

deficiency syndrome (AIDS). Approximately 60 million people have

been infected with HIV-1, and half of them have died from AIDS-

related diseases.1 After more than 30 years of extensive research, the

precise mechanism by which HIV-1 infection leads to immunodefi-

ciency is still poorly understood, mainly as a result of the lack of robust

small animal models. The recent development of humanized mice

with functional humanized immune systems may help to improve

our understanding of HIV-1 pathogenesis and lead to new treatments.

A BRIEF HISTORY OF THE HUMANIZED MOUSE MODEL

In this review, humanized mice are defined as immunodeficient mice

that have been transplanted with human hematopoietic stem cells

(HSCs), lymphoid tissue or peripheral blood cells. Early attempts to

reconstitute the human immune system in nude mice (which lack T

cells) were unsuccessful because of the significant rejection mediated

by the remaining mouse B and natural killer (NK) cells.2 The first

breakthrough in this field came with the development of CB17-

SCID (SCID) mice,3 which lack both T and B lymphocytes. Human

peripheral blood leukocytes (SCID-hu PBL)4 and human fetal liver

and thymus tissue (SCID-hu Thy/Liv)5 were successfully reconstituted

in SCID mice. Non-obese diabetic (NOD)/SCID mice exhibit addi-

tional defects in T, B, NK cell and macrophage function6 and thus are

superior to SCID mice at accommodating human peripheral mono-

nuclear cells (PBMCs)7 and HSCs.8 However, these early models have

limitations. The SCID-hu PBL mice lack human lymphoid organs and

develop severe graft-versus-host disease mediated by xeno-reactive

donor T cells. In contrast, the SCID-hu Thy/Liv mice have very low

levels of human cells in the blood and peripheral organs. Collectively,

the lack of human cells in the peripheral lymphoid organs and the

inability to mount functional immune responses limit the applicabil-

ity of these early humanized models.

RECENT PROGRESS IN HUMANIZED MOUSE MODELS

It was reported that depletion of NK cells by antibody treatment

significantly increases human HSC engraftment efficiency in NOD/

SCID mice.9 This finding encouraged the generation of mice that are

completely devoid of T, B and NK cells (reviewed by Ito et al.10 and

Shultz et al.11). These newly developed immunodeficient mice allowed

much better human HSC reconstitution and significant improve-

ments in human immune function. In addition to the development

of novel immunodeficient mouse strains, more efforts have been made

to enhance engraftment, such as by introducing human cytokines,12–14

by using human leukocyte antigen (HLA) transgenics15 and by inhib-

iting mouse macrophage function.16

Mice lacking T, B and NK cells

The interleukin-2 (IL-2) receptor gamma chain (IL2Rc) is a common

signaling component of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 signal-

ing. The absence of IL2Rc blocks NK cell development as a result of the

ablation of IL-7 and IL-15 signaling. Efficient multilineage hemato-

poiesis was first reported in NOD/Shi-SCID Il2rgnull (NOG) mice after

human HSC transplantation (NOG-hu HSC),17 and a subsequent

study showed similar human immune cell differentiation in rag22/2
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Il2rgnull mice (DKO-hu HSC). More importantly, functional human

immune responses were observed in DKO-hu HSC mice, including

antigen-specific T cells and antibody production in respond to

immunization and microbial infection.18,19 Several other mutant

mouse strains with an Il2rg gene knockout have been success-

fully developed, such as NOD/LtSZ-SCID Il2rgnull (NSG),19,20

NOD-rag12/2Il2rgnull (NRG)21 and rag12/2 Il2rgnull mice.22 It is

worth noting that NSG mice have been shown to support increased

human cell engraftment over the other strains.22–24

Inhibition of mouse macrophages

In addition to T, B and NK cells, macrophages also contribute to

xenograft rejection. Signal regulatory protein alpha (SIRPa) is an

inhibitory receptor that is highly expressed on myeloid cells, whereas

its ligand CD47 is expressed on all cell types. Ligation of SIRPa by

CD47 inhibits macrophage phagocytosis, which contributes to the

recognition of self and non-self by innate immunity.25 Additionally,

this CD47–SIRPa interaction also plays an important role in macro-

phage-mediated xenograft rejection in humanized mice. The SIRPa of

NOD mice shows enhanced binding to human CD47, which results in

reduced rejection and improved human cell reconstitution.26 These

polymorphisms of the sirpa gene may at least partially explain why

NSG mice are more efficient than DKO mice in supporting human

HSC transplant.22,27 It was recently reported that HSC transduction

with mouse CD47 by a lentiviral vector led to increased engraftment in

humanized mice.28 Meanwhile, human sirpa gene-transgenic DKO

mice support improved human cell reconstitution and a stronger

antigen-specific immune response.16

Improvement of graft efficiency by introducing human cytokines

Many mouse cytokines are poorly crossreactive with their human

receptors, so supplementing human cytokines in trans can improve

the development and differentiation of certain cell lineages in huma-

nized mice: such cytokines include IL-7 for T cells,29 IL-15 for NK

cells,12,30 erythropoietin for erythrocytes and granulocyte-macro-

phage colony-stimulating factor (GM-CSF)/IL-4/macrophage col-

ony-stimulating factor (M-CSF) for monocytes/macrophages.12,31

Recently, progress has been made by knock-in replacement of

mouse cytokines with their human counterparts.32 Because transcrip-

tion of the knock-in genes is controlled by mouse regulatory elements,

the genes are expressed at the correct time, in the correct location and

at physiological levels. Moreover, the replacements lead to defects in

the targeted mouse cells, thus providing a competitive advantage to

human cells. Three mouse strains have been developed with this tech-

nology to produce human thrombopoietin,14 human IL-3/GM-CSF13

and M-CSF.33 The thrombopoietin replacement results in better

maintenance of human HSC and higher levels of human cell engraft-

ment.14 The human IL-3/GM-CSF13 and M-CSF33 knock-in genes

dramatically improve myeloid cell differentiation and function.

Human HLA transgenic mice

In humanized mice, human T cells are educated in the mouse thymus

by both mouse thymic epithelial cells and human bone marrow-

derived cells.18,19 The T-cell receptor affinity and specificity may be

different from those in humans with matched MHC types.34

Transgenic expression of human HLA-A2 (MHC I) significantly

improves human CD81 T-cell responses to both Epstein–Barr virus

(EBV)34,35 and dengue virus36 in infected mice. Interestingly, EBV-

infected humanized mice with the HLA-A2 transgene generate anti-

gen-specific T cells to lytic EBV antigens that predominate over T cells

specific to latent antigens, which is similar to the T-cell response in

human EBV carriers.34 Significantly increased human cell reconstitu-

tion and better immune responses, including immunoglobulin class

switching and elevated human IgG responses, were also observed in

HLA-DR4 (MHC II) transgenic mice.37,38

Other factors affecting human cell engraftment

In addition to the mouse genetic background, there are other factors

that may affect human cell reconstitution. First, co-transplant of

human fetal thymus with autologous HSC will significantly increase

human immune reconstitution and function in NOD/SCID mice.39,40

Mice transplanted with human fetal thymus and liver tissue in addi-

tion to HSC are called BLT mice.39,40 BLT mice have been constructed

on both NOD/SCID and NSG backgrounds, and the reconstitution of

NSG-BLT has proved to be higher than NOD/SCID-BLT.24 It has also

been demonstrated that newborn mice (less than 3 days) support

higher transplant efficiency.18,19,27,41 Mouse gender was found to play

a role in accommodating human HSC grafts because engraftment of

human hematopoietic stem cells was more efficient in female NSG

recipient mice than in male mice.23,42

HIV-1 INFECTION IN HUMANIZED MICE

Early generations of humanized mice were developed to study HIV-1

infection,43,44 and the SCID-hu Thy/Liv model is still being used to test

antiviral drugs (Table 1).45–47 However, these models are limited in the

modeling of HIV-1 immunopathogenesis owing to the lack of a func-

tional immune system. In the improved humanized mice, several

HIV-1 strains have been successfully used for infection. These

include CCR5-tropic (JR-CSF,48,49 Yu-2,50 BAL,51,52 ADA53 and

NFN-SX52,53), CXCR4-tropic (NL4-3)50,51 and dual-tropic (NL4-

R3A) viruses.48,54 HIV-1 infection can be established by inoculation

through intraperitoneal,50,51,53,55 intravenous48,49 or mucosal routes.56

Sustained viral replication and CD41 T-cell depletion were observed

by all routes of infection. As is the case for HIV-1 infected patients,

CXCR4-tropic HIV-1 quickly depletes both CD45RA1 naive and

CD45RA2 effector/memory CD41 T lymphocytes, whereas CCR5-

tropic HIV-1 preferentially depletes CD45RA-CD41 T lymphocytes.57

Humanized mice have been used to study various aspects of HIV-1

infection (Table 1): the roles of regulatory T cells (Tregs)54 and plas-

macytoid dendritic cells (pDCs)73 in HIV-1 infection, the immuno-

pathogenesis of HIV-1, viral evolution in vivo,58,59 new antiviral

treatments,79–81,84,86 gene therapy,83,88 mucosal transmission56 and

microbicide development.68,70 In the presence of antiviral drugs,

latent infection can be established, making humanized mice a valuable

model to study HIV-1 latency.61–63

Most importantly, the anti-HIV-1 immune responses were

observed in the infected mice. These include anti-HIV-1 antibod-

ies49,50,52,56 and HIV-1-specific T-cell responses.52 HIV-1 infection

resulted in increased CD81 T cells in the blood, which were derived

from CD45RA effector/memory T cells, not CD45RA1 naive T cells.60

The depletion of CD81 T cells by antibody treatment resulted in

increased viral load, robust immune cell activation and cytopathology

in lymphoid tissues.89 These improvements make the new generation

of humanized mice superior to the early models for studying HIV-1

immune responses and immunopathogenesis.

IMMUNE ACTIVATION AND HIV-1 PATHOGENESIS

Although HIV-1 infection kills target cells, the majority of CD41 T-cell

loss is not due to productive infection.90,91 It is widely accepted that

chronic, generalized immune activation induced by HIV-1 infection is
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the major driving force of immunodeficiency.92–94 The level of T-cell

activation (the percentage HLA-DR1CD381 T cells out of all the

CD81 T cells) predicts disease progression independent of and more

accurately than CD41 T cell count.95 Additionally, it was recently

reported that anti-malarial drugs such as chloroquine96 and hydroxy-

chloroquine97 inhibit immune activation in HIV-1-infected patients

when used as a monotherapy96 or in combination with antiviral treat-

ment.97 The reduction in immune activation correlates with an

increase in CD41 T cells.97

Additional data supporting the hypothesis that immune activation

drives AIDS development come from simian immunodeficiency virus

(SIV)-infected monkeys. SIV-infected Asian monkeys (e.g., rhesus

macaques, cynomolgus macaques and pigtail macaques) experience

a dramatic increase in immune activation, rapid CD41 T-cell loss and

progression to AIDS. Conversely, infected natural African hosts (e.g.,

green monkeys, sooty mangabeys and mandrills) exhibit minimal

T-cell activation and rarely progress to immunodeficiency despite a

viral load comparable to pathogenic SIV infections.98–100 Moreover,

experimental induction of immune activation by lipopolysaccharide

(LPS) in SIV-infected African green monkeys has been shown to result

in CD41 T-cell loss.101 Interestingly, the transcriptomes of patients

with preserved CD41 T cell numbers in the presence of constant, high

HIV-1 viral loads are very similar to the transcriptomes of SIV-

infected sooty mangabeys.102

Long-term immune activation can cause damage even in the

absence of viral infection. For example, transgenic mice expressing

CD70 develop chronic immune activation and lethal immunodefi-

ciency.103 Moreover, treatment with Toll-like receptor (TLR) 9104 or

Table 1 HIV infection in current humanized mouse models

Research areas Models References

HIV-1 evolution DKO-hu HSC Ince et al.,58 2010

NOG-hu HSC Sato et al.,59 2010

Immune response NOG-hu HSC Nie et al.,57 2009

NOG-hu HSC Sato et al.,60 2010

NSG-BLT Brainard et al.,52 2009

NOD/SCID-BLT Brainard et al.,52 2009

Latency DKO-HSC Choudhary et al.,61 2012

NSG-BLT Denton et al.,62 2012

Marsden et al.,63 2012

Mucosal transmission and prevention DKO-hu HSC Berges et al.,64 2008

Hofer et al.,65 2008

Neff et al.,66 2010

Rag12/2/cC2/2-hu HSC Akkina et al.,67 2011

NSG-BLT Denton et al.,68 2011

Stoddart et al.,24 2011

Wheeler et al.,69 2011

NOD/SCID-BLT Sun et al.,56 2007

Denton et al.,70 2008

Denton et al.,71 2010

Denton et al.,68 2011

Stoddart et al.,24 2011

Immune activation and pathogenesis Tregs DKO-hu HSC Jiang et al.,54 2008

GALT and mucosal microbes DKO-hu HSC Hofer et al.,72 2010

pDCs DKO-hu HSC Zhang et al.,73 2011

Interferon-a NSG-BLT Long et al.,74 2012

Interferon-a SCID-hu Thy/Liv Stoddart et al.,75 2010

Neuropathology NSG-hu HSC Dash et al.,76 2011

Gong et al.,77 2011

Gorantla et al.,78 2010

Antiviral drug siRNA DKO-hu HSC Neff et al.,79 2011

Zhou et al.,80 2011

Ter Brake et al.,81 2009

NSG-hu HSC Kumar et al.,82 2008

Kim et al.,83 2010

NSG-BLT Wheeler et al.,69 2011

Small molecules DKO-hu HSC Choudhary et al.,84 2009

Sango et al.,85 2010

SCID-hu Thy/Liv Stoddart et al.,46 2007

Stoddart et al.,47 2007

Peptides DKO-hu HSC van Duyne et al.,86 2008

SCID-hu Thy/Liv Stoddart et al.,45 2012

Gene Therapy shRNA NSG-BLT Shimizu et al.,87 2010

HIV-1 neutralizing antibody NSG-hu HSC Joseph et al.,88 2010

Abbreviations: BLT, human thymus and liver tissues and HSC; DKO, rag22/2Il2rgnull; hu HSC, human CD341 hematopoietic stem/progenitor cells; hu Thy/Liv, human

thymus and liver tissues; NOG, NOD/Shi-SCID Il2rgnull; NSG, NOD/LtSZ-SCID Il2rgnull; pDCs, plasmacytoid dendritic cells; Tregs, regulatory T cells; shRNA, small hairpin

RNA; siRNA, small interfering RNA.
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TLR7105 ligands in mice induces immune activation, lymphoid organ

distraction and immune suppression.

The exact mechanism by which HIV infection leads to immune

activation is not fully understood. It has been proposed that HIV-1

viral proteins, whole viral particles, infected cells and infection-

induced cytokines contribute to immune cell activation.93 Other fac-

tors have also been proposed as the cause of immune activation, such

as loss of tissue integrity during acute phase infection of gut-associated

lymphoid tissue (GALT) and microbial products translocation,106 loss

of Tregs,107,108 activation of pDCs,112 and production of type I inter-

ferons (IFN-I).109,110

GALT infection and intestinal bacteria translocation

HIV-1 infection causes massive depletion of T cells in GALT and

breaks down the mucosal barrier, resulting in translocation of

intestinal bacterial products (including LPS) and immune activa-

tion.106 Injection of LPS into SIV-infected African green monkeys

resulted in increased immune activation and viral replication.101 It

was recently reported that circulating LPS in the first years of

chronic HIV-1 infection is a strong predictor of disease progression

independent of CD41 T-cell counts and HIV-1 viral load, so

plasma LPS may serve as a candidate biomarker for HIV-1 moni-

toring and evaluation of treatments.111

IFN-I and pDC activation

IFN-I is a group of multifunctional cytokines that plays an essential

role in antiviral immunity. pDCs constitute 0.2%–0.5% of human

PBMCs, but they are capable of producing 100 times more IFN-I than

other cell types. They preferentially express TLR7 and TLR9, sensing

viral RNA and DNA, respectively, during infection. Upon viral infec-

tion or other stimulation, pDCs produce large amounts of IFN-I and

other inflammatory cytokines.112 IFN-I play important roles in

immune cell development and normal immune responses. However,

persistent expression of IFN-I induces immune dysfunction and may

lead to autoimmune disease.113

Elevated expression of IFN-I has been documented in HIV-1-

infected patients.114–116 HIV-1 infection also stimulates IFN-I pro-

duction in cultured human PBMCs or purified pDCs.117–119 As

would be expected, both IFN-I120,121 and pDCs122 show the capa-

city to inhibit HIV-1 replication in vitro. pDCs are numerically

decreased123–125 and functionally impaired in the peripheral blood

of HIV-1-infected individuals. The decreased capacity of pDCs to

produce IFN-I correlates with opportunistic infection independent

of CD41 T-cell counts.126–128 These observations suggest that pDCs

and IFN-I are protective during HIV-1 infection, which is similar to

their role in other viral infections.

Paradoxically, the high levels of IFN-I in HIV-1-infected patients do

not correlate with viral control; rather, they are predictive of HIV-1

disease progression and AIDS development.115,129,130 Additionally,

IFN-I is induced during the acute phase of SIV infection in both patho-

genic and non-pathogenic hosts, but is rapidly controlled during non-

pathogenic SIV infection. Only pathogenic SIV infection is character-

ized by sustained IFN-I production during a chronic infection, which

correlates with immune activation and AIDS development.131–134

However, it is still not clear if pDCs are the major source of IFN-I

during chronic HIV-1 infection because the IFN-I-producing cells in

the spleens of HIV-1 infected patients do not seem to express pDC-

specific markers.135 The mechanisms of IFN-I production and pDC

activation in HIV-1 pathogenesis are poorly understood. HIV-1 infec-

tion can stimulate pDCs to express TNF-related apoptosis-inducing

ligand, which may contribute to CD41 T-cell depletion.136–138

However, the induction of CD41 T-cell death by TNF-related apopto-

sis-inducing ligand-expressing pDCs remains controversial.139 These

conflicting reports highlight that IFN-I and pDCs may play multiple

roles in HIV-1 infection and immunopathogenesis.

Tregs

Human CD41CD251FoxP31 Tregs are central players in balancing

the induction and suppression of immune activation.140,141 During

HIV infection, Tregs could be either beneficial, by inhibiting immune

activation, or detrimental, by suppressing virus-specific T-cell res-

ponses.107,142 It has been reported that, during HIV infection, the

absolute Treg count decreases and that Treg loss correlates with

immune activation and disease progression.143,144 However, other

studies have shown that Treg numbers are elevated in both the

PBMCs145,146 and the GALT147 of HIV-1-infected patients, indepen-

dently of CD41 T-cell count and viral load.145,146 One study in SIV-

infected rhesus macaques demonstrated that Tregs are depleted from

the GALT but accumulate in PBMCs and lymphoid organs.148 These

conflicting reports underscore the complex role of Tregs in HIV infec-

tion and immune activation.

STUDYING THE MECHANISMS OF HIV-1 PATHOGENESIS IN

HUMANIZED MOUSE MODELS

HIV-1 infection in humanized mice results in sustained viral replica-

tion and significant CD41 T-cell depletion in the peripheral blood and

lymphoid organs.48,50,51,53,55,56 Viral antigens have been observed in

T cells, CD681 macrophages50,56 and pDCs.73 Importantly, HIV-1

infection results in T-cell activation in the humanized mice, and the

immune activation correlates with viral load74 and T-cell depletion.73

Several experiments to delineate the mechanisms of HIV-1 immuno-

pathogenesis have been carried out in humanized mice and will be

summarized in this section.

GALT infection and gut bacteria translocation

NOD/SCID-BLT or NSG-BLT mice support human cell reconstitu-

tion in the gut and virginal tissues through mucosal inoculation.24,56

These mice have been used to study microbicides and the prevention

of HIV-1 mucosal transmission.24,68,70,71 DKO-hu HSC mice show

very limited levels of human cells in the gut mucosa65 and whether

these mice can support mucosal infection remains controversial.64,65

Application of dextran sodium sulfate induces bacterial endotoxin

translocation in DKO-hu HSC mice but does not result in elevated

plasma LPS levels unless phagocytic cells are depleted with clodronate

liposomes or impaired by HIV-1 infection.72 This finding highlights

the role of macrophages in modulating microbial translocation and

immune activation.

pDCs and IFN-I in HIV-1 pathogenesis

Human pDCs in these chimeric mice phenotypically resemble their

counterparts from human PBMCs in their expression of specific sur-

face markers such as blood dendritic cell antigen 2, CD123, HLA-DR

and CD4.18,52,73 Moreover, they function similarly to human pDCs by

producing IFN-I and other inflammatory cytokines upon influenza

virus or herpes simplex virus infection.18,52,73 HIV-1 infection in

humanized mice can also activate pDCs to produce IFN-I and other

cytokines. Importantly, the activation of pDCs positively correlates

with immune activation and CD41 T-cell depletion in infected mice.73

It has also been shown that IFN-I application to NSG-BLT mice causes

immune activation similar to that induced by HIV-1 infection.74

HIV pathogenesis in humanized mice
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It was recently reported that chloroquine118 and rapamycin151,152

inhibit IFN-I production by pDCs in vitro. Meanwhile, clinical studies

show that chloroquine,96 hydroxychloroquine97 and rapamycin149,150

could reduce immune activation and inhibit pathogenesis in HIV-1-

infected patients. Whether these drugs function through inhibiting

pDCs in vivo needs to be examined further. Humanized mice provide

a robust in vivo model for these studies and other hypothesis-driven

experiments that test the roles of pDCs and IFN-I in HIV-1 patho-

genesis.

Roles of Tregs in HIV-1 infection and pathogenesis

Tregs were observed in different organs of humanized mice, and puri-

fied Tregs have suppressive functions that are similar to those of their

human PBMC-derived equivalents.54,153 During the acute phase of

infection, CD41FoxP31 Tregs are preferentially infected and depleted

by a pathogenic HIV-1 isolate in infected DKO-hu HSC mice. When

Tregs are depleted with an IL-2-toxin fusion protein (denileukin dif-

titox, trade name Ontak), HIV-1 replication is significantly impaired

in infected mice. This is observed in the reduced number of infected

cells in lymphoid organs and lower plasma viremia.54 Notably, Ontak

does not efficiently deplete Tregs in monkeys,101 which highlights the

advantage of humanized mouse models.

AIDS-related neurological disorders

Neurocognitive disorders are common causes of morbidity in HIV-1-

infected patients.154 SIV-infected rhesus macaques have been developed

to study HIV-1-related neurological disorders.155 However, species

specificity and high costs preclude their widespread usage. Recently, it

was reported that HIV-1 infection in humanized mice induces neuroin-

flammatory responses, including leukocyte infiltration, microglial

activation, meningitis and encephalitis.78 Structural changes in mouse

cortical gray matter were also observed, evidenced by the loss of micro-

tubule-associated protein 2, synaptophysin and neurofilament anti-

gens.76 These reports suggest that humanized mice would be a

valuable system for modeling AIDS-related neurodegeneration.

FUTURE DIRECTIONS

Substantial advances have been made in developing mice with huma-

nized immune systems since the first report more than 20 years ago,5

although the functions of the human cells in these chimeric mice are

still in need of further improvements.156,157 These mice have been

shown to be invaluable for several aspects of HIV-1 research, especially

for studying immune responses and immunopathogenesis.54,72,73 All

of the human immune cell types that have been implicated in HIV-

induced immune pathogenesis can be studied in humanized mice.

Additionally, humanized mice can be genetically modified to test dif-

ferent hypotheses about immune activation and the underlying

mechanisms. More importantly, data collected from humanized mice

are readily translatable to clinical studies because the same agents can

be used. In summary, humanized mouse models will increase our

understanding of how HIV infection leads to AIDS and accelerate

the development of therapeutic strategies.
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